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Non-Brownian sedimenting suspensions exhibit density and velocity fluctuations. We have
performed experiments on a quasi-two-dimensional counter-flow stabilized suspension of 2000
spherical particles, namely a liquid—solid fluidized bed in a Hele—Shaw cell. This two-dimensional
suspension displays a uniform concentration but the particle radial distribution function and the
fluctuations of the particle number in a subvolume of the suspension suggest that the microstructure
is far from being random. We have also measured the velocity fluctuations of a test particle and the
fluctuations of the mean particle velocity in a subvolume. It happens that the relation between
velocity and concentration fluctuations in a subvolume can be deduced from a balance between
buoyancy and parietal friction forces. @000 American Institute of Physics.
[S1070-663(00)02305-9

I. INTRODUCTION tailed analysis of the role of the boundart@dhich is the
relevant answer is still an open question to be addressed in
The hydrodynamics of a noncolloidal suspension ofthe three-dimensiondB-D) suspension, and we do not pre-
monodisperse spherical particles in a viscous liquid is still anend to solve that controversial issue.
open problem. In the presence of gravity, each particle |nstead, we focus on an apparently much simpler case
settles, but as a result of its hydrodynamic interactions withfor which the microstructure and the velocity fluctuations
the other particles, it settles with a time-dependentcan be thoroughly measured. For that purpose, we use our
velocity."~® The average velocity and the mean square veloc“tavorite” counterflow stabilized suspensichpamely a
ity fluctuations dependat leas} on the two-particle distribu-  liquid—solid fluidized bed, to address the concentration-
tion function’~® This spatial distribution has been generally dependent structure of the suspension, as well as the related
supposed to be that of a random suspension, i.e., all correlgensity and velocity fluctuations. We have designed a two-
tions between particles’ positions are usually neglected, exdimensional2-D) fluidized bed, by imposing a constant up-
cept those resulting from the hard-sphere interactin$’A  ward flow in a Hele—Shaw ce{HS), consisting of two par-
consequence of this assumed random distribution is the inglle| plates, separated by a small gap, just slightly larger than
crease of the particles’ density or velocity fluctuations withthe sphere diameter. This setup allows us to easily reach a
the size of the containé’? in contradiction with experi- steady state and enables us to get reliable and extensive data
ments on fluidized beds and sedimenting suspensiofis. for all particles involved. Using direct videoscopy of the
However, recent experiments on very dilute experinfents2000 particles, we record their positions, trajectories, and
showed a size dependence, ending with some saturation gglocities, from which we determine the spatial distribution
the velocity fluctuations for large enough containers. Morefynctiong(r), the particles’ velocity fluctuationdu, as well
over, recent improvements in nuclear magnetic resonancgs the particles number fluctuationdr and mean velocity
technique’® have allowed one to deduce the structure factofluctuationsA U versus the size of the volume of measure-
S(k) of a sedimenting suspension, and this was not a randoent, v, a disk of radiusR.
one. Therefore knowledge of the microstructure is required.
A very special nonrandom microstructiffavas tentatively
used to account for the saturation of particle velocity fluc-!l: EXPERIMENTAL SETUP
tuations. An alternative explanation, based on real suspen- The Hs cell consists of two parallel glass plates of
sions which are bounded by walls, takes into account a d%ngth 80 cm and width 10 cm, separated by a uniform

spacer which ensures a constant gap of thickbes2.0 mm.
dElectronic mail: dos@fast.u-psud.fr The thickness of each platé cm) is large enough to avoid
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bending. The cell is held vertically along the larger dimen-
sion. The monodisperse spherical particles are 2000 roller
bearings made of brass or alumingdensity 8.7 or 2.7) with
a diameter 2=1.50 mm, just slightly smaller than the cell
gapb. We use water-glycerin mixtures of viscosity around
n=0.4 Pas and density 1.25. At such conditions, the sedi-
mentation velocity idJ;~6 mms%, hence the correspond-
ing Reynolds number, ReaU/v, is always smaller than
10 1. Contrary to gas-fluidized beds, which are usually un-
stable, a liquid-fluidized bed is stable for these low R
the bottom inlet of the HS cell, the bed is supported by a
porous filter which ensures uniform injection. Experiments
are performed at constant upward flow rates using overfilled
inlet and outlet vessels at different heights. In such a 2-D
fluidized bed, the effective volume fractiod,.p, can be
related to the surface fractio@,= pma? (p is the number of
particles per unit argathrough ¢,.,=4Ca/3b=C/2. The
upward fluid filtration velocity Uy, controls the bed expan-
sion, namely the concentration. At low flow rates, the bed is
close packed whereas a flow rate above the minimum fluidiFIG. 1. Snapshots of particle positions and instantaneous velocities at area
zation velocity results in a uniform expansion of the bedfractions 35%,_in a_window of 3030 mn? Io_cate_d in the mic_ldle o_f the
from top to bottom, such that the largel, the smaller the cell. The vertical is along the gravity direction. The circle is our

8 h ) A . . R-dependent area of measurement.
concentration. A steady state is achieved within 10 min; this
time is typically 100 times the time needed by a particle to
go through the thickness of the cell, and more than 10 timeg@,. Pair distribution function
the time needed by the suspension in sedimentation to settle o . _
down the bottom o¥ the ceII.pOur data on the filtration veloc- The 2-D palr distribution functiom(r) is related to the

ity versus concentration are coincidentally found to obey af rotbab '!['_“1 O_f oblser\élng a tpart(ljclet ;? nter_edra_tlphr_ovfldedt_a .
Richardson—Zaki la ;~ U (1— é,.0)5, with an exponent est particle is already centered at the origin. This function is

close to that of 3-D fluidized beds-! Using our technique, defined through
we have been able to vafy from 8% to 76%. Below 8%, AN N
the bed starts “flowing” to the top of the cell as the fluid g(r)=<—2 > > 5(f—rij)>, 1
velocity experienced by the particles in the middle of the gap NTi=1j=1=1
becomes larger than the single particle sedimentation veloavhereN is the total number of particles in aréa To evalu-
ity between two platells. For this reason, our system is not ateg(r), we choose a test particle on a snapshot, and count
suitable for measurements at very low concentrations. At thene number of particles centered in a small volume araund
2-D maximum close packing, we g&~80%, which is  Since our suspension was checked to have a homogeneous
close to the maximum packing of well-arranged di¥ks. concentration, we can use several test particles on the same
The whole bed is illuminated and a charge-coupled desnapshot. Afterwards, we use different snapshotQ)
vice video-tape camera records the movements of the 200@ken at different times and we perform the average. No
particles. Each image is digitized and the position of theanisotropy along the verticak( i.e., the sedimenting direc-
centers of all particles is recorded using the NMAGE soft-  tion) or the horizontal ) direction, could be detected. In-
ware. By tracking the particles between consecutive framesjeed, in Fig. 1, the vertical direction can hardly be guessed.
we can record their positions, their trajectories, and comput&hen, the relevant distribution function is the radial pair dis-
their instantaneous velocities. The typical accuracy of outribution function(RDF), g(r)=g(|r|). Itis plotted in Fig. 2
measurements is 0.1 mm in position and 5% in velocityversus the normalized distancRa between sphere centers,
Figure 1 shows snapshots of the positions of the particles anfdr different concentrations. The occurrence of correlations
their velocities. The particles are in permanent motion, parfor values smaller than& can be attributed to the overlap-
ticipating from time to time in the formation of doublets, ping of particles within the gap of the celt {;,=1.42 mn;
triplets, clusters, etc., then separating to form similar tempothe largerb, the larger the overlappin@ur choice ofb is a
rary structures with other particles. compromise between friction and overlappinghere is evi-
dence of a strong tendency for particles to be close to one
another, whereas at large distances the structure is random
(of equal probability. We note that as the concentration in-
In this section, we determine the pair distribution func- creases, the RDF acquires more structure: The maxima and
tion g(r) and calculate the long wavelength structure factominima, respectively, located around=2a,4a,6a and
at various concentrations. We also compare the thermodyda,5a,7a, become more and more contrasted. These features
namics of this new fluid-like suspension to the one of a hardare reminiscent of hard-disk and hard-sphere ligifitfsand
disk (HD) systent”'8and analyze its salient features. were also observed in simulationsf the structure factor.

IIl. STRUCTURE AND DENSITY FLUCTUATIONS
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FIG. 2. Radial pair distribution functiog(r) vs the reduced distancé2a,

at various area concentrationin %): C=21(0), 28 (X), 46(0), f
70 (0). For clarity the curves are shifted vertically by a constant value ‘?ﬂ’
[note thatg(0)=0 andg(«<)=1 in all case$
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Compared to a monoatomic liquid, these maxima do not shift

with the density of the fluid, and are always obtainedfor rg, 3. The integrated pair correlation functiar(R) [Eq. (7)] plotted vs

values multiple of 2. A quantitative comparison with HD  the reduced distance from a test sph@f2a for the same concentrations as

fluid is illustrated in Fig. 2, where the large stars correspondn Fig. 2.

to the maximum value of the RDF of HD fluid for=2a for

two relatively low concen@ratio_ns. This maximum can be cal-5 Long-wave structure factor

culated only before freezing, i.e., for concentration less than

C* ~49% for which a steady configuration of hard disk in ~ The long wavelengttizero wave numbgrstructure fac-

equilibrium can be obtained. Compared to a randomly dis- tor, Sy(C), is a function of the concentratio@ of the sus-

tributed HD fluid, we note here the formation of many morepension, and is defined as

doublets, triplets, etc. Especially at low concentrations, we

measurgy(r =2a)~ 3, whereas for a low concentration HD So(C)= lim

fluid g(r=2a)~1. The comparison of measured RDF with Roee

HD ones clearly shows that our quasi-2-D suspension is NGtor an homogeneous system we get from &).the usual

random. This feature is inherent to hydrodynamic interacye|ation:

tions: the particles arrange themselves close to each other in

order to minimize the viscous dissipation in the fluid. o
Before calculating the structure factor of the suspension, So(C) = F!'Tm

let us first recall some definitions of statistical physics. We

define the mean square number of particles in a disk of rafccording to Eq.(5), we can determin&(C) from integra-
diusR: tion of the pair correlation over a disksR whereR is a

mesoscopic distand@nuch larger than the particle diameter

1+perR(g(r)—1)2wrdr . (5)

N

R

(6)

— —_— ) but smaller than the width of our suspension, Hete5 cm).
Nr= frr,st(r)p(r ydrdr’, 2 The relevant quantity,

wherep(r) is the probability density to have a particle cen- n(R):pJ (g(r)y—21)dr, (7

tered atr. Equation(2) can be rewritten in case of homoge- r<R

neity: also called mass deficitt*has been computed with our RDF

and is plotted in Fig. 3 as a function of the reduced distance.
N_§=N_R l+pf g(r)dr|, (3) We observe Fhat above a distaned0a the curves approach
r<R a concentration-dependent platealse). As C tends to the

, . . packing fraction, the plateau tends toward.. A concentra-
where p=N/A=C/ma" is the number density. Thus, the tion decrease results in larger values of the plateau, which
standard deviation dfl can be written: reaches- 0.2 for our lower concentratioB=8%. Note that

these results disagree with the Koch and Shagfeh theory for
1+pf R(g(r) _ 1)dr}. (4) 3-D suspensiort§ which conjectured, to account for velocity
r<

ANR=NZ—Ng “=Ng pens _ ; |
fluctuations independent of the vessel size, a particular dis-
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FIG. 4. The structure factor vs concentration computed fggn) [Eq. (5)] c

for brass [J) and aluminum @) spheres, and from N2/Ng [Eq. (6)] for

brass @) spheres. The full line is the theoretical structure factor for a FIG. 6. Single particle velocity fluctuations, normalized byUy vs C.
random distribution of hard disk. Closed and open symbols correspond, respectively, to the horizontal and

vertical velocity fluctuations §u, and éu,), to aluminum beadg§[]), to
brass beads for a cell's width of 10 c\§, and to brass beads in a larger

tribution of the centers of particles, resulting in a complete®®! (©) (20 cm.

screening of the hydrodynamic interactions. Thus, this par-

ticular dlstrlbut!on had to be such thaf~)=—1 whatever easily measur\g and the averageN_R and N_ZR' For that
the concentration is. On the other hand, our results adreg mose, we count the particles in area? randomly lo-

\(/)v:]tthv\ll_sldsd iSn rwr?(:erzl([:)zlr;rln:::?telgair?; agssgstg?gesé%ﬁv\g'th cated over the cell, and we average the dgta over many snap-
insist tha’t our results concern a 2-D suspension primarily shots(typlcally_ 200), these sngpshots being ran_domly cho-
" sen on a movie of at least 7 min. Before averaging over the
As n(R) reaches a constant values R 10a, we can different locations, we have checked the homogeneity of the

obtainS, = 1+.n(oc)’ which is plotted InFig. 4 as a function uspension through the proportionality betweTqi\and R2:
of concentration. For comparison, we recall that in a perfec ) 5
Il the plots display a slope of/a“ for each selected loca-

gas, for whictg(r) =1, $(0)=1: The fluctuations are equal tion. Figure 5 is a plot oﬁNEe vs Nr. A linear dependence

to the square root of the number of particles. In a solid whichIS obtained for all concentrations up to approximately 50%
is incompressible, at zero temperatu&(C*)=0: There P PP Y '

are no fluctuations of the particle density. For a quantitativeACCOrdlnguo Eq.(5), the proportionality coefficient between

2 .
comparison of our results with HD model, we plot as aANR andN_R gives the structure factd(C). For the Ia_rger
dashed line in Fig. 4 the corresponding HISg(C) 18 Once concentrations, the local structure of the suspension increases

again our data cannot be described by the HD fluid: Our Z—dhe r_ange oiy(r) beyond o_ur_access[ble range I@fgnd the
suspension is definitively not a random system. In most 3-€lation betweemNg andNg is less linear. The direct val-

suspension theories, a Percus—Yevick hard-sphere RDF HES 0fSo(C) obtained by this last method are plotted in Fig.

assumed, that is a random distribution of the centers of parA_f. The reasonable agreement of these results with the first

ticles in suspension. Our 2-D data as well as 3-D nucleaPnes allows us to confirm our above-mentioned conclusion

magnetic resonance measureméhtterefore suggest that that for relatively low concentrationdess than approxima-
the hypothesis of randomness should be addressed. tively 50%), the suspension is homogeneous but not random
[experimentalSy(C) differs from HD’s oné.

C. Fluctuations in a subvolume

. . . . IV. VELOCITY FLUCTUATIONS
One could object that the integration over the disk

<R could lead to an enhancement of the experimental errors  As the suspension is fluidized and no vortex-like convec-
on g(r), and then to a poor estimation &(C). In fact, tive motion could be detected at any concentration, the aver-
there is an independent way to check the result by measuringge Vvelocity of any particle is equal to zero, and conse-
the fluctuations of the numbe\ of particles with centers quently its instantaneous velocity is also its velocity
inside a disk of radiuf [cf. Eq.(6)]. From our data, we can fluctuation.

A. Velocity fluctuations of a single particle

By collecting the velocities of the particles at different
times, we get reliable statisti¢snore than 18) to compute
the average amplitude of velocity fluctuation, or the spatial
velocity correlation. The root of the standard deviation of the
horizontal component and the vertical component of an indi-
vidual particle velocity are equal, we denoteui, uy= du;

= \/(up-i—up~|)2, wherei is equal to the unit vector along

the horizontal ) or the vertical ¢) direction, andu,, is the

R particle velocity vector. The value, does not change when
FIG. 5. ANA(R) vs Ng(R) for C=13(x), 28 (0 ), 40 (O), 46(A)%. averaging on time or on the different particles, in agreement
The line through the data gives the structure faGE). with the ergodic principleug is of the same order of mag-
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FIG. 7. Angular velocity correlation vs normalized distance @+ 13
(X), 25(¢), 35(0), 46 (A)%. For clarity the curves are shifted verti- FIG. 8. Size dependence of the fluctuation of the mean velocity in a sub-
cally by a constant valufnote thatA(=)=0 in all case$ volume (wR?). Log—log plot of AUR /U vs Ria for C=13 (X), 28(0),

40 (0), 46 (A)%. The dashed line has-al slope.

nitude as the inlet velocity 4 in the fluidized suspension,

which is also of the same order as the sedimentation veloCitynd can be either the particle size or the cell thickness. A
(measured after switching off the flow rateThis velocity  peak of A(r) at r=4a, hardly appearing a€=235% and
fluctuationu, scales withUy, whatever the size of the sus- more obvious aC=46%, reflects the existence of translat-
pension, the number of particles, and the value of Re, promg contact triplets, and more generally, the presence of clus-
Vided that it remains IOWer than 1. ThIS iS i”ustrated in Fig.ters in the Suspension_ On the Other hand, the Smooth de_
6 where the normalization afy by U results in the merging  crease ofA(r) indicates that the clusters do not have any
of the different sets of data collected for different parametergharacteristic size.

of suspension, which means: two different values of the

width of the cell (10 and 20 cimtwo different Re numbers C. Fluctuations of the mean velocity in a subvolume

i.e., two different values for the solid densigluminum and
brass. We note that those normalized velocity fluctuations In the same way that we measu_rlﬁa andANR, we can
increase as the concentration increases upGe-&0%. For measure the_ mean veloutyR na disk of ra(.jlus‘?.by.av- )
higher concentration, velocity fluctuations decrease, to reacfyf29'"Y the. |nd|V|'duaI velocities of the particles inside this
a zero value at close packing. We have already studied th¥iSK at a given timeUg=(1/Ng) 2, u,. We have com-
amplitude of this velocity fluctuation, especially their prob- Puted the velocity fluctuationdUg as the root of the qua-
ability distribution function(PDP).?° It appears that the PDF dratic deviation olUr, averaged on numerous identical sub-
are direction and concentration dependent. Particularly, veiolumes taken at different space and timetUg
tical PDF are asymmetric. This disymmetry increaseas =(Ug—U)? whereU =0 in our fluidized suspension. Figure
increases, and, results in a rise of the probability of large8 is a log—log plot ofAUg vs R. The velocity fluctuation
upward velocities which penalizes the smaller ones. Thislependence withR is nearlyR™!, whatever the concentra-
anomalous behavior is in agreement with a hyperdiffusiortion value.

measured along the vertical direction, associated with the This R™! dependence oAUy can be explained by an
appearance of rapid transient channel where particles agrgument initially used by Hinch for a 3-D suspensiamd

suddenly advected by fluid upflow. here transposed to the 2-D case as follows: The velocity
fluctuationsAUg can be related to fluctuation of the particle
B. Velocity spatial correlation numberANg from a balance between the buoyancy force on

Individual particles’ velocities are spatially correlated the disk and the sidewalls friction. For a disk of sReand

and concentration dependent. To avoid maximizing the influ-
ence of large upward velocities, we normalized our calcu-

lated spatial velocity correlation by the amplitude of the in- 1 <
volved velocities, i.e., we calculate the mean coskie,), of a1 RN -
the angle between the velocity vectors of the particles distant o 107 5 N
of r from each other, T N
s SN
~ 2 BN
u(rg)-u(rg+r) < QERN
A(r)=(COSU(r o), u(ro+1))) = o 0 . S A28
Juro)llluro+ )] 3 L T
10 _ ‘ ‘\‘\
A(r) is plotted in Fig. 7 for four different concentrations. P 10 100

The velocities of contact particles are strongly correlated Rla

[A(r=2a)~0.7] and the correlation extends to a length ) ) ] )
FIG. 9. Size dependence of the ratio of the velocity fluctuations to the

Varymg from two to three diameters for increasing COn(:(_m_density fluctuations in a subvolume. Log—log plotdfl s /UANg vs R/a
trations. Note that from our 2-D study, the relevant normal-to; c=13(x), 28(¢), 40 (0), 46 (A)%. The dashed line has &2

ization of the velocity correlation length remains ambiguousslope.
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LE+00 - V. CONCLUSION
_ We have reported on measurements of the structure,
%LE_,” ] density, and velocity fluctuations of a quasi-2-D suspension
7 of monodisperse patrticles. The pair distribution function and
o the long wavelength structure fact@neasured either from
;: 1,E-02 the density distribution or the density fluctuatipnseveal
Q ] that the suspension microstructure is definitively not random
and that the beads tend to be much more in contact than in a
LE-03 hard disk fluid. We have also measured the size dependence

1 10, 100 of the density and of the velocity fluctuations in a subvol-
ume. To account for these dependencies, we have adapted
FIG. 10. Log-log plot of AUg/UsySy(C)C vs R/a for C=13(X),  Hinch’s argument to our quasi-2-D suspension including the
28(©), 40(0), 46 (A)%. The line through the data is the theoretical g;;spension microstructure and the wall friction. The agree-
prediction 0.6/R. . . .
ment between experimental results and theoretical model is
rather good, and then emphasizes the crucial roles played by
thickness b~a, this friction force is of the order the thickness of the vessel through wall friction and by the

7(AUg/a) R? so that structure factor. The latter, which is definitively not random,
’ will be a determinant input for further modeling and comput-
ing of macroscopic suspensions.
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