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Following Einsteins’s argument for the diffusion coefficient of colloidal dispersions, we postulate that
the steady state concentration profile in a suspension of noncolloidal monodisperse particles reflects the
dynamic equilibrium resulting from a balance between gravity-driven convection and hydrodynamic

dispersion.

Using an acoustic technique, the steady state concentration profile of a counterflow-

stabilized suspension (a fluidized bed) as well as stationary propagating sedimentation fronts inside
the bed were determined. From these profiles we can derive the concentration dependence of the

hydrodynamic dispersion coefficient.

PACS numbers: 47.15.Pn, 05.40.4j, 47.35.+i

In a colloidal suspension, the particles are small
enough to perform Brownian motions: The movements
of the individual particles give rise to a diffusion process
due to stochastic thermal fluctuations. When the par-
ticles are large enough, hydrodynamic interactions be-
tween particles prevail over Brownian motion. In such
a noncolloidal suspension of volume fraction C, the
velocity of an individual particle fluctuates about the
mean settling velocity U(C). These fluctuations lead to
a random walk of the particles, due to the hydrodynamic
interactions with the surrounding particles. This diffusion
process is referred to as hydrodynamic dispersion [1-5].
Experimental observations of shear-induced diffusion [1],
broadening of the interface at the top of a sedimenting
suspension [2], and velocity fluctuations of a single parti-
cle in the bulk of a sedimenting homogeneous suspension
[3] support this idea of hydrodynamic dispersion of a
noncolloidal suspension of monodisperse particles [4,5].
Accurate experiments [6,7] and theoretical understanding
[4,8] of this phenomenon are still a challenge. Measure-
ments of the hydrodynamic dispersion coefficient D(C)
have been obtained by two different approaches. The
first relies on tracking the velocity fluctuations either
of a tagged particle settling among and being part of a
homogeneous suspension [3,9] or of the whole suspen-
sion [6]; the variance of these fluctuations leads to D.
The second relies on analyzing the large concentration
gradient occurring at the top of a sedimenting suspension,
the front spreading due to hydrodynamic dispersion
[2,7,10]. Note that the two methods actually address
two different dispersion issues, namely, self-diffusion in
the former and the collective response of the suspension
to a concentration gradient in the latter. Both methods
have intrinsic experimental limitations: The first requires
a reproducible stirring procedure in order to obtain
homogeneous suspensions, while the second is affected
by even small residual polydispersity (which leads to a
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growth proportional to time ¢) which rapidly overcomes
the dispersion effect (which grows as ~+/r). A suitable
tool to avoid such sedimenting suspension problems is to
employ a fluidized bed, in which case the upward-flowing
solvent counterbalances gravity. Thus the “settling”
concentration profile reaches a steady state, with respect
to a laboratory frame of reference, in which case accurate
measurements can be performed [6]. Moreover, by virtue
of the fluidization process (which leads to segregation,
with smaller particles at the top and larger at the bottom)
the bed intrinsically discriminates between small and
large particles, thereby overcoming polydispersity prob-
lems. Such a system was recently used [6] to measure
the properties of a colloidal suspension, although the
suspension was assumed to have a uniform concentration
contradicting recent measurements in charged-particle
systems [11]. To detect the sharp concentration variations
of the concentration profile requires an accurate technique
with a well designed spatial resolution. In this Letter, we
use an acoustic technique [12] to obtain measurements
of the concentration profile in a liquid-fluidized bed of
noncolloidal particles. Applying a phenomenological
extension of Einstein’s derivation [13] of the diffusion
coefficient of a colloidal suspension to the profiles of
our noncolloidal system, we determine the concentration
dependence of the hydrodynamic coefficient.

Let us first recall some basic aspects of suspensions
and fluidized beds [4]. We consider a collection of
monodisperse spherical particles fluidized in a liquid. The
particles are large enough for Brownian motion to be
negligible. For a suspension statistically homogeneous
in each horizontal direction, the volume fraction C(x,t)
is a function of the vertical direction x (downward ori-
ented) and time . The mean velocity of the suspen-
sionis V = CV, + (1 — C)Vy, where V, and V, are the
particle and fluid velocities, respectively (all velocities
are algebraic quantities). In the absence of inertia and
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concentration gradients, the momentum equation gives
[4] V, — V = U(C), which expresses the balance be-
tween viscous and buoyancy forces [U(C) = M(C)V,,
where M(C) is the concentration-dependent friction and
Vo = 2a*(p, — pr)g/9m is the Stokes sedimentation ve-
locity of a single spherical particle of radius a, with 7 the
viscosity, g the acceleration of gravity, and p, and ps the
particle and fluid densities]. When concentration gradi-
ents exist, the equation must be modified to account for
the hydrodynamic dispersion. Following Einstein’s argu-
ment [13] for the determination of the diffusion coeffi-
cient of colloidal dispersions, we postulate that the steady
state concentration profile in a suspension of noncolloidal
monodisperse particles reflects the dynamic equilibrium
resulting from a balance between gravity-driven convec-
tion and hydrodynamic dispersion. Therefore we express
the particle flux J = CV,,, as the sum of a convective and
diffusive flux, to get

Cv, =C(U(C) + V) — D(C)VC. @9)

Substitution in the equation for the conservation of
particles, aC/dr + 9J/dx = 0, yields the convection-
diffusion equation

acC/at + o[C(U(C) + V)]/ax = a[D(C)aC/ax]/dx.
@)

In a steady state in the laboratory frame of reference
(0C/dt =0, V = —¢q, where g is the volume-fraction
injection velocity), we further get

ClU(C) — q] = D(C)aC/ax, 3)

where the integration constant was set to zero as required
by the far-field boundary condition. Equation (3) ex-
presses the fact that the net convective flux due to an
external force (gravity) through a plane moving at the sus-
pension velocity is counterbalanced by the diffusion flux.
This is the basic Einstein argument we used to derive the
diffusion coefficient of a colloidal suspension [13]. The
concentration profile C(x) can be obtained from integra-
tion of Eq. (3), provided that U(C) and D(C) are known.
This is the same stationary shape profile that should be
observed at the top of a sedimenting suspension [10], if
polydispersity effects are negligible. Note that at steady
state the concentration in the uniform concentration region
and the flow rate are related by U(C) = q.

Experiments were performed in a column 60 cm high
of circular cross section (4 cm). We determined the
concentration profile by measuring variations in the sound
speed in several cross sections along the bed, as the sound
speed in suspensions is related to the volume fraction
of particles [12]. From the calibration curve and the
accuracy of our relative velocity measurements (10™%)
we estimated [12] the overall accuracy in concentration
measurements to be 0.1% and the spatial resolution to
be 1 mm. The liquid used was a water-glycerol mixture
(n = 2 X 1073 SI units). The spherical glass beads had
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diameter 2a = 68.5 um, with 95% of the particles in
the range 63-74 um. In the experiments, the particle
Reynolds number (Re = Vyaps/7n) was less than 0.1,
while Brownian motion was negligible (kT /67 na’Vy <
1077).

Figure 1 shows a typical concentration profile C(x)
and its gradient 9C/dx, for a flow rate corresponding
to an average concentration of Cy ~ 22%. The profile
consists of two parts, a top front of extent L, where
the concentration increases from 0 to nearly Cjp, and
a long tail where the concentration is nearly constant
(~Cp). As expected, the bulk of the bed is uniform
at Cy. Using different flow rates ¢, we can determine
the relation U(C). In agreement with previous authors
[6,9], we find the result U(C) = Vo(1 — C)? with p ~
5.0 = 0.2. Subsequently, using the measured values of C
and 9C/dx, we can deduce the hydrodynamic coefficient
D(C) from (3). Figure 2 is a plot of the normalized
coefficient D(C)/aU(C) (filled squares). It must be noted
that the smaller the flow rate, the sharper the front, making
the measurements more difficult. Such a sharpening is
expected from an inspection of Eq. (3): For a fixed flow
rate ¢ = U(Cp), the maximum gradient is of the order
Cy/L, or writing D(C) = naU(C), then L ~ na/Cy (n ~
50). For Cy = 10%, L is of the order of 2 cm. Thus,
larger concentrations require the design of a different
experimental procedure that yields larger front widths.

In the following, we shall take advantage of both sedi-
menting suspension and fluidized bed features: The bed
provides a steady homogeneous suspension in its bulk; re-
ducing the flow rate abruptly from ¢; = U(Cy) to g2 =
U(C), a relative sedimentation is expected to occur,
from C; to C, (C; < C,), with a front propagating from
bottom to top. As the settling velocity U(C) is a de-
creasing function of concentration, smaller concentrations
fall faster than larger ones, leading to a sharp (self-
sharpening [14]) shock front. Because self-sharpening
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FIG. 1. Concentration (M) and concentration gradient ([J)
versus vertical position x along the fluidized bed (bottom of
the bed is at the right).
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FIG. 2. Concentration dependence of the normalized hydrody- X (em)

namic dispersion coefficient D(C)/aU(C): from the steady state
concentration profile, Fig. 1 (W), the sedimenting stationary top
front (OJ), and from the stationary propagating sedimentation
fronts, Fig. 3 (@).

and hydrodynamic dispersion have opposing effects, this
leads to a stabilized dispersed profile which propagates
at a constant velocity V, without changing its shape
[note that Eq. (2) is a Burger’s type equation [10,15]].
We can obtain traveling wave solutions of Eq. (2) of
the form C(X), X = x — V,t, where C(X) is the solu-
tion of C[U(C) — ¢ — V] = D(C)aC/dX + A. The two
constants A and V; are determined by the far-field con-
ditions, where the concentration tends to C; and C,, re-
spectively, and the concentration gradients vanish. Thus,
Vs = Ci(q2 — q1)/(C>, — C), while the stationary profile
follows from

(C; = C1)D(C)aC /X = (C; — CO)[F(C) — F(C))]
+ (C — C)[F(C) — F(Cy)],

)

where we denoted F(C) = CU(C). Note that in such
a relative sedimentation the front width scales as L ~
na/(C, — Cy), showing that we can choose the appro-
priate width provided that self-sharpening still occurs
[10,15]. As particles slow down across the front, ad-
ditional phenomena such as inertia and particle velocity
gradient come into play [4,6]. In the following, high-
concentration data analysis required us to take into ac-
count particle viscosity effects, a complete description of
which will be postponed until a forthcoming paper. For
example, in the experiment, if we reduce the flow rate,
the previous steady state profile propagates, stationary,
but with a slightly different shape indicating an increase
.of the dispersion coefficient, related most likely, to inertia
effects (in Fig. 2, open squares are above filled squares).
Figure 3 shows the concentration variation as a function
of time, versus the variable X, at two different positions
in the bed for an abrupt decrease of the flow rate from
g1 to g2, corresponding to C; ~ 15% and C; ~ 33%. It
is seen that the shape of the profiles is identical at the

FIG. 3. Time evolution of profiles (concentration versus rela-
tive space X = x — V,1) at two positions in the bed, (@) x; =
10 and ((J) x, = 13 cm, from the bottom, corresponding to an
abrupt decrease of the flow rate: The concentration shapes are
translationally invariant and correspond to a stationary propa-
gating sedimentation front.

two different locations, indicating a traveling front, the
velocity of which was determined to be constant and
its value in agreement with the above prediction. This
is the first observation of a stationary propagating front
in a sedimenting suspension. Moreover, the equilibrium
character of this stationary front can be tested: Instead
of an abrupt jump we decrease the flow rate with a ramp
leading to an apparent concentration profile width A; if
A is smaller than the stationary front width L, the front
spreads upward until it reaches the L value, whereas for
A larger than L, the front sharpens upward to L. Using
the same procedure as above, but using Eq. (4) now, we
can measure the diffusion coefficient, whose values we
plot in Fig. 2 (filled circles). In the overlapping region
both experimental methods give D values in reasonable
agreement. Our data clearly show that D(C)/aU(C)
increases roughly linearly with the volume fraction up
to 15% and is almost constant in the range 15-30 %; it
vanishes when the concentration approaches the packing
one (~60%). The scattering of each data set leads to
an overall accuracy of 10% in D, but we have not used
any kind of data fit to derive the concentration gradient
(Fig. 1). Note that the D determination is controlled
by the knowledge of not only the flux F(C), but its
derivatives. Thus for concentration jumps around a
concentration of 35%, the D determination is not very
precise but the trend is there. Large concentrations, as
well as the very low ones, will require more experimental
effort. 'We point out that the low concentration values
of D are almost three times as large as those previously
determined from sedimentation front broadening [2,7,10].
And although in our experiments the Reynolds number
(0.1) is larger than that in the previous determinations
(1073), the normalized dispersion coefficient remains
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the same when it is decreased, indicating that viscous
forces are dominating. The values found are twenty
times larger than those reported [3,8,9], based on the
velocity fluctuations of a single particle or of the whole
suspension [6]. This supports the contention that the
latter measurements only capture the self-diffusion part
of hydrodynamic dispersion.

Using an acoustic technique, we have measured the
steady state concentration profile of a liquid-fluidized
bed of monodisperse noncolloidal particles. Extending
Einstein’s argument on the derivation of the diffusion
coefficient of a colloidal dispersion, we have measured the
hydrodynamic dispersion coefficient of this noncolloidal
suspension. To reach a relatively large concentration
range we have used our fluidized bed in a relative
sedimentation regime and have observed propagating
sedimentation fronts and traveling waves inside this bed.
These two techniques allow for controlling the front width
and also for determining the concentration dependence
of the hydrodynamic dispersion coefficient over a large
range of concentration.
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