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Crossing the elliptic region in a hyperbolic system with change-of-type behavior arising
in flow between two parallel plates
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Change-of-type behavior from hyperbolic to elliptic is common to quasilinear hyperbolic systems. This issue
is addressed here for the particular case of miscible flow of three fluids between two parallel plates. Change of
type occurs at the leading edge of the displacement front and reflects the failing of the equilibrium assumption,
necessary for the quasilinear hyperbolic formalism, at the front. To cross the elliptic region requires the
solution of the full, higher-dimensionality problem, obtained here using lattice gas simulations. For the specific
example, it is found that the system self-selects a front structure independent of injection conditions.
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Moving fronts are encountered in many processes in scieus paths obtained from the integral solutions of the right
ence and engineering. Often, the geometries involve a largeigenvectors corresponding ta. or .. Shocks represent
aspect ratio and it is common to seek a scaled-up formuladiscontinuous jumps between two compositions and satisfy
tion, using quantities averaged across the directiprs  the Rankine-Hugoniot conditions. If in a region of composi-
transverse to the main flow direction For example, this is  tion space the eigenvalues are complex, the system is elliptic.
the case with fluid displacements in constricted geometrieg3atchelor and Van Rensbui@] showed that any uniform
or porous media, in the flow of suspensions, in combustionStateS in the elliptic domain is unstable and used this fact to

and in a number of applications where kinematics are domiclassify stable and unstable bidisperse suspensions. Analo-
nant[1-5]. gous results were found by Bedk al. [8] in the context of
Under these conditions, the modeling of the problem isthree-p_hase flow in porous media. Key issues, §tud|ed at
based on conservation equations in terms of volume or trandéngth in the pasf8—11], but not yet fully resolved, include
verse averages, typically reducing to quasilinear hyperboli¢he solution of Riemann problems involving both hyperbolic

systems of the form and elliptic domains in th€S;, S,} space. Methods have been
proposed to cross the elliptic domain involving a shock be-
S JIF(S) tween two compositions in the hyperbolic domain or the ad-

9t + Tax 0. (1) dition of diffusion [12]. The latter requires large enough dif-

fusion to either stabilize the pattern or bypass the elliptic

In Eq. (1), S denotes an averaged “concentration” or “satu-region, thus changing the nature of the problem.
ration” (volume fraction, in general a vector of sizd, and There has been a debate as to whether or not the change
F is an averaged flux, also a vector of the same size. Fopf type (from hyperbolic to ellipti¢ and the associated Rie-
example, in three-phase flows in a porous medi®, mann problems that cross the elliptic region are physically
={S,,S,}, where S is the saturation of phase (the third relevant. Part of the difficulty lies in the fact that, so far,
saturation being 15,-S,). In the sedimentation of bidis- models exhibiting such a change of type have been based on
perse suspensionS, is the concentration vector of the two empirical functions=(S). In fact, some authors have argued
species. Corresponding expressions apply for the more conthat the appearance of an elliptic region should be sufficient
monly known problems in gas dynamics and the flow of realgrounds to reject the particular empiricism used to construct
materials(e.g., seg6]). the functionF(S) and to provide alternat@lbeit still empiri-

The space and time evolution 8fis given by cal) expressions, for which an elliptic region does not de-
velop [13,14. A different viewpoint is that shocks across
elliptic regions are not classical, but rather result from the
solution of eigenvalue problems in the shock region, where
additional terms of higher-order than diffusigag., capillar-
where the matriA is equal toA=dF/dS. For N=2, matrix  ity) must be taken into accoufit,15,1§.
A has two eigenvalues_ and\,. The classical construction In this article we show that a physical model, without any
of the solution of a Riemann problem is well underst¢éd  empirical functions whatsoever, can give rise to a hyperbolic
When both eigenvalues are real, the system is hyperbolidormalism displaying change of type. The model corresponds
The solution of a Riemann problem, in this case, is a comto laminar miscible fluid flow in the gap of a Hele-Shaw cell
bination of rarefaction waves and shocks: In the compositiorat high rateg17-20. A fluid of normalized viscosity 1 is
diagram({S;,S,} spacg, rarefaction waves follow continu- displaced by a fluid of normalized viscosity™* (mobility

)
E-'-A(S)E_O’ (2)
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FIG. 1. Schematics of the boundaries between the three fluids
(W,0,G) and their corresponding mobiliti€&, A, 1) for a specific
Riemann problen{denoted by staté in Fig. 2). Injection state at
left, initial state at right. Flow and displacement are from left to 1 9
right.
A), which is itself displaced by a fluid of viscosity(Fig. 1). o W

Under parallel-flow conditionghamely, using the lubrication
approximation, a hyperbolic formalism describes the prob-  FIG. 2. Composition paths in the triangular composition dia-
lem, as shown below. We show that whan>1, an elliptic ~ gram for A=10. ApexesG,O, andW correspond td§,=1, $,=1,
region develops at the front of the displacement, resulting ifndSy=1, respectively. A region of ellipticity, denoted by “?,” de-
a mixed-type problem. To solve the problem in the latter cas&€lops near th&GW axis. The curves in the hyperbolic part are
near the front, we use lattice Bhatnagar-Gross-Kr@@&K) solution pe_tths correspondmg1 re_spectlvely, to the elger_w?).lues
simulations[21] of the full two-dimensional flow. The results "d A+ Pointl denotes the injection state and poitthe initial
obtained are discussed in the frame of the quasilinear formaftate for the Riemann problem considered. Rits the rarefaction
ism and nonclassical shock). wave corresponding to eigenvalie.

Consider a miscible displacement in the gap of a Hele-
Shaw cell(x-y plang and in the absence of gravity, as shown only functions of the two saturations, and the formalign
in Fig. 1. A symmetric displacement across the gap is conteduces to the quasilinear expressidn. Specifically, we
sidered. Three different miscible fluids, denoti O, and  find
G, are involved. The cell, of normalized thickness 1, is ini-

tially saturated with fluidW (downstream in Fig. 1 Two . £(3-S)

other fluids(O, denoting an intermediate fluid, ar@) are w= _ T o3 A '

injected at constant rate and specified saturatiopstream AL+ (A-DA-S)"-(A 1)%]

in Fig. 1) to displace fluidW. In the absence of diffusion, the

problem is strictly kinematic and can be equivalently formu- _ PRy _

lated as miscible displacement involving one variable, the fq= S[3+3A -1 S’”l +%(2 SA]. (4)
local concentratiorC, with the three different fluids identi- A1+(A-DA-S)°- (A~ 1)53'91

fied by their mobility. For the latter, we take a piecewise

mobility-concentration function involving three plateaus, These expressions are obtained by transversely averaging the

with the corresponding concentration regions defining theStokes equations across the gap under the assumption of par-

three fluids—i.e., region €C<0.25 (0<y<y,, Fig. ) allel flow. The procedure was illustrated for the two-fluid

is the W fluid with mobility 1, region 0.25C problem in[20,22, and although a bit tedious, it is straight-

<0.75(y;<y<Yys,) is the O fluid with mobility A, and re- forward. We emphasize that the parallel-flow approximation

gion 0.75<C<1 (y,<y<1/2) is the G fluid with mobility ~ is necessary for consistency of the quasilinear forma{ism

M. In this paper we will only consider the cabé=1. at steady state, where indeed the flow is parallel. This as-
We study the evolution of the boundarigsandy, that ~ sumption can also be viewed as the equivalent of the equi-

separate the three fluid&ig. 1). Equivalently, we can use librium or quasistatic assumption made in thermodynamics

the saturation notatios,=2y;, §;=1-2y,, and §,=1-5, in other contexts—for example, in the equation of state in the

-, Itis not difficult to write conservation equations flow of a van der Waals fluidl15].
From the exact expressions for the fig we can readily
9 Sw + ﬂv -0 calculate the two eigenvalues (slow) and X\, (fasp. It is
at  adx ’ found that when the mobility of the intermediate fluitl, is
smaller than 1, the system is hyperbafiwo real eigenval-
A ues. In the opposite caseéA >1), the eigenvalues become
Prehee 0, (3)  complex in a region adjacent to tNéG axis (Fig. 2), and the

system displays a change of type from hyperbolic to elliptic
where we defined the associated normalized flux functiongé the composition space. The considerable details of this
fy=2/3 udy and f;=1-2[¢? udy (and in this notationf,  calculation can be found i[23]. ConditionA>1 physically
=1-f,—fy). In general, the flux functions are nonlocal and corresponds to the case of a concave mobility profile, where
depend on both saturations and possibly their derivatives ax more viscous initial fluid is being displaced by an interme-
other functionals. When the flow is parallel or nearly paralleldiate, less viscous fluid, which is itself being displaced by a
(lubrication approximatiop; however, the fluxes become more viscous fluid. Nonmonotonic viscosity profiles have led
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to interesting behaviors in porous media flodesg., see
[24-26). However, the latter were based on Darcy rather

=
_—

than Stokes flows. | —
P

We will consider the solution of various Riemann prob-
lems using injection states along the a&l& and an initial
state at poinWW and discuss the results in a triangular com-
position spacdFig. 2). As noted, in our example we have G
either a hyperbolic systeniA <1) or a mixed-type case
(A>1). In the latter case, both elliptic and hyperbolic re-
gions are encountered. For the specific Riemann problem, ir
the hyperbolic case, or within the hyperbolic regions, the D
solution involves rarefaction waves, which follow the paths
depicted in Fig. Atwo sets corresponding to the two eigen- | 1
values. The classical analytical theory fails to give an an-
swer about the behavior of the system in the elliptic zone, W
(denoted by “?” in Fig. 2 The solution to this issue will be
addressed in this paper. We stress again that the developmentFIG. 3. Lattice BGK simulation results for the Riemann prob-
of an elliptic region arises here in the absencamfempiri-  lem of Fig. 2. Top: snapshots of the three-fluid displacement at
cal assumptions. It is based on the parallel-fitwbrication) different times. Bottom left: the solution path on the composition
approximation, which is required for self-consistency of thediagram. Bottom right: fluid boundaries as a function of the con-
quas”inear formalism, and on the nonmonotonicity in theVectiVe variablex/t (effectively collapsing the latter stages of the
mobility profile. top pane). The detail at pointA is probably the result of weak

Consider, first, the solution of a Riemann problem, Withingrtia, whic_h i_s present in the simulations, but absent in the ana-
injection at pointl and initial condition atw (Fig. 2 with  vtical description.

A=10). Because of the mixed-type behavior, analytical re- , , -
sults are possible in the hyperbolic part of the composition Results from the simulations are shown in Fig. 3. The top
diagram(Fig. 2). In that region, the two sets of composition panel shows successive shapshots of the displacement pat-

paths (solutions of Riemann problemterminate at the tern, the_ _botto_m left panel displays th_e solution p_ath in the
boundary of the elliptic region, where their slopes becomé©mposition diagram, and the bottom right panel displays the
equal. Noteworthy is the development of a lobe of genuinélu'd boundanes as a function of the convective variatiie
hyperbolicity near the apeW. The analytical construction '€ following features are noted.

follows the slow\_ path IK, and it is a rarefaction wave, (|) Due to diffusion, no matter how small, the most down-

terminating when the path meets the elliptic region boundarystream part of the profile consists of a two-fluid p&t,

at pointK. Connection to the initial staté/ requires crossing connecting pointaV and F. The latter point has a valug,

of the elliptic region. This coincides with the leading part of ~ .1, which varies with the diffusion coefficierfW corre-

the displacement front and cannot be handled by classicaponds to the leading edge of the front, moving in real space

analytical methods. To proceed, we simulated flodl,  (Fig. 3, top with a velocity slightly larger than 3/@wvhich is

higher-dimensional problem using a lattice BGK method.  the maximum normalized velocity in a Poiseuille flowve
Lattice BGK methods effectively model, over the full do- note that this velocity is consistent with the shock velocity of

main, the Navier-Stokes equations for momentum balancehe two-fluid problem withM=10 and state§ and W, re-

the overall mass balance, and the convection-diffusion equapectively[21,27.

tion for the transport of concentration, as the three fluids are (ji) Slightly further upstream, the trajectory follows the

miscible. We note that in dimensionless notation, the maSﬁath EF with an almost constant Ve|ocity_ It appears as if the

R PRREER [ RSN | WA RORA

transport equation reads composition E is selected such that the velocity dBF
5 matches the shock velocityfFW, while satisfying the

£+ d(uC) 4 Q) _ {62@ +£} (5) Rankine-Hugoniot condition for a shock in the hyperbolic

at IxX ay axz gy |’ lobe. If so, that would be consistent with a quasilinear for-

malism in that region.
wheree=H/L is the aspect ratiaj andv are the two velocity (iii) The system then locks into a patD, which is in-
components, an@ is a dimensionless molecular diffusion side the elliptic region. Of course, it must be kept in mind
coefficient (an inverse Peclet numbermwhich was chosen that these results are obtained from the solution of the full,
very small to minimize diffusion effects in accordance with higher-dimensional problem. The saturation of fluidre-
the kinematic description. Lattice BGK methods have beemains approximately constant, at a value that depends on the
successfully used in the past in simulating the correspondindiffusion coefficientiand which in theory should vanigtbut
two-fluid displacement problem. Indeed, a good agreemerthat of fluid G increases in the upstream direction until a
was found between experimenf$7-2(J and simulations maximum value is reached. AloriED, the finger of phas&
[21]. The same approach was applied here, except that wawells up to an almost uniform thicknegsee bottom right
used the piecewise mobility concentration function discusse@anel in Fig. 3.
above to define the three fluids. (iv) StateD is then connected upstream with the hyper-
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FIG. 4. Profiles of thex component of the velocity, correspond- © v

g]c?sitt(i)ogocler]ctzeD t?)ngcl)_:inlg thsigdr:?g;?;?”zf;'%O?ﬁtéefgoﬁgogfnﬁea FIG. 5. Lattice BGK simulation results for three different Rie-
simulation result_s_ uging the full problem; lines correspond to ther;n%ng’prrg:;eemisv’ecl;rrfjf[t):oggllgt?of ;grtiz Ii??ﬁgo:o(rf;::ilt?onr? sa;ace.
parallel-flow (equilibrium) assumption. Right: snapshots of the three-fluid patterns, at the same time, for the
bolic solution at p0|n'B, through a Shock, Correspondlng to three different injection pOintB,J, andG. As before, the tlp resides
the fast eigenvalue. The shock velocity is consistent with thénside the elliptic region in all cases. The selection of the tip struc-
quasilinear hyperbolic formulation. Across this shock, theture is independent of the injection state.

saturation of fluidG decreases upstream, while that of fluid
O increases.

(v) Finally, stateB is connected further upstream to the
injection statel, following the hyperbolic formalism. In the
simulations, we noted that after some transient time ther
appears to be a reversal along path (as shown in Fig. 8
Namely, although the saturation of fluid first decreases
monotonically, after some time, a nonmonotonic segnidht
develops, along which the saturation increases instead. D
ing this process, the saturation of flu@lis practically con-
stant. It is not clear that this is a real feature of the viscou
problem, however. It is possible, instead, that it is an artifac
of the weak inertia, which is present in the lattice BGK
model and which may result into an instability.

zone is the same for all three problems and practidatie-
pendenof the injection state. The front structure is set by the
etailed two-dimensional flow at the froatight panel Fig.

). Hyperbolic and elliptic paths are connected through inter-
mediate connecting branchesg., of the typedB of Fig. 3).
We infer that the behavior of the front is selected from the
up:m, higher-dimensional local problem, independent of the
injection conditions. This feature is not predictable from
glassical shock analysis, in which the front structure is sim-
ly endowed with a so-called “viscosity” correction, adding
a diffusive componente.g., as in the classical Burgers shock
[7]). Instead, it is consistent with nonclassical shock theories
[7,16], in which the shock-end points, the shock structure,

The states along the patB§ are all located at the leading and its velocity are obtained from the solution of an eigen-
edge of the displacement front, near, or inside the elliptiovalue problem, developed from the addition of higher-order
region, where saturation gradients are non-negligible. In thadispersive terms—e.g., due to some effective capillarity. The
region the equilibrium(parallel-flow) approximation may be possible connection with such an approach is the subject of
guestionable. To probe the validity of the latter we plot inongoing research.
Fig. 4 the profile of thex component of the velocity at points We conclude that in the present example of change of
D andE, and compare it to that based on the parallel-flowtype behavior, the elliptic region develops precisely at the tip
assumption. In the vicinity of poinD, where the saturation of the displacement, where the variables undergo sharp
gradient is relatively small, the two profiles are in goodchanges (effectively a “phase changg”and where the
agreementFig. 4, leff. However, at poinE at the leading parallel-flow (equilibrium) assumption breaks down. The
edge of the front, there is a clear deviati@Fig. 4, righ, emergence of a mixed-type region is a manifestation of the
indicating considerable cross flow, associated with the nonlocal failure of the parallel-flow approximation, which is
negligible front curvature at that point. In the transition from necessary for the development of the quasilinear hyperbolic
pointsD to E, the deviation progressively increases. formalism. Crossing the elliptic region cannot be given by
Figure 5 shows lattice BGK simulations for the samethe classical quasilinear hyperbolic formalism, which is

mixed-type casg A=10) but for three different Riemann questionable in that region, however. Rather, obtaining the
problems, corresponding to different injection conditions. Asstructure, including the velocity and end points, of the solu-
expected, in all cases, the solution path in the hyperbolition necessitates solving the full, higher-dimensional prob-
region follows the hyperbolic theoryalthough augmented lem in that region.
with some amount of diffusion, particularly for the case in  This may signal a nonclassical shock constructj@h
which injection occurs at poir®), and it is different for the Whether or not a simpler alternative to the solution of the
three different problems. Yet the path through the ellipticfull problem is possible is the subject of ongoing work.
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