
Accurate determina ion of the sedimentation flux of concentrated 
suspensions 

J. Martin, N. Rakotomalala, and D. Salin 
Laboratoire Fluides Automatique et Systimes Thermiques, Batiment 502, Campus Universitaire, 
91405 Orsay Cedex, France 

(Received 4 April 1995; accepted 31 May 1995) 

Flow rate jumps are used to generate propagating concentration variations in a counterflow 
stabilized suspension (a liquid fluidized bed). An acoustic technique is used to measure accurately 
the resulting concentration profiles through the bed. Depending on the experimental conditions, we 
have observed self-sharpening, or/and self-spreading concentration fronts. Our data are analyzed in 
the framework of Kynch’s theory, providing an accurate determination of the sedimentation flux 
[CV(C); U(C) is the hindered sedimentation velocity of the suspension] and its derivatives in the 
concentration range 30%-60%. In the vicinity of the packing concentration, controlling the flow 
rate has ahowed us to increase the maximum packing up to 60%. 0 1995 American Institute of 
Physics. 

Sedimentation of noncolloidal suspensions has been for- 
merly investigated by Kynch,’ leading to the sedimentation 
velocity, U(C) = V,h( C), where V. is the Stokes settling 
velocity of a single particle, C, the volume fraction, and 
h( C), the concentration-dependent settling function, ac- 
counting for hindrance due to backflow phenomena.2 While 
the low concentration regime is readily resolved, with rea- 
sonable agreement between theory’ and experiments,3 the 
high concentration regime is still a theoretical challenge.4 
Experimental investigations at larger concentrations are more 
or less in reasonable agreement with the empirical relation of 
Richardson-Zaki,5 h(C) = ( 1 - C)p, where p is an adjustable 
parameter that depends on the Reynolds number (p - 5.5 at 
low Re), and most likely on the residual polydispersity of the 
nearly monodisperse suspension. Such a routinely used rela- 
tion is usually acceptable in most applications, even if it does 
not perfectly match the low concentration prediction. Indeed, 
the lack of accuracy of this determination appears when ad- 
dressing the two issues of front propagation in 
suspensionP8 and fluidized bed stability,g.‘O which require a 
precise determination of not only the sedimentation flux, 
I;(C) = CU( C), but also of its derivatives. A rapid inspec- 
tion of F(C) shows that flux variations in the range 40%- 
60% are very close to a straight line. Therefore, accurate 
measurements are needed in order to determine curvature 
and inflection. In order to avoid the sedimentation problem 
inherent to achieving a homogeneous suspension, we use, 
once again,‘-l2 a liquid fluidized bed as a counterflow stabi- 
lized suspension, which provides a reproducible stirred sus- 
pension stationary in the laboratory frame of reference (note 
that there is some size segregation that leads to a small and 
therefore negligible concentration gradient along the bed). 
Monitoring the counterflow allows to control the relative 
sedimentation of the suspension and to propagate concentra- 
tion jumps throughout the bed. Using an acoustic techniqueI 
to measure the shape of the concentration profile (i.e., con- 
centration variations) inside the bed, we determine, from 
Kynch’s approach, the sedimentation normalized flux f(C) 
= Ch(C) and its derivatives for concentrations up to the 
packing one. 

For a homogeneous suspension of monodisperse spheri- 
cal particles of radius a at a concentration C, the sedimenta- 
tion process is governed by the conservation of particles, 

dCl& + dJldx = 0, 0) 

where J= CVp is the particle flux and C(x,t) is the volume 
fraction. Here VP is the particle velocity (all velocities are 
algebraic quantities, the vertical direction x is oriented down- 
ward). In the absence of concentration gradients7*i3 

VP- v= U(C), ia 

where V= CVp + (1 - C) Vf is the mean velocity of the sus- 
pension and Vf is that of the fluid. For a fluidized bed at a 
counterflow rate per unit area, 4, V= - 9 in the laboratory 
frame of reference. Still omitting hydrodynamic dispersion 
effects, the response of the bed to a flow rate decrease from 
an initial value q. to 4 follows from Eq. (1): 

dx/dtl,=dF(C)ldC-q, 0) 
which gives the traveling velocity of the concentration C.r 
Depending on the shape of the sedimentation flux curve, 
F(C) =CU(C), and on the flow rate jumps, this equation 
leads to self-spreading (the traveling velocity increases with 
the concentration without conflict) or self-sharpening (cer- 
tain concentrations overtake the other, leading to a shock) of 
the concentration fronts, or to a combination of the two pro- 
cesses. Typical sketches, relevant to the bed experimental 
device, are given in Fig. 1. On each F(C) graph, the full 
straight line corresponds to the initial flux qoC, q. = U( Co), 
and the dashed one to the final flux qC. In Fig. I(aj, Kynch’s 
construction [dashed bold chord, above F(C)] leads to a 
self-spreading front, in which case, from Eq. (3), one gets the 
flux derivative between Co and C, . This sketch depicts the 
tluidized bed situation for a flow rate jump from q. down to 
the minimum fluidization flow rate qrn . Figure l(b) relates to 
the suspension sedimentation case: the equivalent final flow 
rate, 4, is zero, and the dashed bold chord lies almost below 
the flux curve, leading to a shock front at the bottom of the 
suspension. This unfortunately prevented us from a direct 
determination of the flux.” Note that a fluidized bed allows 
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FIG. 1. Schematic of the fluidized bed (a) and settling suspension (b) ex- 
perimental situations. Here F(C) is the sedimentation flux function. The full 
qoG and dashed qG straight lines correspond to the initial qa and the final q 
flow rates (q = 0, for settling). The dashed bold chord is Kynch’s construc- 
tion. In (a), the chord is above the flux curve, leading to a self-spreading 
concentration profile. In (b), the chord lies below, leading to a shock front at 
the bottom of the settling suspension. 

for scanning of the flow rate region between qm and 0, lead- 
ing to the possible occurrence of a mixed situation, where 
both self-spreading and a shock front are encountered [a 
dashed bold chord crossing F(C) at C, leads to a shock front 
between C, and a concentration given by the tangent 
construction.’ The design of the experiment is straightfor- 
ward: the best choice corresponds to Fig. l(a) with the wid- 
est concentration range, i.e., between C, and the inflection 
point of F(C). 

Experiments were performed in a column 60 cm high of 
a circular cross section (4 cm). We determine the concentra- 
tion profile by measuring variations in the sound speed in 
several cross sections along the bed.” We estimate the over- 
all accuracy in concentration measurements to be 0.1% and 
the spatial resolution to 1 mm. The liquid used is a water- 
glycerol mixture (77’2. 10T3 Pa s). The spherical glass beads 
have a diameter 2a=68.5 pm, with 95% of the particles in 
the range 63-74 pm. In the experiments, the particle Rey- 
nolds number (Rb= Uoapf/ 17) is less than 0.1. To take ad- 
vantage of the method, we choose a large concentration jump 
between -30% and the packing concentration -57%,ts but 
with different final flow rates down to zero in order to inves- 
tigate in detail the vicinity of the packing (i.e., the minimum 
fluidization velocity’). This is a definite breakthrough of the 
fluidized bed compared to a sedimentating suspension for 
which V (or qj is always zero. Figures 2 and 3 show con- 
centration profiles at different locations along the column for 
a flow rate jump from qo=0.0345 cm/s, Co-30% to 
q=O.O023 cm/s, and from qo=0.0383 cm/s to q=O.O015 
cm/s, respectively. In Fig. 2, the front profile is spreading for 
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ETG. 2. Self-spreading profiles. Concentration versus time at three different 
vertical positions (x=2, 5, and 8 cm from the bottom inlet) for a flow rate 
jump from q,=O.O345 cm/s to q=O.O023 cm/s. 

any concentration, whereas in Fig. 3, the front exhibits both 
a spreading part at low concentration and a shock front at 
larger concentration. The first experiment illustrates Fig. 
l(a), whereas the second one corresponds to a case in be- 
tween Figs. l(a) and l(b). From the three profiles (at three 
“long time” locations, which allows for neglecting hydrody- 
namic dispersion) of Fig. 2, we can determine the velocity of 
each concentration (dxldtj,), which gives the first derivative 
of the sedimentation flux. In order to get results suitable for 
comparison, we normalize the sedimentation flux by the 
Stokes velocity: f(C) = F( C)lV, = Ch( C) . Here V. is com- 
puted with the mean particle size; its value is found to agree 
with the zero-concentration value extrapolated from our sedi- 
mentation velocity data. In Fig. 4, we plot 
f’(C)=df(C)ldC vs C from our data of Figs. 2 and 3. For 
the latter dataset, the shock front is responsible for the pla- 
teau at large concentration: for all concentrations involved in 
this shock, the traveling velocity is the same and is given by 
the slope of the corresponding chord [Fig. l(b)]. In Figs. 
2-3, the slopes near maximum and minimum concentration 
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FIG. 3. Spreading and shock fronts. The same as Fig. 2, but for a jump from 
qo=0.0383 cm/s to q=o.o015 cm/s. 
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FIG. 4. Derivative, f’(C)=df(C)ldC, of the normalized sedimentation 
flux function f(C). Full squares correspond to the concentration protiles of 
Fig. 2, full circles to Fig. 3. The full lines are the Richardson-Zaki relation 
with exponents p =5.6 (top) and p =5.3 (,bottom). The dashed line is a linear 
best fit to the data. 

are difficult to determine, reducing the accuracy for these 
data. The two solid lines correspond to the Richardson-Zaki 
relation’ with the exponents p =5.6 and p=5.3 for the top 
and bottom curves, respectively. Even though such a relation 
is in good agreement with our data, we note that in this 
concentration range (30%-60%) the first derivative of the 
tlux is mainly linear in C (dashed straight line of Fig. 4), and 
hence the second derivative is constant (positive: upward 
curvature). In Fig. 5, we plot the normalized sedimentation 
flux, f(C), versus the concentration. Squares correspond to 
data for which h(C) was determined from the bed expansion 
(its height); the nearly uniform concentration is controlled by 
acoustics. The full curve is the best fit with the Richardson- 
Zaki relation5 (exponent p=5.35; this fit Ieads to If,), while 
the dashed line is obtained through integration of our flux 
derivative curve (Fig. 4). Above 30% concentration, the data 
and the two fits are in reasonable agreement. We emphasize 
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FIG. 5. Normalized sedimentation tlux f(C) = Ch( C) versus concentration 
C. The full squares are measured from the bed expansion. The full curve is 
the Richardson-Zaki best fit to our data (r, =5.35). The dashed straight line 
is obtained from an integration of Fig. 4. 

that even though Richardson-Zaki relation is obtained from 
a data fit to U(C), this relation is robust when compared to 
the data of the flux function and its derivatives. One can 
observe that, in our dataset, we do get concentrations up to 
nearly 60%. Indeed, these high values of packing concentra- 
tions are obtained in the following experimental conditions. 
For large initial flow rates corresponding to low initial con- 
centration, switching off the flow rate, leads to a classical 
(well-stirred) sedimentation, and we get a packing concen- 
tration of C,-5746, in agreement with previous 
experiments.‘5 Starting with large concentrations (above 
50%) enhances the packing concentration slightly. The larg- 
est packing concentrations are achieved when tuning the 
flow rate down to the minimum fluidization value; these high 
values remain when switching the flow rate. Such a system- 
atic effect has not been previously noticed in settling suspen- 
sion, when increasing the initial concentration. The closer the 
initial concentration is to the packing one, the larger the final 
packing value: the suspension, as we reduce the flow rate, is 
able to pack itself in a denser arrangement. 

Analyzing the time and space concentration response of 
a stable fluidized bed to flow rate jumps allows for an accu- 
rate determination of the derivative of the suspension tlux 
function at large concentration, and especially in the vicinity 
of the packing concentration. Our results are consistent with 
the Richardson-Zaki relation, with p=5.35 at a low Rey- 
nolds number, but also with an almost linear fit for df(C)l 
dC, leading to a nearly constant upward curvature of the flux 
between 40% and 60%. In the procedure of approaching the 
minimum fluidization flow rate,’ we have observed a net in- 
crease of the packing concentration up to 60%. 
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