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Earth rotation prevents exact solid-body rotation of fluids
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Abstract – We report direct evidence of a secondary flow excited by the Earth rotation in a water-
filled spherical container spinning at constant rotation rate. This so-called tilt-over flow essentially
consists in a rotation around an axis which is slightly tilted with respect to the rotation axis of
the sphere. In the astrophysical context, it corresponds to the flow in the liquid cores of planets
forced by precession of the planet rotation axis, and it has been proposed to contribute to the
generation of planetary magnetic fields. We detect this weak secondary flow using a particle image
velocimetry system mounted in the rotating frame. This secondary flow consists in a weak rotation,
thousand times smaller than the sphere rotation, around a horizontal axis which is stationary in
the laboratory frame. Its amplitude and orientation are in quantitative agreement with the theory
of the tilt-over flow excited by precession. These results show that setting a fluid in a perfect
solid-body rotation in a laboratory experiment is impossible —unless by tilting the rotation axis
of the experiment parallel to the Earth rotation axis.

Copyright c© EPLA, 2012

Introduction. – There are few examples of fluid
mechanics experiments at the laboratory scale in which
the Earth’s Coriolis force has a measurable influence.
Such experiments may be considered as fluid analogues
to the Foucault pendulum. The most popular instance
is certainly the drain of a bathtube vortex [1]. Although
this is the subject of common misconception, it is actually
possible to detect the influence of the Earth’s rotation on
the vortex, but only under extremely careful experimental
conditions, far from the everyday experience [2]. Thermal
convection is another example, in which a slow drift of
the large-scale flow due to the Earth rotation has been
detected in very controlled systems [3,4].
In this letter we describe an experiment which may be

considered as the most simple fluid Foucault pendulum:
it consists in a volume of water enclosed in a spherical
container spinning at constant rotation rate Ω0 (fig. 1).
After a transient known as spin-up, the water is expected
to rotate as a solid body at the same rate Ω0 [5].
The timescale for this spin-up is classically given by the
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Ekman time τE =R (νΩ0)
−1/2, where R is the radius of

the sphere and ν the kinematic viscosity of the fluid.
For a typical laboratory experiment using water, this
timescale is usually of the order of a minute, so after a
few tens of minutes a perfect solid-body rotation should
be reached, with the fluid exactly at rest in the frame of
the container. If this simple experiment is performed on
Earth, it is expected that the Earth rotation could prevent
from reaching this idealized solid rotation state [6,7]. A
weak secondary flow, known as tilt-over flow [5,8,9], is
induced by the precession of the rotation vector Ω0 of the
container by the Earth rotation vector Ωp. Seen from the
laboratory frame of reference, the fluid particles rotating
at velocity u0 =Ω0× r experience a Coriolis force per unit
mass fc =−2Ωp×u0. This Coriolis force disturbs the fluid
particles periodically at frequency Ω0, and tends to deflect
their trajectory towards the plane normal to Ωp.
Precession driven flows in spherical or spheroidal

containers and in spheroidal shells have received
considerable interest since Poincaré [10], because of their
importance to geophysical and astrophysical flows [8,9]. In
the case of the Earth, rotating with a period T0 ∼ 1 day,
the precession of its rotation axis, at a period Tp ≃
26000 years, could produce large excursions of the
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Fig. 1: (Color online) Sketch of the rotating platform and the
water filled sphere. (e1, e2, e3) is a Cartesian coordinates
system attached to the laboratory frame. The platform is
rotating at Ω0 =Ω0 e3 in the laboratory. Ωp is the Earth
rotation vector at the latitude Λ= 48.70◦ of the laboratory.
ω is the rotation vector of the tilt-over flow in the bulk. The
rotation vectors are not to scale.

rotation axis of the liquid core [11]. Precession driven
flows have also been proposed by Malkus [9] to contribute
to the generation of planetary magnetic fields, which has
been later confirmed by Kerswell [12] and Tilgner [13].
Kida [14] recently proposed a complete solution for the
flow in a rapidly rotating sphere under weak precession,
including a detailed analysis of the conical shear layers
detached from the critical latitudes.
First evidence of a tilt-over flow excited by the Earth

rotation in a laboratory experiment has been reported
by Vanyo and Dunn [6], using visualizations by dyes
and buoyant tracers, but without quantitative determi-
nation of the tilt-over flow properties. Recently, Triana
et al. [7] obtained indirect evidence of this effect, from
one-dimensional velocity profiles in a rotating water-
filled spherical shell, 3m in diameter, containing an inner
co-rotating sphere. However, no quantitative agreement
with the theory of Busse [8] could be obtained in their
experiment.
Based on the same idea, we provide in this letter,

by means of particle image velocimetry measurements
(PIV), the first direct visualization of the precession flow
driven by the Earth rotation in a sphere rotating in the
laboratory. These measurements are a technical challenge,
because of the weakness of the velocity signal of this tilt-
over flow (the fluid rotation axis is tilted by less than 0.2◦

with respect to the sphere rotation axis). A quantitative
agreement with the theory of Busse is demonstrated, both
for the magnitude and the orientation of the secondary
circulation.

Physical origin of the tilt-over flow. – Poincaré [10]
first analyzed the precession flow in a sphere in the singular
case of a perfect fluid. He showed that the inviscid solution

consists in a solid-body rotation around an axis parallel to
Ωp, but of undefined amplitude. In the presence of weak
viscosity, far from the boundaries, the tilt-over flow may
still be described as a solid-body rotation, with a rotation
vector ω tilted with respect to Ω0, and stationary in the
precessing frame (the laboratory frame here). We note in
the following ω′ =ω−Ω0 the rotation vector of the fluid
in the bulk measured in the rotating frame.
Remarkably, the presence of viscosity, even weak, dras-

tically changes the rotation vector of the fluid ω compared
to the inviscid solution of Poincaré. The orientation and
amplitude of ω for a viscous fluid are now nontrivial func-
tions of the Poincaré number Ωp/Ω0 and of the Ekman

number E = ν/(Ω0R
2). In the limit Ωp/Ω0≪

√
E≪ 1, the

rotation vector ω is almost equal to Ω0, and the small
correction ω′ is almost normal to Ω0. This tilt-over flow
has been described by Busse [8] as one among a dense
family of inertial modes, of eigenfrequency given by Ω0
(see ref. [5] for a general description of inertial modes
in a sphere). When forced by precession, the magnitude
ω′ of this tilt-over flow can be determined by a simple
balance between the Coriolis torque (in the bulk) and
the viscous torque (at the surface of the container). The
Coriolis torque is of order Γc ∼ ρR4fc ∼ ρR5ΩpΩ0 cosΛ,
with ρ the fluid density and cosΛ= |Ω0×Ωp|/Ω0Ωp. The
viscous stress is given by σ∼ ρνΔu/δ, where Δu≃ ω′R is
the small velocity jump between the container wall and
the fluid bulk, and δ= (ν/Ω0)

1/2 is the thickness of the
Ekman boundary layer. The resulting viscous torque is
of order Γν ∼R3σ∼ ρνω′R4/δ. Balancing the two torques
gives the simple relation

ω′ ∼E−1/2Ωp cosΛ. (1)

Although very weak, this tilt-over correction may be
significantly larger than the Earth rotation rate in a
typical laboratory experiment where E≪ 1.
Experimental setup. – The experimental setup,

sketched in fig. 1, consists in a spherical glass tank, of
inner radius R= 115± 0.25mm, filled with water and
mounted on the center of a precision rotating turntable
of 2m in diameter. We use two Cartesian coordinate
systems, both with origin at the center of the sphere:
i) (e1, e2, e3), attached to the laboratory reference frame
(fig. 1), with e1 pointing to East, e2 pointing to North
and e3 along the vertical; ii) (ex, ey, ez), attached to
the rotating platform (fig. 2), with ez = e3, in which the
measurements are performed.
The platform is rotating in the laboratory frame with

a rotation vector Ω0 =Ω0 e3. The angular velocity Ω0 is
varied between 2 and 16 rpm, with temporal fluctuations
less than ±5× 10−4. The Ekman number E = ν/(Ω0R2)
varies between 3.6× 10−4 and 4.6× 10−5 in this range of
Ω0. In fig. 1, the rotation vector of the Earth Ωp is also
shown, for the latitude Λ= 48.70◦ of our laboratory in
Orsay. The relative scale of the vectors Ω0 and Ωp is
obviously not realistic in this figure: the Earth rotation
rate is Ωp ≃ 6.9× 10−4 rpm ∼ 2π/(1 day), which yields
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Fig. 2: (Color online) Schematic view of the cubic water
tank containing the 115mm radius glass sphere, mounted
together on the rotating platform. PIV measurements are
achieved in off-centered vertical and horizontal planes, located
at ymes =+22mm and zmes =+22mm, using a corotating laser
sheet and a camera aiming normally at it. The angle θ(t)
between the images and the North direction is determined
using a continuous laser beam aligned along the North-South
orientation and crossing the rotation axis.

a Poincaré number Ωp/Ω0 ranging from 3.5× 10−4 to
4.3× 10−5.
After the start of the platform rotation, we wait at least
τw = 2hours before data acquisition in order to reach a
stationary regime. This waiting time represents at least
30 τE , where τE =R (νΩ0)

−1/2 is the Ekman spin-up time.
This indicates that the solid-body rotation state should
be reached, apart from precession effects, with a relative
precision better than exp(−τw/τE)≃ 10−13.
Velocity fields are measured in the rotating frame

using a two-dimensional PIV system [15] mounted on
the rotating platform, in either a vertical (ex, ez)- or
a horizontal (ex, ey)-plane (fig. 2). These measurement
planes are off-centered, at ymes/R= zmes/R≃ 0.19 (see
fig. 2), in order to get better insight in the spatial structure
of the flow. Optical distortions are reduced by immersing
the glass sphere in a square glass tank of 300mm side also
filled with water. The distortion is found less than 5% for
r < 0.9R. The fluid is seeded with 10µm tracer particles,
and illuminated by a corotating laser sheet generated by
a 140mJ Nd:YAG pulsed laser. For both horizontal and
vertical measurements, the sphere cross-section is imaged
with a high-resolution 2048× 2048 pixels camera aiming
normally at the laser sheet.
For each rotation rate Ω0, a set of 2000 images is

acquired, covering at least 80 rotation periods. The
sampling rate is synchronized with the platform rotation
rate, with a number of images per rotation ranging
from 24 (for low Ω0) to 9 (for large Ω0). PIV fields are
computed over successive images using 32× 32 pixels
interrogation windows with 50% overlap, leading to a
spatial resolution of about 2 mm. This resolution is not
enough to resolve the thickness of the Ekman boundary
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Fig. 3: (Color online) Horizontal velocity fields measured in
the rotating frame, in the off-centered horizontal plane at
zmes/R≃ 0.19 for Ω0 = 6 rpm (E = 1.2× 10

−4), with a phase
shift of π/4 between each image. The platform rotation is
anticlockwise. The red arrows indicate the direction of the
North at each time. Resolution of the velocity fields has been
reduced by a factor 5 for better visibility.

layers, δ≃RE1/2 = 0.8–2.2mm, but is appropriate for the
large scales of the precession flow expected in the bulk.
In view of the very low velocity expected for the

precession flow, the resolution of the velocity measurement
is critical in our experiment. The characteristic velocities
of the flow encountered in this work ranges from 0.01 to
0.4mms−1 for Ω0 between 2 and 16 rpm. For the sampling
rates considered here, these velocities correspond to a
typical frame-by-frame particle displacement of 0.16 to
2.6 pixels only. Although very weak, such displacement
may actually be measured using PIV with sub-pixel
interpolation of the correlation peak. For interrogation
windows of size 32× 32 pixels, an accuracy of 0.05 pixel
can be achieved using this technique [15,16], yielding
a signal-to-noise ratio ranging from 3 (low Ω0) to 50
(large Ω0).
The orientation of the experiment with respect to the

Earth rotation axis is monitored using a continuous laser
beam aligned along the North-South direction and passing
through the rotation axis of the sphere (see fig. 2). The
beam crosses the cubic glass tank and is therefore visible
on the recorded images. The angle θ(t) between the South-
North direction and the measurement fields (see fig. 2) can
be determined for each image with a precision better than
±0.5◦.
Structure of the tilt-over flow. – We first show in

fig. 3 the flow measured in the horizontal plane in the
rotating frame for a rotation rate Ω0 = 6 rpm. This flow
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Fig. 4: (Color online) Vertical velocity fields measured in the
rotating frame, in the off-centered vertical plane at ymes/R≃
0.19 for Ω0 = 6 rpm (E = 1.2× 10

−4), with a phase shift of π/4
between each image. The color maps the vertical velocity norm
normalized by its maximum in each field. The phase origin is
not the same as in fig. 3.

represents the departure between the total flow in the
laboratory frame and the solid-body rotation at Ω0. In
order to improve the quality of the velocity fields shown
here, a phase average is performed over the velocity fields
at the platform rotation rate Ω0. This procedure allows
to decrease the broad-band PIV measurement noise by a
factor N1/2, where N is the number of recorded rotation
periods (N � 80). The spatial structure of the precession
flow can finally be extracted with a signal-to-noise ratio
of at least 30 for all rotations rates.
The four snapshots shown in fig. 3 are separated by a

phase shift of π/4, with a phase origin chosen such that
ex = e1 (i.e., ey pointing to the North). In spite of the
very weak velocity signal (of order of 0.04mms−1, to be
compared to the typical velocity of the sphere boundaries,
Ω0R≃ 72mms−1), we clearly observe a well-defined flow
pattern, which is rotating as a whole at the platform

rotation rate but in the opposite direction. This weak flow
is therefore stationary in the laboratory frame. Assuming
that the total flow in the laboratory frame is a solid-
body rotation of vector ω slightly tilted with respect to
Ω0, the measured flow must be a solid-body rotation
of rotation vector ω′ =ω−Ω0. Since the measurement
plane is shifted at zmes/R≃ 0.19, the resulting horizontal
velocity field must be uniform in the bulk, given by
ω
′× (zmese3), and rotating in the anticyclonic direction
at frequency Ω0, which is precisely what we observe.
Snapshots at other values of Ω0 show essentially the same
flow patterns.
Measurements in the vertical plane, shown in fig. 4,

confirm this flow structure. In this configuration, the
camera is now rotating around the vortex of quasi-
horizontal rotation vector ω′ stationary in the labora-
tory frame. The 4 snapshots taken over half a rotation
around the vortex actually show the following sequence:
(a) anticlockwise, with ω′ pointing towards the camera;
(b) intermediate; (c) ascending, with ω′ pointing to the
left; (d) intermediate. If the tilt-over flow were a pure
solid-body rotation, the ascending flow in the snapshot (c)
would be uniform, given by ω′× (ymesey), which is approx-
imately the case far from the boundaries. The wall region
where the flow departs from a pure uniform flow has a
thickness of order of 0.3R, which is much larger than the
expected Ekman thickness E1/2R≃ 0.01R. The tilt-over
flow is therefore not exactly a pure solid-body rotation,
in agreement with numerical results obtained in a spheri-
cal shell with a very small stress-free inner solid core [17].
Indeed, because of the breakdown of the Ekman layer at
the so-called critical circles, a pure solid-body rotation
cannot be a uniformly valid solution [14].

Viscous prediction for the tilt-over flow forced

by precession. – We compute here the rotation vector
ω in the bulk of the fluid viewed from the precessing
frame of reference (here the laboratory frame), following
refs. [18,19]. The differential rotation between the fluid in
the bulk rotating at ω and the sphere boundary rotating at
Ω0 is matched across an Ekman boundary layer of typical
thickness RE1/2. We therefore assume E≪ 1, such that
a separation between a bulk flow and a thin boundary
layer may be assumed. In the steady state, the viscous
torque Γν exerted by the boundary layers on the fluid
in the bulk is balanced by the Coriolis torque Γc (note
that the pressure torque is zero here because of spherical
symmetry). This balance, projected along ω and along
two directions normal to ω, yields the following nonlinear
system of equations [5,19],

ω21 +ω
2
2 = ω3(Ω0−ω3), (2)

Ωp√
E
(ω3 cosΛ−ω2 sinΛ) = λrω1ω1/43 Ω

3/4
0 +λiω2

Ω
5/4
0

ω
1/4
3

,

(3)
Ωp√
E
ω1 cosΛ= λrΩ

3/4
0 ω

1/4
3 (Ω0−ω3), (4)
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where λr and λi are, respectively, the non-dimensional
viscous damping rate and viscous correction to the eigen-
frequency of the tilt-over mode. Their values have been
obtained by Greenspan [5] and completed by Zhang
et al. [20], λr =−2.62 and λi = 0.258. In presence of viscos-
ity, the eigenfrequency Ω0 of the inviscid tilt-over mode
becomes Ω0+(λi+ iλr)

√
E
√
Ω0 ω [18,20], which means

that, if the precession forcing is switched off, the tilt-
over mode starts to rotate in the inertial frame at a
frequency λi

√
E
√
Ω0 ω, while exponentially decaying at

a rate |λr|
√
E
√
Ω0 ω.

Equation (2) reflects the fact that the work done per
unit time by the viscous torque is zero, Γν ·ω= 0, since the
work done by the Coriolis force is zero by definition. This
equation, which can be recast into ω · (ω−Ω0) = 0, simply
expresses the so-called “no spin-up” condition, indicating
that there is no differential rotation between the fluid
and the sphere in the direction of the fluid rotation. This
right angle between ω and ω′ =ω−Ω0 indicates that the
rotation rate |ω| of the fluid is lower than Ω0.
If we further assume that the Poincaré number Ωp/Ω0

is small compared to E1/2, the rotation vector ω is almost
aligned with Ω0, and the system of equations (2)–(4)
can be simplified. More precisely, this regime applies for
rotation rates Ω0≫Ω0,c, with

Ω0,c =

(

ΩpR sinΛ

λr
√
ν

)2

. (5)

This condition is comfortably satisfied in the present
experiments, with Ω0,c ≃ 5.2× 10−5 rpm. In this limit, the
components of the tilt-over flow can be explicitly derived

ω1 ≃
Ωp cosΛ

λr

(

Ω0R
2

ν

)1/2

, (6)

ω2 ≃
λi
λr
ω1, (7)

ω3 ≃Ω0. (8)

The horizontal projection of ω in the laboratory frame,
ωh = ω1e1+ω2e2, has therefore an amplitude

ωh =
Ωp cosΛ

|λr|

(

Ω0R
2

ν

)1/2(

1+
λ2i
λ2r

)1/2

, (9)

which has indeed the expected form (1). Note that, in
the limit considered here (Ωp/Ω0≪

√
E), the horizontal

projection ωh measured in the experiment almost coin-
cides with ω′.
In this limit, the angle ϕ between ωh and e1 (the East

direction) is constant, and given by

ϕ= arctan

(

ω2
ω1

)

= arctan
λi
λr
= 174.35◦, (10)

showing that ωh points almost to the West (along −e1),
with a slight component to the North. Remarkably, this
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Fig. 5: (Color online) Angle ϕ between the rotation vector of
the tilt-over flow and e1 (i.e., East) as a function of the rotation
rate Ω0 in polar coordinates. Measurements are obtained in
the horizontal (◦) and the vertical (♦) plane, respectively. The
continuous line shows the theoretical prediction ϕ= 174.35◦

(10).

asymptotic angle obtained in the limit of large Ω0 is almost
perpendicular to the inviscid prediction of Poincaré, for
which ωh points to the North (i.e., ϕ= 90

◦). This indicates
that, even for very low viscosity, the boundary layers have
a critical influence on the tilt-over flow, provided that
Ωp/Ω0≪E1/2.

Comparison with the experimental tilt-over flow.

– The rotation rate ωh of the tilt-over flow and its angle ϕ
with the East have been systematically determined for Ω0
ranging from 2 to 16 rpm. These data have been extracted
independently from the raw velocity fields measured in the
vertical and horizontal planes, and are compared here with
the theoretical predictions (9) and (10) in figs. 5 and 6.
Measurements of the vortex angle ϕ from the PIV

data in the vertical plane have been obtained as follows:
the horizontal vorticity, spatially averaged over a central
region of 50mm radius, shows a harmonic oscillation at
frequency Ω0. At each period, the delay between the time
tmax of maximum vorticity (when ωh points to the camera)
and the time at which the North-South laser beam is
aligned with the camera axis is computed. Knowing the
instantaneous angle θ(t) between the camera incidence
and the South-North direction, we can simply deduce the
angle of the vortex as ϕ= θ(tmax)+ 90

◦. An independent
estimate for ϕ has been determined from the data in the
horizontal plane, by computing the time-averaged (and
spatially averaged over the region |r|< 50mm) angle of
the velocity with respect to the East direction e1.
The rotation rate ωh of the horizontal component of the

tilt-over flow has been determined from the vertical cuts
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Fig. 6: (Color online) Horizontal rotation rate ωh of the tilt-
over flow as a function of the rotation rate of the platform Ω0,
measured in the horizontal (◦) and vertical (♦) planes. The
continuous line shows the prediction (9).

as half the spatially averaged (over a central disk of radius
50mm) vorticity, measured at the times tmax of maximum
vorticity. ωh has also been determined independently from
the horizontal cuts, as ωh = 〈|uh|〉/zmes, where 〈·〉 is an
average over time and over the region |r|< 50mm, and
zmes is the height of the measurement plane.
For both measurements in the horizontal and vertical

planes, one value of ϕ and ωh is obtained at each rotation
period. From this set, the average and standard deviation
are computed over the 80 periods recorded for each
rotation rate. In addition to the temporal fluctuations,
the errorbars in figs. 5 and 6 also include the variations
of ϕ and ωh when varying the radius of the averaging
region between 25 and 75mm. For both quantities, the
estimates determined from the two measurement planes
closely agree, although data from the horizontal plane
systematically show a larger scatter.
The vortex angle measured from both vertical and hori-

zontal planes, ϕ≃ 173± 4◦ and 175± 11◦, respectively
(fig. 5), are in good agreement with the theoretical predic-
tion (10) (see footnote 1). Similarly, the rotation rate
ωh measured in both planes closely follow the prediction
(9) to within 20% over the range Ω0 = 2–16 rpm (fig. 6).
The agreement of ωh and ϕ with the theoretical predic-
tions is remarkable in view of the very weak velocity
signal, providing strong evidence that the weak secondary
flow that we observe originates from the precession of
the experiment by the Earth rotation. The magnitude of
the secondary rotation lies in the range (1.5–3)×10−3 Ω0,
confirming that the rotation vector ω of the fluid is almost
aligned with Ω0, with a very weak angular departure of
ωh/Ω0 < 0.2

◦.

1A possible residual ellipticity of the sphere would lead to slightly
different angles ϕ. Considering a prolate or an oblate spheroid, of
ellipticity given by the maximum deviation of the radius of the sphere
(R= 115± 0.25mm), yields predictions for ϕ between 170 and 180◦

for the range of Ω0 considered here, which is compatible with the
present data.

Conclusion. – Measuring the influence of the Earth
rotation at the laboratory scale is a technical challenge. In
the fluid analogue of the Foucault pendulum presented in
this letter, the very weak precession driven flow would have
been impossible to detect directly from the laboratory
frame. Probing the flow in the rotating frame naturally
subtracts the first-order rotation and allows us to detect
this slight correction. We note that such residual tilt-over
flow forced by the Earth rotation defines an irreducible
background flow which should be present in every rotating
fluid experiments, routinely used as models for geophysical
and astrophysical flows in the laboratory.
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