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Change-of-type behavior from hyperbolic to elliptic is common to quasilinear hyperbolic systems. This issue
is addressed here for the particular case of miscible flow of three fluids between two parallel plates. Change of
type occurs at the leading edge of the displacement front and reflects the failing of the equilibrium assumption,
necessary for the quasilinear hyperbolic formalism, at the front. To cross the elliptic region requires the
solution of the full, higher-dimensionality problem, obtained here using lattice gas simulations. For the specific
example, it is found that the system self-selects a front structure independent of injection conditions.
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Moving fronts are encountered in many processes in sci-
ence and engineering. Often, the geometries involve a large
aspect ratio and it is common to seek a scaled-up formula-
tion, using quantities averaged across the directionsy,z
transverse to the main flow directionx. For example, this is
the case with fluid displacements in constricted geometries,
or porous media, in the flow of suspensions, in combustion,
and in a number of applications where kinematics are domi-
nant [1–5].

Under these conditions, the modeling of the problem is
based on conservation equations in terms of volume or trans-
verse averages, typically reducing to quasilinear hyperbolic
systems of the form

] S

] t
+

] FsSd
] x

= 0. s1d

In Eq. (1), S denotes an averaged “concentration” or “satu-
ration” (volume fraction), in general a vector of sizeN, and
F is an averaged flux, also a vector of the same size. For
example, in three-phase flows in a porous medium,S
=hS1,S2j, where Si is the saturation of phasei (the third
saturation being 1−S1−S2). In the sedimentation of bidis-
perse suspensions,S is the concentration vector of the two
species. Corresponding expressions apply for the more com-
monly known problems in gas dynamics and the flow of real
materials(e.g., see[6]).

The space and time evolution ofS is given by

] S

] t
+ AsSd

] S

] x
= 0, s2d

where the matrixA is equal toA =dF /dS. For N=2, matrix
A has two eigenvaluesl− andl+. The classical construction
of the solution of a Riemann problem is well understood[7].
When both eigenvalues are real, the system is hyperbolic.
The solution of a Riemann problem, in this case, is a com-
bination of rarefaction waves and shocks: In the composition
diagram(hS1,S2j space), rarefaction waves follow continu-

ous paths obtained from the integral solutions of the right
eigenvectors corresponding tol− or l+. Shocks represent
discontinuous jumps between two compositions and satisfy
the Rankine-Hugoniot conditions. If in a region of composi-
tion space the eigenvalues are complex, the system is elliptic.
Batchelor and Van Rensburg[2] showed that any uniform
stateS in the elliptic domain is unstable and used this fact to
classify stable and unstable bidisperse suspensions. Analo-
gous results were found by Bellet al. [8] in the context of
three-phase flow in porous media. Key issues, studied at
length in the past[8–11], but not yet fully resolved, include
the solution of Riemann problems involving both hyperbolic
and elliptic domains in thehS1,S2j space. Methods have been
proposed to cross the elliptic domain involving a shock be-
tween two compositions in the hyperbolic domain or the ad-
dition of diffusion [12]. The latter requires large enough dif-
fusion to either stabilize the pattern or bypass the elliptic
region, thus changing the nature of the problem.

There has been a debate as to whether or not the change
of type (from hyperbolic to elliptic) and the associated Rie-
mann problems that cross the elliptic region are physically
relevant. Part of the difficulty lies in the fact that, so far,
models exhibiting such a change of type have been based on
empirical functionsFsSd. In fact, some authors have argued
that the appearance of an elliptic region should be sufficient
grounds to reject the particular empiricism used to construct
the functionFsSd and to provide alternate(albeit still empiri-
cal) expressions, for which an elliptic region does not de-
velop [13,14]. A different viewpoint is that shocks across
elliptic regions are not classical, but rather result from the
solution of eigenvalue problems in the shock region, where
additional terms of higher-order than diffusion(e.g., capillar-
ity) must be taken into account[7,15,16].

In this article we show that a physical model, without any
empirical functions whatsoever, can give rise to a hyperbolic
formalism displaying change of type. The model corresponds
to laminar miscible fluid flow in the gap of a Hele-Shaw cell
at high rates[17–20]. A fluid of normalized viscosity 1 is
displaced by a fluid of normalized viscosityL−1 (mobility
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L), which is itself displaced by a fluid of viscosity 1(Fig. 1).
Under parallel-flow conditions(namely, using the lubrication
approximation), a hyperbolic formalism describes the prob-
lem, as shown below. We show that whenL.1, an elliptic
region develops at the front of the displacement, resulting in
a mixed-type problem. To solve the problem in the latter case
near the front, we use lattice Bhatnagar-Gross-Krook(BGK)
simulations[21] of the full two-dimensional flow. The results
obtained are discussed in the frame of the quasilinear formal-
ism and nonclassical shocks[7].

Consider a miscible displacement in the gap of a Hele-
Shaw cell(x-y plane) and in the absence of gravity, as shown
in Fig. 1. A symmetric displacement across the gap is con-
sidered. Three different miscible fluids, denotedW, O, and
G, are involved. The cell, of normalized thickness 1, is ini-
tially saturated with fluidW (downstream in Fig. 1). Two
other fluids(O, denoting an intermediate fluid, andG) are
injected at constant rate and specified saturations(upstream
in Fig. 1) to displace fluidW. In the absence of diffusion, the
problem is strictly kinematic and can be equivalently formu-
lated as miscible displacement involving one variable, the
local concentrationC, with the three different fluids identi-
fied by their mobility. For the latter, we take a piecewise
mobility-concentration function involving three plateaus,
with the corresponding concentration regions defining the
three fluids—i.e., region 0,C,0.25 s0,y,y1, Fig. 1)
is the W fluid with mobility 1, region 0.25,C
,0.75 sy1,y,y2d is the O fluid with mobility L, and re-
gion 0.75,C,1 sy2,y,1/2d is theG fluid with mobility
M. In this paper we will only consider the caseM =1.

We study the evolution of the boundariesy1 and y2 that
separate the three fluids(Fig. 1). Equivalently, we can use
the saturation notationSw=2y1, Sg=1−2y2, and So=1−Sw
−Sg. It is not difficult to write conservation equations

] Sw

] t
+

] fw

] x
= 0,

] Sg

] t
+

] fg

] x
= 0, s3d

where we defined the associated normalized flux functions
fw=2e0

y1 udy and fg=1−2e0
y2 udy (and in this notation,fo

=1−fw− fg). In general, the flux functions are nonlocal and
depend on both saturations and possibly their derivatives or
other functionals. When the flow is parallel or nearly parallel
(lubrication approximation), however, the fluxes become

only functions of the two saturations, and the formalism(3)
reduces to the quasilinear expression(1). Specifically, we
find

fw =
Sw

2s3 − Swd
2f1 + sL − 1ds1 − Swd3 − sL − 1dSg

3g
,

fg =
Sgf3 + 3sL − 1ds1 − Swd2 + Sg

2s2 − 3Lg
2f1 + sL − 1ds1 − Swd3 − sL − 1dSg

3g
. s4d

These expressions are obtained by transversely averaging the
Stokes equations across the gap under the assumption of par-
allel flow. The procedure was illustrated for the two-fluid
problem in[20,22], and although a bit tedious, it is straight-
forward. We emphasize that the parallel-flow approximation
is necessary for consistency of the quasilinear formalism(1)
at steady state, where indeed the flow is parallel. This as-
sumption can also be viewed as the equivalent of the equi-
librium or quasistatic assumption made in thermodynamics
in other contexts—for example, in the equation of state in the
flow of a van der Waals fluid[15].

From the exact expressions for the flux(4) we can readily
calculate the two eigenvaluesl− (slow) and l+ (fast). It is
found that when the mobility of the intermediate fluid,L, is
smaller than 1, the system is hyperbolic(two real eigenval-
ues). In the opposite casesL.1d, the eigenvalues become
complex in a region adjacent to theWGaxis(Fig. 2), and the
system displays a change of type from hyperbolic to elliptic
in the composition space. The considerable details of this
calculation can be found in[23]. ConditionL.1 physically
corresponds to the case of a concave mobility profile, where
a more viscous initial fluid is being displaced by an interme-
diate, less viscous fluid, which is itself being displaced by a
more viscous fluid. Nonmonotonic viscosity profiles have led

FIG. 1. Schematics of the boundaries between the three fluids
sW,O,Gd and their corresponding mobilities(1, L, 1) for a specific
Riemann problem(denoted by stateI in Fig. 2). Injection state at
left, initial state at right. Flow and displacement are from left to
right.

FIG. 2. Composition paths in the triangular composition dia-
gram for L=10. ApexesG,O, andW correspond toSg=1, So=1,
andSw=1, respectively. A region of ellipticity, denoted by “?,” de-
velops near theGW axis. The curves in the hyperbolic part are
solution paths corresponding, respectively, to the eigenvaluesl−

and l+. Point I denotes the injection state and pointW the initial
state for the Riemann problem considered. PathIK is the rarefaction
wave corresponding to eigenvaluel−.
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to interesting behaviors in porous media flows(e.g., see
[24–26]). However, the latter were based on Darcy rather
than Stokes flows.

We will consider the solution of various Riemann prob-
lems using injection states along the axisOG and an initial
state at pointW and discuss the results in a triangular com-
position space(Fig. 2). As noted, in our example we have
either a hyperbolic systemsL,1d or a mixed-type case
sL.1d. In the latter case, both elliptic and hyperbolic re-
gions are encountered. For the specific Riemann problem, in
the hyperbolic case, or within the hyperbolic regions, the
solution involves rarefaction waves, which follow the paths
depicted in Fig. 2(two sets corresponding to the two eigen-
values). The classical analytical theory fails to give an an-
swer about the behavior of the system in the elliptic zone
(denoted by “?” in Fig. 2). The solution to this issue will be
addressed in this paper. We stress again that the development
of an elliptic region arises here in the absence ofanyempiri-
cal assumptions. It is based on the parallel-flow(lubrication)
approximation, which is required for self-consistency of the
quasilinear formalism, and on the nonmonotonicity in the
mobility profile.

Consider, first, the solution of a Riemann problem, with
injection at pointI and initial condition atW (Fig. 2 with
L=10). Because of the mixed-type behavior, analytical re-
sults are possible in the hyperbolic part of the composition
diagram(Fig. 2). In that region, the two sets of composition
paths (solutions of Riemann problem) terminate at the
boundary of the elliptic region, where their slopes become
equal. Noteworthy is the development of a lobe of genuine
hyperbolicity near the apexW. The analytical construction
follows the slowl− path IK, and it is a rarefaction wave,
terminating when the path meets the elliptic region boundary,
at pointK. Connection to the initial stateW requires crossing
of the elliptic region. This coincides with the leading part of
the displacement front and cannot be handled by classical
analytical methods. To proceed, we simulated thefull,
higher-dimensional problem using a lattice BGK method.

Lattice BGK methods effectively model, over the full do-
main, the Navier-Stokes equations for momentum balance,
the overall mass balance, and the convection-diffusion equa-
tion for the transport of concentration, as the three fluids are
miscible. We note that in dimensionless notation, the mass
transport equation reads

] C

] t
+

] suCd
] x

+
] svCd

] y
= DFe2]2C

] x2 +
]2C

] y2G , s5d

wheree=H /L is the aspect ratio,u andv are the two velocity
components, andD is a dimensionless molecular diffusion
coefficient (an inverse Peclet number), which was chosen
very small to minimize diffusion effects in accordance with
the kinematic description. Lattice BGK methods have been
successfully used in the past in simulating the corresponding
two-fluid displacement problem. Indeed, a good agreement
was found between experiments[17–20] and simulations
[21]. The same approach was applied here, except that we
used the piecewise mobility concentration function discussed
above to define the three fluids.

Results from the simulations are shown in Fig. 3. The top
panel shows successive snapshots of the displacement pat-
tern, the bottom left panel displays the solution path in the
composition diagram, and the bottom right panel displays the
fluid boundaries as a function of the convective variablex/ t.
The following features are noted.

(i) Due to diffusion, no matter how small, the most down-
stream part of the profile consists of a two-fluid pathFW,
connecting pointsW and F. The latter point has a valueSo
<0.1, which varies with the diffusion coefficient.FW corre-
sponds to the leading edge of the front, moving in real space
(Fig. 3, top) with a velocity slightly larger than 3/2(which is
the maximum normalized velocity in a Poiseuille flow). We
note that this velocity is consistent with the shock velocity of
the two-fluid problem withM =10 and statesF and W, re-
spectively[21,22].

(ii ) Slightly further upstream, the trajectory follows the
pathEF with an almost constant velocity. It appears as if the
composition E is selected such that the velocity onEF
matches the shock velocityFW, while satisfying the
Rankine-Hugoniot condition for a shock in the hyperbolic
lobe. If so, that would be consistent with a quasilinear for-
malism in that region.

(iii ) The system then locks into a pathED, which is in-
side the elliptic region. Of course, it must be kept in mind
that these results are obtained from the solution of the full,
higher-dimensional problem. The saturation of fluidO re-
mains approximately constant, at a value that depends on the
diffusion coefficient(and which in theory should vanish), but
that of fluid G increases in the upstream direction until a
maximum value is reached. AlongED, the finger of phaseG
swells up to an almost uniform thickness(see bottom right
panel in Fig. 3).

(iv) StateD is then connected upstream with the hyper-

FIG. 3. Lattice BGK simulation results for the Riemann prob-
lem of Fig. 2. Top: snapshots of the three-fluid displacement at
different times. Bottom left: the solution path on the composition
diagram. Bottom right: fluid boundaries as a function of the con-
vective variablex/ t (effectively collapsing the latter stages of the
top panel). The detail at pointA is probably the result of weak
inertia, which is present in the simulations, but absent in the ana-
lytical description.
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bolic solution at pointB, through a shock, corresponding to
the fast eigenvalue. The shock velocity is consistent with the
quasilinear hyperbolic formulation. Across this shock, the
saturation of fluidG decreases upstream, while that of fluid
O increases.

(v) Finally, stateB is connected further upstream to the
injection stateI, following the hyperbolic formalism. In the
simulations, we noted that after some transient time there
appears to be a reversal along pathAB (as shown in Fig. 3).
Namely, although the saturation of fluidO first decreases
monotonically, after some time, a nonmonotonic segmentAB
develops, along which the saturation increases instead. Dur-
ing this process, the saturation of fluidG is practically con-
stant. It is not clear that this is a real feature of the viscous
problem, however. It is possible, instead, that it is an artifact
of the weak inertia, which is present in the lattice BGK
model and which may result into an instability.

The states along the pathsBF are all located at the leading
edge of the displacement front, near, or inside the elliptic
region, where saturation gradients are non-negligible. In that
region the equilibrium(parallel-flow) approximation may be
questionable. To probe the validity of the latter we plot in
Fig. 4 the profile of thex component of the velocity at points
D and E, and compare it to that based on the parallel-flow
assumption. In the vicinity of pointD, where the saturation
gradient is relatively small, the two profiles are in good
agreement(Fig. 4, left). However, at pointE at the leading
edge of the front, there is a clear deviation(Fig. 4, right),
indicating considerable cross flow, associated with the non-
negligible front curvature at that point. In the transition from
pointsD to E, the deviation progressively increases.

Figure 5 shows lattice BGK simulations for the same
mixed-type casesL=10d but for three different Riemann
problems, corresponding to different injection conditions. As
expected, in all cases, the solution path in the hyperbolic
region follows the hyperbolic theory(although augmented
with some amount of diffusion, particularly for the case in
which injection occurs at pointG), and it is different for the
three different problems. Yet the path through the elliptic

zone is the same for all three problems and practicallyinde-
pendentof the injection state. The front structure is set by the
detailed two-dimensional flow at the front(right panel Fig.
5). Hyperbolic and elliptic paths are connected through inter-
mediate connecting branches(e.g., of the typeDB of Fig. 3).
We infer that the behavior of the front is selected from the
full, higher-dimensional local problem, independent of the
injection conditions. This feature is not predictable from
classical shock analysis, in which the front structure is sim-
ply endowed with a so-called “viscosity” correction, adding
a diffusive component(e.g., as in the classical Burgers shock
[7]). Instead, it is consistent with nonclassical shock theories
[7,16], in which the shock-end points, the shock structure,
and its velocity are obtained from the solution of an eigen-
value problem, developed from the addition of higher-order
dispersive terms—e.g., due to some effective capillarity. The
possible connection with such an approach is the subject of
ongoing research.

We conclude that in the present example of change of
type behavior, the elliptic region develops precisely at the tip
of the displacement, where the variables undergo sharp
changes (effectively a “phase change”) and where the
parallel-flow (equilibrium) assumption breaks down. The
emergence of a mixed-type region is a manifestation of the
local failure of the parallel-flow approximation, which is
necessary for the development of the quasilinear hyperbolic
formalism. Crossing the elliptic region cannot be given by
the classical quasilinear hyperbolic formalism, which is
questionable in that region, however. Rather, obtaining the
structure, including the velocity and end points, of the solu-
tion necessitates solving the full, higher-dimensional prob-
lem in that region.

This may signal a nonclassical shock construction[7].
Whether or not a simpler alternative to the solution of the
full problem is possible is the subject of ongoing work.

FIG. 4. Profiles of thex component of the velocity, correspond-
ing to pointsD and E in the diagram of Fig. 3. Left: profile at a
position close to pointD. Right: profile at pointE. Dots denote
simulation results using the full problem; lines correspond to the
parallel-flow (equilibrium) assumption.

FIG. 5. Lattice BGK simulation results for three different Rie-
mann problems, corresponding to three injection conditions atI , J,
andG, respectively. Left: solution paths in the composition space.
Right: snapshots of the three-fluid patterns, at the same time, for the
three different injection pointsI ,J, andG. As before, the tip resides
inside the elliptic region in all cases. The selection of the tip struc-
ture is independent of the injection state.
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