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a b s t r a c t

The angle formed by ship wakes is usually found close to the value predicted by Kelvin, α¼ 19:471.
However we recently showed that the angle of maximumwave amplitude can be significantly smaller at
large Froude number. We show how the finite range of wavenumbers excited by the ship explains the
observed decrease of the wake angle as 1/Fr for Fr40:5, where Fr¼U=

ffiffiffiffiffi
gL

p
is the Froude number based

on the hull length L. At such large Froude numbers, sailing boats are in the planing regime, and a
decrease of the wave drag is observed. We discuss in this paper the possible connection between the
decrease of the wake angle and the decrease of the wave drag at large Froude number.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A ship moving on calm water generates gravity waves present-
ing a characteristic V-shaped pattern. Lord Kelvin in 1887 was the
first to explain this phenomenon and to show that the wedge
angle is constant, independent of the boat velocity (see, e.g.,
Darrigol, 2005). According to this classical analysis, only the
wavelength and the amplitude of the waves change with the
velocity, and the half-angle of the wedge remains to be equal to
19.471.

In contrast to this result described in many textbooks, we have
shown recently that the apparent wake angle α, i.e. the angle of
maximum wave amplitude, is not the Kelvin angle at large
velocity, but rather decreases as 1/Fr, where Fr¼ U=

ffiffiffiffiffi
gL

p
is the

hull Froude number, based on the boat velocity U and on the
waterline length L (Rabaud and Moisy, 2013). We have shown how
this decrease can be simply modeled by considering the finite
length of the boat. This scaling law αp1=Fr has recently received
an analytical confirmation by Darmon et al. (2014).

Some years before Kelvin's work, William Froude, by towing
model boats, observed that at intermediate velocity the hydro-
dynamic drag increases rapidly with the hull Froude number
(Darrigol, 2005). Since then, the computation of hydrodynamic
drag has received considerable interest (Michell, 1898; Tuck, 1989;
Havelock, 1919), and still represents a challenge for naval archi-
tects. The wave drag (or wave-making resistance) RW is the part of
the hydrodynamic drag that corresponds to the energy radiated by
the waves generated by the hull translation. For a displacement

hull sailing at large velocity (Froude number in the range 0.2–0.5)
the major part of the hydrodynamic drag is actually due to the
wave drag.

In this paper we review some recent results about the Froude
number dependence of the wake angle and the wave drag, and
discuss the possible link between the decrease of these two
quantities for planing sailing boats at large Froude number.

2. Wave pattern

When a boat sails on calm water at constant velocity U, the
waves present around and behind the hull are only those that are
stationary in the frame of reference of the boat. For a givenwave of
wavenumber k propagating in the direction θ with respect to the
boat course (Fig. 1), this stationary condition gives

U cos θðkÞ ¼ cφðkÞ ð1Þ
where cφðkÞ is the phase velocity of the wave.

Because of the dispersive nature of gravity waves, cφ is a
function of the wave number, cφ ¼

ffiffiffiffiffiffiffiffi
g=k

p
, implying that for a given

propagation direction θ only one wavenumber is selected by Eq. (1):

kðθÞ ¼ g

U2 cos 2θ
: ð2Þ

As a consequence, the smallest wave number (i.e. the largest
wavelength) compatible with the stationary condition is kg ¼ g=U2,
and corresponds to waves propagating in the boat direction (θ¼ 0).
These so-called transverse waves are visible along the hull and
following the boat.

Importantly, energy propagates at the group velocity and not
at the phase velocity, and for gravity waves the group velocity
is equal to half the phase velocity (cg ¼ 1

2cφ) (e.g., Lighthill, 1978).
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It follows from this ratio that the radiation angle αðkÞ, along which
the energy of a wavenumber k propagates in the frame of the
disturbance, is given by (Keller, 1970; Rabaud and Moisy, 2013)

αðkÞ ¼ tan �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=kg�1

p
2k=kg�1

 !
: ð3Þ

The plot of αðkÞ (Fig. 2) shows that for any given angle α smaller
than 19.471 there are two possible values of k that correspond to
two directions θ (Eq. (2)). One solution corresponds to transverse

waves (smaller θ) and the other one to divergent waves (larger θ).
The angle α takes its maximum value α0 ¼ 19:471 for k0=kg ¼ 3=2,
and no waves can be observed beyond this angle: this is the well
known Kelvin angle, which corresponds to a cusp in the wave
pattern. If the disturbance is a point source exciting a broadband
spectrum of wavenumbers, then an accumulation of energy must
take place at k0=kg ¼ 3=2 (because the angular energy density
EðαÞ ¼ EðkÞj∂α=∂kj�1 diverges at k0, with E(k) the spectral energy
density radiated by the disturbance), so the cusp is also the locus
of maximum amplitude of the waves.

In reality, a boat cannot be described by a single point source:
all the points of the hull act as wave sources and the detail of the
amplitude of the wave depends on the exact shape, trim, sinkage
of the hull, and on the Froude number. For example, for a poorly
streamlined hull at low Froude number, two V-shaped wakes are
visible, one originating from the bow and the other from the stern.

In general the waves generated by a boat are characterized by a
spectrum containing one or several characteristic length scales,
corresponding to specific ranges of wavenumbers, so the maximum
of wave amplitude is not necessarily located at the cusp angle
(Lighthill, 1978; Carusotto and Rousseaux, 2013).

3. Wave angle for rapid boats

The commonly accepted result of Kelvin of a constant wake
angle of 19.471 is called into question by numerous observations of
significantly narrower wakes for planing boats at large velocity.
This is illustrated in Fig. 3, showing a wake angle of order of 101,
significantly smaller than the Kelvin prediction.

Analyzing a set of airborne images from Google Earth©, we
measured the wake angles and the Froude numbers for boats of
various sizes and velocities. Using the scale provided on the
images, we measured the overall length of the boat (assumed to
be equal to the waterline length L) and the wavelength of the
waves on the edge of the wake. From this wavelength the boat
velocity U is determined using Eq. (2) and the Froude number is
then computed. Our data clearly show a decrease of the wedge
angle for Froude numbers larger than 0.5 (Fig. 2 of Rabaud and
Moisy, 2013). Values as small as 71 were observed.

Wake angles smaller than the Kelvin prediction can be
explained as follows. The key argument is that a moving distur-
bance of size L cannot excite efficiently the waves significantly
smaller or larger than L. This is a general property of dispersive
waves, analogous to the Cauchy–Poisson problem for the temporal
evolution of an applied initial disturbance of characteristic size L at
the free surface of a liquid (Havelock, 1908; Lighthill, 1978): the
wave packet emitted by the disturbance travels at the group

velocity cg ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
g=kf

q
corresponding to a wave number kf of the

order of L�1, and the characteristic wavelength at the center of the
wave packet is of the order of L. It is therefore possible to model
the angle of maximumwave amplitude by simply considering that
the energy radiated by the boat is effectively truncated below the

wavenumber L�1. At large boat velocity this wavenumber can be

larger than the wavenumber k0 ¼ 3g=2U2 which corresponds to
the maximum Kelvin angle. Since only the wavenumbers of order
of kf are of significant amplitude, the angle of maximum wave

amplitude is given by Eq. (3) evaluated at kf CL�1. This simple
model shows that the apparent wake angle is given by the Kelvin
prediction as long as energy is supplied to k0 (small Fr), but it is a
decreasing function of velocity for Fr larger than a crossover
Froude number Frc. Choosing kf ¼ 2π=L (the exact prefactor
depends on the shape of the disturbance spectrum) gives

Fig. 1. Geometric construction of the wave pattern and angle definitions for a boat
sailing at constant velocity U (Crawford, 1984).

Fig. 2. Radiation angle αðkÞ as a function of the wavenumber ratio k=kg (Eq. (3)),
where kg ¼ g=U2.

Fig. 3. Photograph of a fast planing motor-boat exhibiting a narrow wake (source:
http://en.wikipedia.org/wiki/Wake).
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Frc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3=4π

p
C0:49, and an apparent wake angle decreasing as

α� 1
2
ffiffiffiffiffiffi
2π

p
Fr

ð4Þ

for Fr⪢Frc (the angle is given in radians). In other words, the Kelvin
angle of 19.471 is always present at arbitrary Fr, but when Fr⪢Frc

the energy of the waves at 19.471 becomes negligible, and the
energy emitted by the boat is preferentially radiated at the smaller
angle given by Eq. (4). This law turns out to compare well with the
wake patterns observed from airplane images. This is also con-
sistent with the fact that at Fr40:5 the transverse waves behind
the boat (θ¼ 0), which are visible for smaller Froude numbers, are
no more visible (see Fig. 3), since their characteristic wavelengths
fall outside the wave spectrum excited by the boat.

The decrease of the wake angle can be tested numerically. We
follow the classical procedure of Havelock (1919) to evaluate the
surface elevation field induced by an applied pressure field Pðx; yÞ
at the water surface. The simplest choice is an axisymmetric
Gaussian pressure distribution characterized by a single length
scale L:

PðrÞ ¼ 2πF0
L2

exp �2π2 r
L

� �2� �
; ð5Þ

with F0 ¼∬ PðrÞ d2r the total applied force, which corresponds to
the weight of the boat. Using linear potential theory, the resulting
surface deformation ζðx; yÞ can be computed as a Fourier integral
(Lighthill, 1978; Raphaël and de Gennes, 1996; Darmon et al.,
2014):

ζðxÞ ¼ � lim
ϵ-0

ZZ
kP̂ ðkÞ=ρ

ωðkÞ2�ðk � U� iϵÞ2
eik�x

d2k
ð2πÞ2

; ð6Þ

where ωðkÞ ¼
ffiffiffiffiffiffiffiffiffi
gjkj

p
and P̂ ðkÞ is the two-dimensional Fourier

transform of PðrÞ. Wake patterns obtained by numerical integra-
tion of Eq. (6) for various Froude numbers are shown in Fig. 4 (the
small parameter ϵ is chosen of order U=Lbox, with Lbox the domain
size). These figures confirm the narrowing of the wake angle as Fr
is increased, starting from a value close to the Kelvin prediction at
Fr¼0.5 and decreasing down to 4.91 at Fr¼2.

4. Wave drag

To describe the well known increase of the wave drag with
the Froude number for displacement navigation at moderate
Froude numbers (Fro0:5) we first come back to Fig. 1, focusing
on the transverse waves propagating in the boat direction (θ¼ 0).
These waves are the stationary waves observed along the side of
the hull and behind the boat. Their wavenumber is given by Eq.
(2), kg ¼ g=U2, and their wavelength λg ¼ 2π=kg can be written as
λg ¼ 2πL Fr2. This wavelength increases with velocity up to a
particular velocity for which the wavelength is equal to the length
of the boat. This velocity corresponds to Fr¼ 1=

ffiffiffiffiffiffi
2π

p
� 0:4. For this

value the waves generated by the bow are in phase with the ones
emitted at the stern and the draught (or sinkage) of the hull is
maximum. This critical velocity is known as the hull limit speed,
because around this Froude number the wave drag increases
drastically and the trim of the boat starts to be strongly affected
by the generated waves. We now know that this “limit speed” can
be overcome with light and powerful boats as they reach the
planing regime. In this regime of large Froude number, hydro-
dynamic lift can become significant, decreasing the immersed
volume of the hull if the hull shape is well designed. It is often
assumed that the observed decrease of the wave drag in the
planing regime results from the smaller mass of fluid which needs
to be pushed away by the hull. During this transition to planing, a
significant acceleration of the boat can be observed. Note that the
decrease of the wave drag at large velocity is often partly hidden
by the increase of the other terms of the hydrodynamic drag,
which typically increases as Fr2.

We discuss now the possible connection between this wave
drag decrease during planing and the decrease of the apparent
wake angle described in the previous section. The wave drag RW is

Fig. 4. Perspective views of the wave pattern generated by an axisymmetric (Gaussian)
pressure distribution at various Froude numbers, Fr¼0.5, 1, 1.5 and 2. The angle of
maximum wave amplitude decreases from αC19 to 4.91. The wake patterns for
FrC1–1:5 compare well with Fig. 3. (a) Fr¼0.5, α¼18.61, (b) Fr¼1.0, α¼10.51,
(c) Fr¼1.5, α¼7.31 and (a) Fr¼2.0, α¼4.91.
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the part of the hydrodynamic drag due to the energy radiated by
the waves generated by the boat. In order to compare boats of
different forms and displacement a dimensionless wave drag
coefficient CW is usually defined. Assuming hulls having all the
same shape but not the same size, the wave drag only depends on
the boat velocity U, waterline length L, gravity g and water density
ρ. One finds by dimensional analysis

RW

ρU2L2
¼ CW ðFrÞ: ð7Þ

In reality this coefficient CW also depends on the exact shape of the
boat, and alternate definitions where L2 is replaced by LB or B2

(where B is the beam of the hull) are also found in the literature.
Another possibility is to build a dimensionless drag coefficient by
normalizing the wave drag force RW by the weight of the boat
F0 ¼ ρgD, where D is the static immersed volume of the hull. For a
displacement boat, the wave drag coefficient rapidly increases (at
least as Fr4 if defined by Eq. (7)) and becomes the dominant part of
the hydrodynamical drag at large Fr. Note that the power law
CW pFr4 can be recovered by a scaling argument, assuming that
the amplitude of the waves scales as U2 (using the Bernoulli
relation) and that the wavelength observed along the Kelvin angle
also scales as U2 (Eq. (2)).

The wave drag for an applied pressure field can be computed by
integrating the product of the pressure by the slope of the
interface in the direction of the motion (Havelock, 1919):

RW ¼
ZZ

Pðx; yÞ∂ζ
∂x

dx dy; ð8Þ

where ζðx; yÞ is obtained by solving Eq. (6). Using the same
Gaussian pressure field given by Eq. (5), we have computed the
wave drag for various Froude numbers. The results, plotted in
Fig. 5, are in perfect agreement with the exact result found by
Benzaquen et al. (2011) for a Gaussian pressure field:

CW ¼
 
D

L3

!2
1

Fr8

Z p=2

0

dy

cos 5y exp

 ffiffiffiffiffiffi
2p

p
Fr cos y

!�4
2
4

3
5

ð9Þ

This wave drag coefficient is maximum for FrC0:37, followed
by a decrease as CW C1=Fr4 at large Froude numbers. Interestingly,
this maximum is very close to the critical Froude number
FrcC0:49 at which the wake angle starts decreasing. Both results

are consequence of the finite extent of the wave spectrum excited
by the disturbance: as the Froude number is increased, the surface
deformation in the vicinity of the boat is no longer able to supply
energy to the waves of wavelength λg ¼ 2πU2=g, resulting in a
combined decrease of the wake angle (αC1=Fr) and of the wave
drag (CW C1=Fr4).

The overall shape of CW computed by Eq. (9) is remarkably
similar to the experimental curve of Chapman (1972) and compu-
tation by Tuck et al. (2002) (Fig. 6). This curve is usually
interpreted as the result of the lift of the hull and the resulting
decrease of the immersed volume at Fr40:5. However, in our
description, the prescribed pressure Pðx; yÞ does not depend on the
velocity, so it does not contain the physics of the dynamical lift on
the hull. This suggests that the dynamics of the planing and the
associated decrease of the immersed volume are not necessary
ingredients for the decrease of the wave drag at large Froude
number. Such prediction could be tested in principle by towing a
hull in a tank with imposed hull elevation and trim.

5. Conclusions

At large velocity many racing sailing boats are planing under the
action of a strong hydrodynamic lift. The fact that the dynamically
immersed volume is smaller than in the static condition provides a
reasonable argument for the diminution of the wave drag. We
propose here a complementary interpretation in which the com-
bined decrease of the wave drag and of the apparent wake angle
both follow from the finite extent of the wave spectrum excited by
the ship. This interpretation is based on simulations of the wave
pattern generated by an imposed pressure disturbance, that demon-
strate that the narrow wake angles at large Froude number can be
observed without lift and thus without planing regime (Rabaud and
Moisy, 2013; Darmon et al., 2014). Although only axisymmetric
disturbances are considered here, the Froude number dependence
of the wake angle has been recently examined for non-axisymmetric
disturbances by Noblesse et al. (2014) and Moisy and Rabaud (2014).
The corresponding evolution of the wave drag is addressed in
Benzaquen et al. (2014), providing an important step towards the
connection between wave drag and wake angle for real boats.

We note that the present description is by construction limited
to stationary motion, i.e. boat translating on a flat sea surface. In
real situations the wind and thus the wind waves are usually large
in planing conditions, and thus a periodic motion of the boat at the
wave encounter frequency is observed. These non-stationary
conditions are important because they increase the hydrodynamic
drag when sailing at close reach (e.g., Seo et al., 2013) and decrease

Fig. 5. Dimensionless wave drag calculated for a Gaussian moving pressure field
with our simulated wave field (□) and comparison with Eq. (9) (—).

Fig. 6. Dimensionless wave drag for a parabolic strut (Tuck et al., 2002, Fig. 1).
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the drag when surfing on swell. However, this issue goes well
beyond the scope of this paper.
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