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The angle formed by ship wakes is usually found equal to its Kelvin value, α = 19.47 degrees. However
we recently show that this angle can be significantly smaller at large Froude number [8]. We show how
the limited range of wave numbers excited by the ship explains the observed decrease of the wake angle
as 1/Fr for Fr > 0.5, where Fr = U/

√
gL is the Froude number based on the hull length L. At such large

Froude numbers, sailing boats are in the planing regime, for which the wave drag becomes a decreasing
function of the velocity. We discuss here the possible connection between the evolutions of the wake angle
and wave drag at large Froude number.

NOMENCLATURE

Symbol Definition (unit)

B Waterline beam (m)
cϕ Phase velocity (m s−1)
cg Group velocity (m s−1)
CW Wave-making coefficient
D Static immersed volume (m3)
Fr Hull Froude number
g Acceleration of gravity (m s−2)
k Wave number (m−1)
L Waterline length (m)
P Pressure (N m−2)
RW Wave-making resistance (N)
U Boat velocity (m s−1)
α Half-angle of the wake
θ Angle (k,U)
ρ Density of water (kg m−3)

1 INTRODUCTION

A ship moving on calm water generates gravity waves with
a characteristic V-shaped pattern. Lord Kelvin in 1887 [4]
was the first to explain this phenomenon and to show that the
wedge angle is constant, independent of the boat velocity. Ac-
cording to this classical analysis, only the wavelength and the
amplitude of the waves change with the velocity and the half-
angle of the wedge remains equal to 19.47 degrees.

In contrast to this result described in many textbooks, we
have shown recently that the wake angle is no more constant at
large velocity [8] and decreases as 1/U . We have shown that
this decrease can be modeled by including the finite length of
the boat in Kelvin’s analysis.

Some years before Kelvin’s work, William Froude, by tow-
ing model boats, observed that the hydrodynamic drag in-
creases rapidly with the boat speed U , and more precisely

that the drag is a function of the hull Froude number Fr =
U/
√
gL, where L is the waterline length. Following the pi-

oneering works of Froude [4], Michell [7, 10] and Havelock
[5], the computation of hydrodynamic drag still represents a
challenge for naval architects. The wave drag or wave-making
resistance RW is the part of this hydrodynamic drag that cor-
responds to the energy radiated by the waves generated by the
hull translation. For a displacement hull sailing at large ve-
locity (Froude number in the range 0.2 to 0.5) the major part
of the hydrodynamic drag is given by the wave drag.

In this paper we discuss the possible link between the de-
crease of the wake angle observed at large Froude number and
the evolution of the wave drag for planing sailing boats.

2 WAVE PATTERN

When a boat sails on calm water at constant velocity U , the
waves present around and behind the hull are only those that
are stationary in the frame of reference of the boat. For a
given wave of wave number k propagating in the direction θ
with respect to the boat course, this condition writes:

U cos θ(k) = cϕ(k) (1)

where cϕ(k) is the phase velocity of the considered wave (fig-
ure 1).

Because of the dispersive nature of gravity waves, cϕ is
function of the wave number, cϕ =

√
g/k, implying that for

a given propagation direction θ only one wavenumber is se-
lected by Eq. 1:

k(θ) =
g

U2 cos2 θ
. (2)

As a consequence, the smallest wave number (i.e. the largest
wave length) compatible with the stationary condition is given
by kg = g/U2, and corresponds to waves propagating in the
boat direction (θ = 0). These so-called transverse waves are
visible along the hull and following the boat.
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Figure 1: Geometric construction of the wave pattern and an-
gle definitions for a boat sailing at constant velocity U .

Importantly, energy propagates at the group velocity and
not at the phase velocity, and for gravity waves the group ve-
locity is equal to half the phase velocity (cg = 1

2cϕ) [6]. It
follows from this 1/2 factor that the angle α, where waves of
a given wave number are observed (figure 1), is given by [8]:

α(k) = tan−1

(√
k/kg − 1

2k/kg − 1

)
. (3)

This evolution of the angle α with the wave number is shown
in figure 2.
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Figure 2: Evolution of the angle α versus the wave number
ratio k/kg (Eq. 3), where kg = g/U2 is the gravity wave
number.

This plot shows that for any given angle α smaller than
19.47 degrees there are two possible values of k that corre-
spond to two directions θ (Eq. 2). One solution corresponds to
transverses waves (smaller θ) and the other to divergent waves
(larger θ). The angle α takes its maximum value α0 = 19.47
deg for k0/kg = 3/2, and no waves can be observed be-
yond this angle. This maximum wake angle corresponds to
a cusp (a caustic) in the wave pattern, and also to the locus of
maximum amplitude of the waves, since ∂α/∂k = 0, which
implies an accumulation of energy at k0/kg = 3/2. These
results correspond to the well known Kelvin angle [3].

In this classical description the boat is considered as a point
source, generating all the waves with a small constant ampli-
tude (broad band flat spectrum). In reality all the points of the
hull are sources and the detail of the amplitude of the wave
depend of the exact shape, trim, sinkage of the hull and of
the Froude number. For example, for a poorly streamlined
hull at low Froude number, two V-shaped wakes are visible,
one originating at the bow and the other at the stern. The
waves generated by the boat are therefore characterized by a
spectrum which cannot be considered as flat, and the resulting
wake pattern may escape from the classical Kelvin’s descrip-
tion.

3 WAVE ANGLE FOR RAPID BOATS

We recently showed that the commonly admitted result of
Kelvin of a constant wake angle equal to 19.47 degrees is no
longer true at large velocity for planing boats [8]. This is illus-
trated in figure 3, showing a wake angle significantly smaller
than the Kelvin prediction.

Figure 3: Photograph of a fast planing motor-
boat exhibiting a narrow wave wake (source:
http://en.wikipedia.org/wiki/Wake).

Analyzing a set of airborne images from Google Earth c©,
we measured the wake angles and the Froude numbers for
boats of various sizes and velocities. Using the scale pro-
vided on the images, we measured the overall length of the
boat (assumed to be equal to the waterline length L) and the
wavelength of the waves on the edge of the wake. From this
wavelength the boat velocity U is determined using Eq. 2 and
the Froude number is then computed. Our data clearly show
a decrease of the wedge angle for Froude numbers larger than
0.5 (figure 2 of [8]). Values as small as 7 degrees are observed.

Wake angles smaller than the Kelvin prediction can be ex-
plained as follows. The key argument is that, contrary to
the Kelvin assumption, a moving boat does not excite all the
wavelengths with the same energy. In particular it cannot ex-
cite surface waves significantly larger than its waterline length
L. The energy radiated by the boat is therefore character-
ized by a spectrum which is truncated below the wavenumber
kmin ∼ 2π/L. At large boat velocity this wavenumber can
be larger than the wave number k0 which corresponds to the
maximum Kelvin angle in figure 2. Thus only the wave num-
bers corresponding to divergent waves, i.e. rightmost part of



figure 2, are of significant amplitude, so the largest visible an-
gle is given by Eq. 3 taken for k = kmin ∼ 2π/L. This
model predicts that the wake angle is given by the Kelvin
prediction as long as the k0 mode contains energy, i.e. up
to Frc =

√
3/4π = 0.49, and by a decreasing function

α(k = 2π/L) at larger Froude. For Fr� Frc the wake angle
decreases as

α ≈ 1

2
√
2πFr

. (4)

This previously unnoticed Froude number dependence of
the wake angle compares well with the wake angles observed
from airplane images. This is also consistent with the fact
that at Fr > 0.5 the transverse waves behind the boat (θ = 0),
which are visible for smaller Froude numbers, are no more
visible (see figure 3), since they fall outside the wave spec-
trum excited by the boat. Equation 4 is also found to describe
very well the wave patterns obtained by numerical simula-
tions (figure 4). More details on the numerical simulation can
be found in Ref. [8].

Figure 4: Perspective view of the wave pattern generated by
an axisymmetric (Gaussian) pressure distribution at Fr = 1.
The measured wake angle is α = 11 degrees.

4 WAVE DRAG

In order to describe the classical result of the increase of the
wave drag for displacement navigation (Fr < 0.5) we come
back to figure 1. We focus here on the transverse waves
propagating in the boat direction (θ = 0). These waves
are the stationary waves observed along the side of the hull
and behind the boat. Their wavenumber is given by Eq. 2,
kg = g/U2, and their wavelength λg = 2π/kg can be written
as λg = 2πLFr2. For increasing speed their wavelength in-
creases, up to a particular velocity for which the wavelength
is equal to the length of the boat. This velocity corresponds
to Fr = 1/

√
2π ≈ 0.4. For this value the waves generated

by the bow are in phase with the ones emitted at the stern and
the draught or sinkage of the hull is maximum. This critical
velocity is known as the hull limit speed, because around this
Froude number the wave drag increases drastically and the
trim of the boat starts to be strongly affected by the waves it

generates. We now know that this ”limit speed” can be over-
come with light and powerful boats as they reach the planing
regime. In this regime of large Froude number, hydrodynamic
lift becomes significant, decreasing the immersed volume of
the hull. Because of the resulting smaller mass of fluid which
needs to be pushed away, a decrease of the wave drag is ob-
served. During this transition to planing, a significant acceler-
ation of the boat can be observed. We discuss here the possi-
ble connection between this wave drag decrease during plan-
ing and the decrease of the visible wake angle described in the
previous section.

The wave drag RW is the part of the hydrodynamic drag
due to the energy radiated by the waves generated by the boat.
In order to compare boats of different forms and displacement
a dimensionless wave drag coefficient CW is usually defined.
Assuming hulls having all the same shape but not the same
size, the wave drag will only depend of the boat velocity U ,
waterline length L, gravity g and water density ρ. One finds
by dimensional analysis:

RW
ρU2L2

= CW (Fr). (5)

In reality this coefficient CW also depends on the exact shape
of the boat, and alternate definitions where L2 is replaced by
LB or B2 (where B is the beam of the hull) are also found in
the literature. Another possibility is to build a dimensionless
drag coefficient by normalizing the wave drag force RW by
the weight of the boat ρgD, where D is the static immersed
volume of the hull. For displacement boat, the wave drag co-
efficient rapidly increases (at least as Fr4 if defined by Eq. 5)
and becomes the dominant part of the hydrodynamical drag
at large Fr. Note that the power law CW ∝ Fr4 can be re-
covered by scaling argument, assuming that the amplitude of
the waves scales as U2 (using Bernoulli relation) and that the
wavelength observed along the Kelvin angle scales as U2 (Eq.
2).

In order to compute the wave drag, Havelock [5] has in-
troduced a classical simplification which consists in replacing
the boat by an imposed pressure field P (x, y) at the water
surface. The resulting surface deformation ζ(x, y) can then
be computed as a Fourier integral (see Eq. 2.17b of Ref. [9],
or Eq. 11 of Ref. [1]). From this imposed pressure and cal-
culated wave field, the wave drag is then computed by inte-
grating the product of the local pressure by the slope of the
interface in the direction of the motion:

RW =

∫∫
P (x, y)

∂ζ

∂x
dxdy. (6)

On figure 4 we have simulated the wave pattern gen-
erated by a moving Gaussian pressure field, g(r) =
(2πF0/L

2) exp
(
−2π2r2/L2

)
, where F0 is a normalization

force, which corresponds here to the weight of the boat (F0 =
ρgD). From this simulated surface height, we have computed
the wave drag using Eq. 6 for various Froude numbers. The
results, plotted in figure 5, are in perfect agreement with the
exact result found by Benzaquen et al. [1] for a Gaussian



pressure field:

CW =

(
D

L3

)2
1

Fr8

∫ π/2

0

dθ

cos5 θ exp
[(√

2πFr cos θ
)−4
]

(7)
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Figure 5: Dimensionless wave drag calculated for a gaussian
moving pressure field with our simulated wave field (�) and
comparison with Eq. 7 (—).

flat ships, whose hull shape is equated to the free-surface
shape immediately beneath a patch of pressure.
One of our aims is to reduce or minimise wave re-

sistance. We summarise here new results for pres-
sure patches of minimum resistance at fixed total load,
and give examples illustrating the corresponding near-
field wave patterns, which are candidate hull shapes for
planing surfaces. Interestingly, although optimal pres-
sure distributions are necessarily fore-aft symmetric, this
does not imply such symmetry of the near-field pattern,
nor of the flat-ship hull, whereas the corresponding opti-
mal thin-ship theory demands fore-aft hull symmetry.
We also provide discussion and preliminary results on

the inverse problem, namely that of finding the pressure
distribution corresponding to a given flat-ship hull. This
is a very difficult computational task, and we are con-
tinuing to work on it. However, design of a pressure
distribution for low wave resistance, followed by direct
computation of the shape of the corresponding flat-ship
hull, is a computationally simpler task which is already
complete.

HAVELOCK SOURCES

The topic of this paper is detailed and accurate computa-
tion of steady flow fields, wave patterns and wave resis-
tance, for bodies moving at constant speed U at or near
a free surface under gravity g, in calm water of infinite
depth. The bodies must be small in some sense, so that
the free-surface condition can be linearised, and there
are many examples of such bodies, including thin ships,
catamarans, submarines, hovercraft and other types of
surface-effect ships, planing surfaces or flat ships, etc.
Subject to the usual assumption of an inviscid in-

compressible fluid moving irrotationally, all such flows
can be generated by distributions of Havelock sources,
which are point sources in the presence of the free
surface. The velocity potential of a unit Havelock
source (Havelock 1917, 1928, Wehausen and Laitone
1962, p. 484) located at (x, y, z) = (0, 0, ζ) is

G(x, y, z; ζ) = − 1

4π2
"

∫ π/2

−π/2

dθ

∫ ∞

0

dk

e−ik(x cos θ+y sin θ)

[
e−k|z−ζ| − k + k0 sec2 θ

k − k0 sec2 θ
ek(z+ζ)

]

(1)

with k0 = g/U2. The path of k-integration passes above
the pole at k = k0 sec2 θ, so guaranteeing that waves oc-
cur only for x > 0 . The first term inside the square
bracket of (1) contributes the potential of an ordinary

Figure 1: Comparison between theory and experiment
for wave resistance of a parabolic strut.

infinite-fluid Rankine source, since

− 1

4π2
"

∫ π/2

−π/2

dθ

∫ ∞

0

dke−ik(x cos θ+y sin θ)−k|z−ζ|

= − 1

4π
√

x2 + y2 + (z − ζ)2
. (2)

The second term inside the square bracket of (1) is the
correction for the free surface, and it is easy to verify
that the Kelvin linearised free-surface condition

Gxx + k0Gz = 0 (3)

holds on z = 0.
Although the ability to represent free-surface flows by

Havelock sources has been available for about a century,
an apparent inhibition for routine use has been the sheer
computational task of evaluating the double integral (1).
When Havelock sources are distributed over a spatial
region, at least two further numerical integrations have
to be performed, and if detailed flow fields are then re-
quired at many (x, y, z) values, some billions of values
of G may be required! There is therefore a premium on
efficient evaluation of this double integral.
Newman (1987) made a significant advance in this

direction by providing economised polynomial approxi-
mations for the “local” portion of the Havelock source,
namely

GL(x, y, z; ζ) = G(−|x|, y, z; ζ) . (4)

This is an even function of x which is identical to G
when x < 0, i.e. ahead of the source, and so is not wave-
like. Thus G = GL + GF where the “far-field” por-
tion GF is identically zero for x < 0, and for x > 0
is given by −2πi times the residue at the pole, namely

2

Figure 6: Dimensionless wave drag for a parabolic strut (fig-
ure 1 of Ref. [11].

This wave drag coefficient is maximum for Fr ' 0.37, fol-
lowed by a decrease as CW ' 1/Fr4 at large Froude num-
bers. Interestingly, this maximum is very close to the critical
Froude number Frc ' 0.49 at which the wake angle starts de-
creasing. Both results are consequence of the finite extent of
the wave spectrum excited by the disturbance: as the Froude
number is increased, the surface deformation in the vicinity
of the boat is no longer able to supply energy to the waves
of wavelength λg = 2πU2/g, resulting in a combined de-
crease of the wake angle (α ' 1/Fr) and of the wave drag
(CW ' 1/Fr4).

The overall shape of CW computed by Eq. 7 is surprisingly
similar to the experimental curve of Chapman [2] with com-
putation by Tuck et al. [11] (figure 6). This curve is usually
interpreted as the result of the lift of the hull and the result-
ing decrease of the immersed volume at Fr > 0.5. However,

in our analysis, the prescribed pressure P (x, y) does not de-
pend on the velocity, so it does not contain the physics of the
dynamical lift on the hull. This suggests that the dynamics
of the planing and the decrease of the immersed volume are
not necessary ingredients for the decrease of the wave drag at
large Froude number. Note that the decrease of the wave drag
at large velocity is often partly hidden by the increase of the
other sources of hydrodynamic drag, which increase as Fr2.

5 CONCLUSIONS

At large velocity many racing sailing boats are now planing
under the action of the strong hydrodynamic lift. The fact
that the dynamically immersed volume is smaller than in static
condition provides a reasonable argument for the diminution
of the wave drag. We propose here an alternative interpreta-
tion, in which the combined decrease of the wave drag and
the wake angle both follow from the finite extent of the wave
spectrum excited by the ship. This interpretation is based on
our simulations of the wave pattern generated by an imposed
pressure disturbance, suggesting that the narrow wake angles
at large Froude number can be observed without lift and thus
without planing regime. Further investigations are necessary
to better describe the relative importance of trim and sinkage
evolution of planing boat to better understand the relative im-
portance of the finite size of the boat compared to dynamic
lift.

We note that the present description is by construction lim-
ited to stationary motion, i.e. boat translating on a flat sea sur-
face. In real situations, when in planing conditions the wind
and thus the wind waves are usually large, inducing a periodic
motion of the boat at the wave encounter frequency. This non
stationarity increases the hydrodynamic drag when sailing at
close reach but can also decreases the drag when surfing on
swell.
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