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Stabilizing viscosity contrast effect on miscible displacement
in heterogeneous porous media, using lattice
Bhatnagar—Gross—Krook simulations
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We analyze the displacement of a viscous fluid by a miscible more viscous one in heterogeneous
porous media. We performed lattice Bhathagar—Gross—Krook simulations, which were previously
successfully applied to the study of the dispersion of a passive tracer in a stochastic heterogeneous
porous medium. In the present situation, the flow is staéhteviscous fingeringand leads to an

overall Gaussian dispersion, the coefficient of which decreases as the viscosity ratio increases. The
results are in reasonable agreement with the stochastic approach of Welty and Gelt®#4 ©
American Institute of Physic§DOI: 10.1063/1.1810474

I. INTRODUCTION lengths. We find that the mixing front between the fluids
exhibits Gaussian dispersion, the dispersion coefficient of

One key issue in hydrology, contaminant remediationwhich decreases when the viscosity ratio increases. The re-

and petroleum engineering is the understanding of the cousults are shown to compare reasonably well with the extrapo-

pling between the porous medium heterogeneity and the fluithtion of the predictions by Welty and Gelii&to our case.

displacement properties given by buoyancy or viscosity ef-

fects. In this paper, we will focus on the viscpqs effect re-;; NUMERICAL SIMULATIONS

lated to the displacement of a less viscous fluid in the porous

medium by a more viscous fluid: This displacement is stable, ~As detailed in Ref. 12, the permeability fiefdr) of the

as opposed to the well-known situation where a more viscougorous medium was chosen to obey a log-normal distribution

fluid is displaced by a less viscous one. If the latter case of - .

viscous fingering has been extensively studied in homoge- In[K(F)]=f+ (), @)

neous porous medi@f permeability uniform in spage—it  \yheref is the mean of the distribution and where the pertur-
is not the case for realistici, |lle heterogeneous porous medigggion fieldf'(F) has a zero mean value and a varianée

A number of investigations™ have addressed the issue of The isotropic spatial correlation of the permeability field is
the coupling between a destabilizing viscosity contrast angjiven by the exponential decay of the covariance function of
the permeability distribution. Basically, in a heterogeneous

porous medium, the fluid flows through the hydrodynami-

cally easiest path that is through the larger permeability path, Rff(f) = E[f' () (F + E)] - 0.% exp(— E) 2)
leading to an enhanced effect of heterogeneities, such as A

resonance” between the intrinsic scale of the fingérsio- with N\ the correlation length. Such a porous medium was

Mogeneous medium:?d?g?g correlation length of the hetero- generated by convolving a random white noise field with an
geneous porous mediurrt. ) , ad hoccorrelation function, namely,

Curiously enough, little attention has been paid to the 5 I
case of stabilizing viscous effects in displacements in hetero-  h(x,y) = exd (X’ + y%5)'], 3

geneous porous media. Let us mention an experiment in @pere the value of the paramet@sets that of the correlation
layered porous mediufhyhere the resulting stratification of length \. Note that the characteristic value of the resulting
the displacement parallel to the layers was reduced and even =y
- : . . permeability field isK,=exp(f).
suppressed for a large enough stabilizing viscosity ratio. We then study the displacement in the porous medium of
In the present paper, using our lattice B@&hatnagar— . ) ) . . . .
Gross—Krook simulation method? well suited for tracer a fluid of viscosityp, by another fluid of viscosity, mis-

macrodispersion in heterogeneous porous mEdiEwe ad- cible to the first one, and flowing at the constant meandggte

. o : . in the x direction. To achieve this, we perform the simulation
dress the issue of miscible stable displacements in more re- . . e

o . ... of the following equations for the velocity field and the
alistic heterogeneous porous media, namely, those with given

log-normal permeability distributions and correlation concentratiorC of the injected fluid:

V-4=0, (4)
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FIG. 1. The top figures show typical injected fluid patteri;n dark gray for the tracer case,u,/u;=1 (B=0, lefty and for
mol uy=1.22(B=0.2, righy. The permeability fieldgiven by the gray-level backgroupdnd the flow parameters are the same2, 0v=0.8,qy=4% 1073,

D,,=5x10°°. The bottom figures display the measured absolute value of the mean concentration grad@hix)-(dots, and the data fit to a Gaussian
behavior(lines), as functions of the distanceto the injection plane.

distribution ranging in[0, 1]. Typical mean flow ratey,
viscosity ratiou,/ uq (and thusg), and diffusion coefficient
D,, ranged in[0.001, 0.0], [1, 2.5 (B<[0,0.9) and [5
We note that the flow equatiofEq. (5)] involves a  x107°,107%], respectively. In such conditions, the CPU time
Brinkman-like term,uAg, the influence of which on tracer was about 10 h.

Jic -
[ +d-VC=DyAC.

macrodispersion was analyzed in a previous p&peallow- Figure 1(top) shows typical invasion patterns, on the
ing Refs. 16 and 17, the fluid viscosityis assumed to have same permeability distribution, for tracer dispersig®/ w,
an exponential concentration dependence, namely, =1, B=0, left) and for a stable displacemefi,/u,=1.22,
B=0.2, righy. Even for this viscosity ratio close to 1, the
m(C) = uq exp(BC), (7)  sharpening of the mixing front is clearly observed, compared

to the tracer case. An estimate of the front width is obtained
by computing the derivative of the mean concentration pro-

file C(x) (dots in Fig. 1, bottorn Then the so-obtained mean
). (8) concentration gradients are fitted tentatively to Gaussian pro-
files (solid lines in Fig. 1, bottom Note that such a Gaussian
behavior is reached at long times, for a spreading of the
mixing front in the mean flow direction large enough com-

gering. Note also that the concentrati@hundergoes an iso- pared to the correlation length of the permeability field: Typi-

tropic mesoscopic diffusion of coefficieBt, [Eq. (6)], lead-  Cally @ ratio of those quantities of the order of 20 was nec-

ing to the same value of the mesoscopic longitudinal an@SSary to obtain Gaussian profiles. _

transverse dispersivities = ar=D,,/do. From these profiles, one measures the variari¢e at
The simulations presented here were performed on typiime t. The time ?V0|Uti0n.0f02. for the invasion pattern of

cal mesh sizes 512512 and during 150 000 time steps, us- Fig. 1, right, is displayed in Fig. 2. One notices thetin-

ing a 1.7 GHz Pentium IV. They were characterized by adeed varies nearly linearly with time at long times. Therefore

Brinkman parameteK;/\?>< 1, which mimimizes the effect an effective diffusion coefficiers can be measured using

of the Brinkman term, and a varianeé of the permeability  the relation,

where

len(ﬁ
M1

The case3>0 corresponds to a stable displacement,
whereasB<0 corresponds to an unstable ofvscous fin-
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FIG. 2. Half of variance of the mean concentration gradiémz, (dots), vs FIG. 3. Normalized effective diffusion coefficier(/goho?, vs the pa-

time for the simulation of Fig. 1, righst. The line is a linear regression fit of rameterby, = _(B)\Z/aT)(‘;E/aX)‘Maxr for different values of the control pa-

the data. Here, we obtale=5X 10", rametersdy, B, Dy, and o7 (symbolg. Each symbol corresponds to the
variation of one parameter at a time. The lines give the prediction of Eq.
(10), using the valued=b,, (solid line), b=by,/2 (dasheg, andb=by/3
(dot-dasheg

1do? _ 5
5 47~ Dett
This diffusive behavior was observed whatever the values of ¢~ "7t 0 o/ Ki 5\ K
0o, B, Dy, and oy used(in the ranges given aboyeThis (1+u) 1+ 55U )| 1+5u" ) +b
supports the contention that the mixing regime is diffusive in
our range of parameters. (10

with b:—(,B)\Z/aT)(aE/ax). We note that the modelization is
not self-consistent, as the description of the front spreading
Ill. THEORY in terms of a diffusive process leads to the definition of a

) ] _ diffusion coefficient which depends on the concentration gra-
Before proceeding to the data analysis, let us summarizgjent. However, the model allows the understanding of the

the analytical derivation of the macroscopic dispersion CoeanterpIay between the different physical quantities in the

ficient in a viscously stabilizing two-dimensional displace- spreading process. More precisely, the above equéEagn

ment in a heterogeneous porous medium. For this PUrpose; )] shows that the dispersivity depends on the following

we follow the same approach as in Refs. 16 and 12 and Us§,o dimensionless variables: the Brinkman tekpi\2, the

the permeability fieldEqgs. (1) and(2)] and the flow equa-  effect of which was previously studied in the tracer cse,

tions [Egs. (4), (5), (7), and(8)] detailed above. The diffu- anq the parametds, which accounts for viscosity contrasts;

sion equation of the concentrati@is written in the form  for h=0 the tracer cadis retrieved. Note that a finite value
oCc - 9 ac\ g JC of b requires transverse mixin@rr) and a uniform concen-
) +q-VC= 5((%%&) + ;y(%fhg) 9) tration gradient as in Taylor dispersifﬁﬁNote also that Eq.

(10) agrees with Welty and Gelhar's equattin the limit-

in order to investigate the roles of and oy, respectively. ing caseK;/\?—0.

We assume small perturbations about the transversely aver-

aged values for the concentration, the velocity, and the predV. RESULTS AND DISCUSSION

sure:C=C(x)+C’, g=qolix+q’, P=P(X)+P". Viscosity and The viscosity effects can be quantified by measuring the
permeability fields become, respectively, effective diffusion coefficienDg¢; in terms of b. As men-
_ dp — _ tioned above, the value dj, which is proportional to the

u(C) = u(C) +C’E(C) =u(C)(L+pC") concentration gradient, depends on the location where the

latter quantity is measured. Here, we arbitrarily chose the
and largest concentration gradient in the middle of the frgte

Fig. 1), and hence the largest paramdienamely,

. T — B\2 IC
The calculation of the mean dispersive flgiC’ along the by=-— —

same line as in Ref. 12 then leads to an effective macrodis- ar X | max
persivity a, when a uniform mean concentration gradient,Note that in so doing, the theoretical dispersion coefficient
—-(aCldx), as in Ref. 16 is assumed. We find after some cal{Eq. (10)] is underestimated.

culations that the longitudinal macrodispersivity: D¢/ do, Figure 3 shows the effective diffusion coefficieDty
with D¢+ the effective diffusion coefficient, is given by normalized by the valuagy\o?, obtained in the tracer case

11
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(B=0 and forK,/\?— 0), versus the parametby,. Note that  tion of b in the numerical simulations agreed with the model

each symbol in Fig. 3 corresponds to the variation of oneprediction[Eq. (10)], provided that a value of about half the

control parametefqg, B, D, Or 0'?) at a time, and that each maximum of the observed gradient was taken to evalbate

data point is obtained from one given realization of the po-  This work will be extended, in stochastic heterogeneous

rous medium, which induces some scatter in the resultgporous media, to the case of viscosity unstable miscible dis-

However, the data collapse reasonably well on a singlglacements, and to the interplay between the resulting vis-

curve. This supports the idea that the front experiences eous fingering and the effect of the underlying porous me-

uniform effective mobility gradient. Figure 3 also displays dium heterogeneities.

the theoretical prediction of Eq10) (solid line), using the
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