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Non-Brownian sedimenting suspensions exhibit density and velocity fluctuations. We have
performed experiments on a quasi-two-dimensional counter-flow stabilized suspension of 2000
spherical particles, namely a liquid–solid fluidized bed in a Hele–Shaw cell. This two-dimensional
suspension displays a uniform concentration but the particle radial distribution function and the
fluctuations of the particle number in a subvolume of the suspension suggest that the microstructure
is far from being random. We have also measured the velocity fluctuations of a test particle and the
fluctuations of the mean particle velocity in a subvolume. It happens that the relation between
velocity and concentration fluctuations in a subvolume can be deduced from a balance between
buoyancy and parietal friction forces. ©2000 American Institute of Physics.
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I. INTRODUCTION

The hydrodynamics of a noncolloidal suspension
monodisperse spherical particles in a viscous liquid is still
open problem. In the presence of gravity, each part
settles, but as a result of its hydrodynamic interactions w
the other particles, it settles with a time-depend
velocity.1–6 The average velocity and the mean square ve
ity fluctuations depend~at least! on the two-particle distribu-
tion function.7–9 This spatial distribution has been genera
supposed to be that of a random suspension, i.e., all cor
tions between particles’ positions are usually neglected,
cept those resulting from the hard-sphere interactions.5,8–10A
consequence of this assumed random distribution is the
crease of the particles’ density or velocity fluctuations w
the size of the container,5,8,9 in contradiction with experi-
ments on fluidized beds11 and sedimenting suspensions12

However, recent experiments on very dilute experimen6

showed a size dependence, ending with some saturatio
the velocity fluctuations for large enough containers. Mo
over, recent improvements in nuclear magnetic resona
techniques13 have allowed one to deduce the structure fac
S(k) of a sedimenting suspension, and this was not a rand
one. Therefore knowledge of the microstructure is requir
A very special nonrandom microstructure14 was tentatively
used to account for the saturation of particle velocity flu
tuations. An alternative explanation, based on real susp
sions which are bounded by walls, takes into account a

a!Electronic mail: dos@fast.u-psud.fr
9581070-6631/2000/12(5)/958/6/$17.00
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tailed analysis of the role of the boundaries.15 Which is the
relevant answer is still an open question to be addresse
the three-dimensional~3-D! suspension, and we do not pre
tend to solve that controversial issue.

Instead, we focus on an apparently much simpler c
for which the microstructure and the velocity fluctuatio
can be thoroughly measured. For that purpose, we use
‘‘favorite’’ counterflow stabilized suspension,3 namely a
liquid–solid fluidized bed, to address the concentratio
dependent structure of the suspension, as well as the re
density and velocity fluctuations. We have designed a tw
dimensional~2-D! fluidized bed, by imposing a constant up
ward flow in a Hele–Shaw cell~HS!, consisting of two par-
allel plates, separated by a small gap, just slightly larger t
the sphere diameter. This setup allows us to easily reac
steady state and enables us to get reliable and extensive
for all particles involved. Using direct videoscopy of th
2000 particles, we record their positions, trajectories, a
velocities, from which we determine the spatial distributi
functiong(r ), the particles’ velocity fluctuationsdup as well
as the particles number fluctuationsDNR and mean velocity
fluctuationsDUR versus the size of the volume of measur
ment,vR , a disk of radiusR.

II. EXPERIMENTAL SETUP

The HS cell consists of two parallel glass plates
length 80 cm and width 10 cm, separated by a unifo
spacer which ensures a constant gap of thicknessb52.0 mm.
The thickness of each plate~1 cm! is large enough to avoid
© 2000 American Institute of Physics
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bending. The cell is held vertically along the larger dime
sion. The monodisperse spherical particles are 2000 ro
bearings made of brass or aluminum~density 8.7 or 2.7) with
a diameter 2a51.50 mm, just slightly smaller than the ce
gap b. We use water-glycerin mixtures of viscosity arou
h50.4 Pa s and density 1.25. At such conditions, the s
mentation velocity isUs;6 mm s21, hence the correspond
ing Reynolds number, Re5aUs /n, is always smaller than
1021. Contrary to gas-fluidized beds, which are usually u
stable, a liquid-fluidized bed is stable for these low Re.3 At
the bottom inlet of the HS cell, the bed is supported by
porous filter which ensures uniform injection. Experimen
are performed at constant upward flow rates using overfi
inlet and outlet vessels at different heights. In such a 2
fluidized bed, the effective volume fraction,f2-D , can be
related to the surface fraction,C5rpa2 (r is the number of
particles per unit area!, throughf2-D54Ca/3b5C/2. The
upward fluid filtration velocity,Ud , controls the bed expan
sion, namely the concentration. At low flow rates, the bed
close packed whereas a flow rate above the minimum flu
zation velocity results in a uniform expansion of the b
from top to bottom, such that the largerUd , the smaller the
concentration. A steady state is achieved within 10 min; t
time is typically 100 times the time needed by a particle
go through the thickness of the cell, and more than 10 tim
the time needed by the suspension in sedimentation to s
down the bottom of the cell. Our data on the filtration velo
ity versus concentration are coincidentally found to obe
Richardson–Zaki lawUd;Us(12f2-D)5, with an exponent
close to that of 3-D fluidized beds.3,11 Using our technique,
we have been able to varyC from 8% to 76%. Below 8%,
the bed starts ‘‘flowing’’ to the top of the cell as the flu
velocity experienced by the particles in the middle of the g
becomes larger than the single particle sedimentation ve
ity between two platesUs . For this reason, our system is n
suitable for measurements at very low concentrations. At
2-D maximum close packing, we getC;80%, which is
close to the maximum packing of well-arranged disks.16

The whole bed is illuminated and a charge-coupled
vice video-tape camera records the movements of the 2
particles. Each image is digitized and the position of
centers of all particles is recorded using the NIHIMAGE soft-
ware. By tracking the particles between consecutive fram
we can record their positions, their trajectories, and comp
their instantaneous velocities. The typical accuracy of
measurements is 0.1 mm in position and 5% in veloc
Figure 1 shows snapshots of the positions of the particles
their velocities. The particles are in permanent motion, p
ticipating from time to time in the formation of doublet
triplets, clusters, etc., then separating to form similar tem
rary structures with other particles.

III. STRUCTURE AND DENSITY FLUCTUATIONS

In this section, we determine the pair distribution fun
tion g(r ) and calculate the long wavelength structure fac
at various concentrations. We also compare the thermo
namics of this new fluid-like suspension to the one of a ha
disk ~HD! system17,18 and analyze its salient features.
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A. Pair distribution function

The 2-D pair distribution functiong(r ) is related to the
probability of observing a particle centered atr , provided a
test particle is already centered at the origin. This function
defined through

g~r !5K A

N2 (
i 51

N

(
j Þ i 51

N

d~r2r ij !L , ~1!

whereN is the total number of particles in areaA. To evalu-
ateg(r ), we choose a test particle on a snapshot, and co
the number of particles centered in a small volume arounr .
Since our suspension was checked to have a homogen
concentration, we can use several test particles on the s
snapshot. Afterwards, we use different snapshots (;50)
taken at different times and we perform the average.
anisotropy along the vertical (z, i.e., the sedimenting direc
tion! or the horizontal (x) direction, could be detected. In
deed, in Fig. 1, the vertical direction can hardly be guess
Then, the relevant distribution function is the radial pair d
tribution function~RDF!, g(r )5g(ur u). It is plotted in Fig. 2
versus the normalized distancer /2a between sphere center
for different concentrations. The occurrence of correlatio
for values smaller than 2a can be attributed to the overlap
ping of particles within the gap of the cell (r min51.42 mm!;
the largerb, the larger the overlapping~our choice ofb is a
compromise between friction and overlapping!. There is evi-
dence of a strong tendency for particles to be close to
another, whereas at large distances the structure is ran
~of equal probability!. We note that as the concentration i
creases, the RDF acquires more structure: The maxima
minima, respectively, located aroundr 52a,4a,6a and
3a,5a,7a, become more and more contrasted. These feat
are reminiscent of hard-disk and hard-sphere liquids18,19 and
were also observed in simulations5 of the structure factor.

FIG. 1. Snapshots of particle positions and instantaneous velocities at
fractions 35%, in a window of 30330 mm2 located in the middle of the
cell. The vertical is along the gravity direction. The circle is o
R-dependent area of measurement.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Compared to a monoatomic liquid, these maxima do not s
with the density of the fluid, and are always obtained for
values multiple of 2a. A quantitative comparison with HD
fluid is illustrated in Fig. 2, where the large stars correspo
to the maximum value of the RDF of HD fluid forr 52a for
two relatively low concentrations. This maximum can be c
culated only before freezing, i.e., for concentration less t
C* ;49% for which a steady configuration of hard disk
equilibrium can be obtained.17 Compared to a randomly dis
tributed HD fluid, we note here the formation of many mo
doublets, triplets, etc. Especially at low concentrations,
measureg(r 52a);3, whereas for a low concentration H
fluid g(r 52a);1. The comparison of measured RDF wi
HD ones clearly shows that our quasi-2-D suspension is
random. This feature is inherent to hydrodynamic inter
tions: the particles arrange themselves close to each oth
order to minimize the viscous dissipation in the fluid.

Before calculating the structure factor of the suspens
let us first recall some definitions of statistical physics. W
define the mean square number of particles in a disk of
dius R:

NR
25E

r ,r 8<R
r~r !r~r 8!dr dr 8, ~2!

wherer(r ) is the probability density to have a particle ce
tered atr. Equation~2! can be rewritten in case of homog
neity:

NR
25NRF11rE

r<R
g~r !dr G , ~3!

where r5N/A5C/pa2 is the number density. Thus, th
standard deviation ofN can be written:

DNR
25NR

22NR
2
5NRF11rE

r<R
~g~r !21!dr G . ~4!

FIG. 2. Radial pair distribution functiong(r ) vs the reduced distancer /2a,
at various area concentrations~in %): C521 (s), 28 (3), 46 (L),
70 (h). For clarity the curves are shifted vertically by a constant va
@note thatg(0)50 andg(`)51 in all cases#.
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B. Long-wave structure factor

The long wavelength~zero wave number! structure fac-
tor, S0(C), is a function of the concentrationC of the sus-
pension, and is defined as

S0~C!5 lim
R→`

F11rE
r<R

~g~r !21!2pr dr G . ~5!

For an homogeneous system we get from Eq.~4! the usual
relation:

S0~C!5 lim
R→`

FDNR
2

NR
G . ~6!

According to Eq.~5!, we can determineS0(C) from integra-
tion of the pair correlation over a diskr<R whereR is a
mesoscopic distance~much larger than the particle diamet
but smaller than the width of our suspension, hereR,5 cm!.
The relevant quantity,

n~R!5rE
r<R

~g~r !21!dr , ~7!

also called mass deficit,5,14 has been computed with our RD
and is plotted in Fig. 3 as a function of the reduced distan
We observe that above a distance;10a the curves approach
a concentration-dependent plateaun(`). As C tends to the
packing fraction, the plateau tends toward21. A concentra-
tion decrease results in larger values of the plateau, wh
reaches20.2 for our lower concentrationC58%. Note that
these results disagree with the Koch and Shaqfeh theory
3-D suspensions14 which conjectured, to account for velocit
fluctuations independent of the vessel size, a particular

FIG. 3. The integrated pair correlation function,n(R) @Eq. ~7!# plotted vs
the reduced distance from a test sphereR/2a for the same concentrations a
in Fig. 2.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tribution of the centers of particles, resulting in a comple
screening of the hydrodynamic interactions. Thus, this p
ticular distribution had to be such thatn(`)521 whatever
the concentration is. On the other hand, our results ag
with Ladd’s numerical simulation of 3-D suspensions wit
out walls, in which partial screening was obtained.5 But we
insist that our results concern a 2-D suspension primarily

As n(R) reaches a constant values forR>10a, we can
obtainS0511n(`), which is plotted in Fig. 4 as a functio
of concentration. For comparison, we recall that in a perf
gas, for whichg(r )51, S0(0)51: The fluctuations are equa
to the square root of the number of particles. In a solid wh
is incompressible, at zero temperature,S0(C* )50: There
are no fluctuations of the particle density. For a quantitat
comparison of our results with HD model, we plot as
dashed line in Fig. 4 the corresponding HD’sS0(C).18 Once
again our data cannot be described by the HD fluid: Our 2
suspension is definitively not a random system. In most 3
suspension theories, a Percus–Yevick hard-sphere RD
assumed, that is a random distribution of the centers of
ticles in suspension. Our 2-D data as well as 3-D nucl
magnetic resonance measurements,13 therefore suggest tha
the hypothesis of randomness should be addressed.

C. Fluctuations in a subvolume

One could object that the integration over the diskr
<R could lead to an enhancement of the experimental er
on g(r ), and then to a poor estimation ofS0(C). In fact,
there is an independent way to check the result by measu
the fluctuations of the numberNR of particles with centers
inside a disk of radiusR @cf. Eq. ~6!#. From our data, we can

FIG. 4. The structure factor vs concentration computed fromg(r ) @Eq. ~5!#
for brass (h) and aluminum (l) spheres, and fromDNR

2/NR @Eq. ~6!# for
brass (d) spheres. The full line is the theoretical structure factor fo
random distribution of hard disk.

FIG. 5. DNR
2(R) vs NR(R) for C513 (3), 28 (L), 40 (s), 46(n)%.

The line through the data gives the structure factorS(C).
Downloaded 10 Dec 2002 to 134.157.252.131. Redistribution subject to 
e
r-

ee

t

h

e

D
D
is
r-
r

rs

ng

easily measureNR and the averagesNR and NR
2. For that

purpose, we count the particles in areaspR2 randomly lo-
cated over the cell, and we average the data over many s
shots~typically 200), these snapshots being randomly ch
sen on a movie of at least 7 min. Before averaging over
different locations, we have checked the homogeneity of
suspension through the proportionality betweenNR andR2:
All the plots display a slope ofC/a2 for each selected loca
tion. Figure 5 is a plot ofDNR

2 vs NR . A linear dependence
is obtained for all concentrations up to approximately 50
According to Eq.~5!, the proportionality coefficient betwee
DNR

2 andNR gives the structure factorS0(C). For the larger
concentrations, the local structure of the suspension incre
the range ofg(r ) beyond our accessible range ofR and the
relation betweenDNR andNR is less linear. The direct val
ues ofS0(C) obtained by this last method are plotted in Fi
4. The reasonable agreement of these results with the
ones allows us to confirm our above-mentioned conclus
that for relatively low concentrations~less than approxima
tively 50%), the suspension is homogeneous but not rand
@experimentalS0(C) differs from HD’s one#.

IV. VELOCITY FLUCTUATIONS

As the suspension is fluidized and no vortex-like conv
tive motion could be detected at any concentration, the a
age velocity of any particle is equal to zero, and con
quently its instantaneous velocity is also its veloc
fluctuation.

A. Velocity fluctuations of a single particle

By collecting the velocities of the particles at differe
times, we get reliable statistics~more than 105) to compute
the average amplitude of velocity fluctuation, or the spa
velocity correlation. The root of the standard deviation of t
horizontal component and the vertical component of an in
vidual particle velocity are equal, we denote itu0 , u05dui

5A(up• i2up• i)2, wherei is equal to the unit vector along
the horizontal (x) or the vertical (z) direction, andup is the
particle velocity vector. The valueu0 does not change whe
averaging on time or on the different particles, in agreem
with the ergodic principle.u0 is of the same order of mag

FIG. 6. Single particle velocity fluctuationsu0 normalized byUd vs C.
Closed and open symbols correspond, respectively, to the horizontal
vertical velocity fluctuations (dux and duz), to aluminum beads~h!, to
brass beads for a cell’s width of 10 cm (n), and to brass beads in a large
cell (s) (20 cm!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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nitude as the inlet velocityUd in the fluidized suspension
which is also of the same order as the sedimentation velo
~measured after switching off the flow rate!. This velocity
fluctuationu0 scales withUd , whatever the size of the sus
pension, the number of particles, and the value of Re, p
vided that it remains lower than 1. This is illustrated in F
6 where the normalization ofu0 by Ud results in the merging
of the different sets of data collected for different paramet
of suspension, which means: two different values of
width of the cell (10 and 20 cm!, two different Re numbers
i.e., two different values for the solid density~aluminum and
brass!. We note that those normalized velocity fluctuatio
increase as the concentration increases up to aC;50%. For
higher concentration, velocity fluctuations decrease, to re
a zero value at close packing. We have already studied
amplitude of this velocity fluctuation, especially their pro
ability distribution function~PDF!.20 It appears that the PDF
are direction and concentration dependent. Particularly,
tical PDF are asymmetric. This disymmetry increases aC
increases, and, results in a rise of the probability of la
upward velocities which penalizes the smaller ones. T
anomalous behavior is in agreement with a hyperdiffus
measured along the vertical direction, associated with
appearance of rapid transient channel where particles
suddenly advected by fluid upflow.

B. Velocity spatial correlation

Individual particles’ velocities are spatially correlate
and concentration dependent. To avoid maximizing the in
ence of large upward velocities, we normalized our cal
lated spatial velocity correlation by the amplitude of the
volved velocities, i.e., we calculate the mean cosine,A(r ), of
the angle between the velocity vectors of the particles dis
of r from each other,

A~r !5^cos~u~r 0!,u~r 01r !!&5K u~r 0!•u~r 01r !

iu~r 0!iiu~r 01r !i L .

~8!

A(r ) is plotted in Fig. 7 for four different concentration
The velocities of contact particles are strongly correla
@A(r 52a);0.7# and the correlation extends to a leng
varying from two to three diameters for increasing conc
trations. Note that from our 2-D study, the relevant norm
ization of the velocity correlation length remains ambiguo

FIG. 7. Angular velocity correlation vs normalized distance forC513
(3), 25 (L), 35 (s), 46 (n)%. For clarity the curves are shifted vert
cally by a constant value@note thatA(`)50 in all cases#.
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and can be either the particle size or the cell thickness
peak of A(r ) at r 54a, hardly appearing atC535% and
more obvious atC546%, reflects the existence of transla
ing contact triplets, and more generally, the presence of c
ters in the suspension. On the other hand, the smooth
crease ofA(r ) indicates that the clusters do not have a
characteristic size.

C. Fluctuations of the mean velocity in a subvolume

In the same way that we measuredNR andDNR , we can
measure the mean velocityUR in a disk of radiusR by av-
eraging the individual velocities of the particles inside th
disk at a given time:UR5(1/NR) (vR

up . We have com-
puted the velocity fluctuationsDUR as the root of the qua
dratic deviation ofUR , averaged on numerous identical su
volumes taken at different space and time:DUR

2

5(UR2Ū)2 whereŪ50 in our fluidized suspension. Figur
8 is a log–log plot ofDUR vs R. The velocity fluctuation
dependence withR is nearlyR21, whatever the concentra
tion value.

This R21 dependence ofDUR can be explained by an
argument initially used by Hinch for a 3-D suspension9 and
here transposed to the 2-D case as follows: The velo
fluctuationsDUR can be related to fluctuation of the partic
numberDNR from a balance between the buoyancy force
the disk and the sidewalls friction. For a disk of sizeR and

FIG. 8. Size dependence of the fluctuation of the mean velocity in a s
volume (pR2). Log–log plot ofDUR /Us vs R/a for C513 (3), 28 (L),
40 (s), 46 (n)%. The dashed line has a21 slope.

FIG. 9. Size dependence of the ratio of the velocity fluctuations to
density fluctuations in a subvolume. Log–log plot ofDUR /UsDNR vs R/a
for C513 (3), 28 (L), 40 (s), 46 (n)%. The dashed line has a22
slope.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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thickness b;a, this friction force is of the order
h (DUR /a) R2 so that

DUR;UsS a

RD 2

DNR . ~9!

SinceDNR is related toNR @cf. Eq. ~6!# and C5NRa2/R2,
one finally gets

DUR

Us
;ACS0~C!

a

R
, ~10!

hence anR21 dependence which compare with the one o
served in Fig. 8.

Furthermore, we can test the validity of the first step
the model: The extra buoyancy force associated withDNR is
balanced by an extra wall friction associated withDUR .
Equation~9! requires a dependence of (DUR /DNR) asR22.
Our data plotted in Fig. 9 are in reasonable agreement w
the predicted dependence. Therefore, this supports the
tention that the wall friction is the predominant viscous for
in our system.

Regarding Eq.~10!, we should be able to predict th
amplitude of DUR for various concentrations with th
knowledge of S0(C). We plot in Fig. 10 the ratio of
DUR /Us to AS0(C)C vs R. Almost all the data collapse
around the full line 0.6a/R in agreement with Eq.~10!. Thus,
we find here an illustration of the influence of the structu
factor on the amplitude of velocity fluctuation, and of th
dependence of this structure factor with concentration. It
been demonstrated that the structure in our quasi-2-D
pension differs from a random one, hence it seems tha
further studies, knowledge of the structure factor should
needed to correctly predict the dependence of velocity fl
tuations with concentration. One could remark that this
locity fluctuation termDUR is not the current onedvp5u0

measured in literature. From our data, we have calcula
u0 /(UsAS0(C)C) for various parameters, and find that th
value is always equal to 0.1560.05, for C lower thanC* .
Using Fig. 10, we find that this value corresponds to
value of DUR /(UsAS0(C)C) for R of the order of 2–5a,
which is approximately the velocity correlation length@c.f.
Fig. 7#. This would mean that Hinch’s approach can pred
the velocity fluctuationsdvp by calculatingDUR for R of the
order of the velocity correlation length.

FIG. 10. Log–log plot of DUR /UsAS0(C)C vs R/a for C513 (3),
28 (L), 40 (s), 46 (n)%. The line through the data is the theoretic
prediction 0.6a/R.
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V. CONCLUSION

We have reported on measurements of the struct
density, and velocity fluctuations of a quasi-2-D suspens
of monodisperse particles. The pair distribution function a
the long wavelength structure factor~measured either from
the density distribution or the density fluctuations!, reveal
that the suspension microstructure is definitively not rand
and that the beads tend to be much more in contact than
hard disk fluid. We have also measured the size depend
of the density and of the velocity fluctuations in a subv
ume. To account for these dependencies, we have ada
Hinch’s argument to our quasi-2-D suspension including
suspension microstructure and the wall friction. The agr
ment between experimental results and theoretical mode
rather good, and then emphasizes the crucial roles playe
the thickness of the vessel through wall friction and by t
structure factor. The latter, which is definitively not rando
will be a determinant input for further modeling and compu
ing of macroscopic suspensions.
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