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Hydrodynamic dispersion is responsible for the spreading of the sedimentation front even in a 
noncolloidal monodisperse suspension. Measurements of the broadening of the top front observed 
during sedimentation have been used in determining the hydrodynamic dispersion coefficient. 
Hindered settling has an opposed effect and leads to the self-sharpening of the front. Both effects 
have to be taken into account simultaneously. This Letter provides a simple, but complete 
determination of the space and time concentration profile and shows that the final front should 
consist of a steady-shape profile propagating at constant velocity. With such a solution, the data of 
Davis et al. [AIChE J. 34, 123 (1988); J. Fluid Mech. 196, 107 (1988)] give hydrodynamic 
dispersion coefficient five times larger than their former analysis, in agreement with Lee et al. 
[Phys. Fluids A 4, 2601 (1992)]. 

In a noncolloidal suspension of monodisperse sediment- 
ing particles, the motion of an individual particle is influ- 
enced by the relative positions and velocities of surrounding 
particles. Thus the velocity of an individual particle varies 
around the mean settling velocity U(C) of the suspension of 
concentration C. This so-called hydrodynamic dispersion 
phenomenon’-’ has stimulated both experimental6T7 and 
theoretica14’5’8 works. Experimental determination of the re- 
lated hydrodynamic dispersion coefficient D(C) has been 
performed in two directions: The first deals with tracking the 
velocity fluctuations of either a tagged particle settling 
among and being part of the homogeneous suspension3 or the 
whole suspensior$ the variance of these fluctuations gives 
D. The other one takes advantage of the large concentration 
gradient occurring at the top of a sedimenting suspension, 
i.e., the sedimenting shock front spreads due to the disper- 
sion process.‘77 We will address here the applicability of the 
latter method. The basic equation governing the sedimenta- 
tion process is a convection-diffusion equation, 

dC d [W(C)] 
dt+------= 

a[D(C)X/ax] 
8X dx ’ 

where x is the vertical coordinate, C(x,t) the space and time 
dependent concentration, Q = CU(C) the particle flux. The 
left-hand side (LHS) of (1) is the hyperbolic convection 
equation accounting for the nondiffusive sedimentation pro- 
cess. As U(C) is a decreasing function of C, this LHS leads 
to a shock frontg’rO (ki nematic wave) propagating with a ve- 
locity I~.~=U(C,); the sharp front separates the homoge- 
neous suspension of initial concentration Co from the clear 

fluid (C= 0) at the top. Hydrodynamic dispersion modifies 
the above picture and spreads out the front. One way to 
analyze this effect is to superimpose the diffusion on the 
sharp front. In other words, the spreading is measured from 
the broadening of the shock front. This is analogous to re- 
placing the LHS of (1) by Xl&+ V,$ Xl&, the solution of 
which is well known, 

C(x,t)=Co{l-erfl(x-V,t)/dm]}1)/2, i2) 

where a constant dispersion coefficient is assumed and con- 
centrations at the boundaries are equal to 0 and Co for 
x=+03 and x=-m, respectively. Davis et aL2 used this ap- 
proach to measure D. Lee et a1.7 pointed out that self- 
sharpening and dispersion have to be taken into account si- 
multaneously [Eq. (1) is not linear]. They determined the 
derivatives involved in Eq. (1) directly from their experi- 
ments and obtained dispersion coefficients five times larger 
than Davis et al2 Lee et al. explained the discrepancy by the 
improper use of Eq. (2). We propose a complete analysis of 
the front behavior, which reconciles the two authors and 
leads to the front profile, i.e., the space and time dependence 
of the concentration along the sedimentation column. 

Basically, self-sharpening and dispersion broadening 
have opposing effects on the front, thus they can balance 
each other, leading to a stabilized dispersed profile: After a 
transient, the front profile will propagate with a constant ve- 
locity V,, without changing its shape. Indeed this remark is 
straightforward if we note that Eq. (1) is, for constant D and 
quadratic particle flux Q(C), a Burger’s type equation,” the 
solution of which is a stationary profile in a reference frame 
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traveling at the constant velocity V,. The physical interpre- 
tation of this wave point of view is that in the moving frame 
of reference, there is a dynamic equilibrium: the net convec- 
tive flux exactly balances the dispersion flux. This was basi- 
cally Einstein’s argument to derive the diffusion coefficient 
of a colloidal suspension.” 

For any flux, provided it leads to self-sharpening,g we 
can look for traveling solutions of Eq. (1) of the form C(X), 
x=x- v,t, 

c[u(cj-v,]-D(c) $+A=o. (3) 

The constant terms A and V, are determined by the boundary 
conditions at +m and -a, where the concentration tends to 
C? and C, and the concentration gradients vanish, giving 

vs=~c,~~c,)-c,ucc,jI~(c,-c,j, (4) 

A=C2C1[U(C2)-U(Cl)]/(C,-C,). (5) 

For the top front between clear fluid (C2=Oj and an initially 
homogeneous suspension of concentration C, =Ca, we get 
A = 0 and V,- U(C,), the classical shock fronttof Kynch 
approach.g Moreover Eq. (3) is integrable, leading to the sta- 
tionary front shape 

x- v,t= 
I 

D(C)/(C[U(C)-VJ+A}dC. (6) 

This equation can be easily computed, provided D(C) and 
U(C) are known. But this traveling steady state occurs only 
after a transient time, during which the front shape is time 
dependent (initial shape: at t = 0, straight jump at x = 0, from 
C2=0 for x>O to C=Cr for x40). 

Indeed, in real experiments, in order to determine the 
dispersion coefficient, only the early stage of the sedimenta- 
tion process requires being analyzed because of the residual 
polydispersity of the suspension.3’7 Thus the transient issue 
has to be considered. The full problem is computable for any 
type of flux Q. Moreover there is an analytical solution of 
the problem if a quadratic flux is assumed; in this case, Eq. 
(1) becomes a Burger’s equation” which captures the essen- 
tial features of the problem. Writing this flux, 
Q = aC”+ PC, the propagating velocity of the concentration 
C, W(C) = 2 crC + p, is linear in C. The velocities corre- 
sponding to the boundary concentrations are w 1 = W(C, j 
and w2= W(C,). The constant drift velocity of the profile 
Vs= (w, + w&L?, is in agreement with the general case [Eq. 
(4)]. The profile, C(x,t>, is given for all times by 

C(X,t)=Cr+(Cz-C,)/{l+h(x,t) 

xexp[(w,-wl)(x-V,tj/2Dl}, (7) 
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FIG. 1. Reduced concentration C(x,t)/C, versus the reduced position X at 
different reduced times T= 100, 200, 300, 400. Solid lines are the transient 
solution [Eq. (7)], dashed lines are the stationary solution [Eq. @)I. 

For large enough time and a given ratio xlt in the range 
w,<x/t<w,, h(x,t) tends to unity and the solution ap- 
proaches the steady-shape profile propagating at the constant 
drift velocity V, 

C(X)=C1+(C2-C1)/{l+exp[(wz-w,)X/2D]}. (9) 

This solution is a particular case of the general one [Eq. (6)]. 
We can give a quantitative criterion to decide under which 
conditions the stationary solution applies. At large t, the ar- 
guments of the error functions are small and we can develop 
the function h - 1 -t- 2Xm. The stationary front occurs 
for (wa- w,)X/2D between -1 and fl; then station- 
ary profile requires large t compared to t, 
=16D/ [n-(w2-wt)]‘. The profiles described by (7) and 
(9) are almost S shaped (Fig. 1). This shape is often mistaken 
for an error function shape [Eq. (2)]. 

The application of the above to our problem is straight- 
forward if we restrict our attention to the low concentration 
limit and a constant diffusion coefficient D. Experimental 
data53T7 satisfied the latter condition, except in the very close 
vicinity of C=O (C<2%), so only the near-zero part of the 
profile is questionable. The former assumption permits a first 
order approximation in C, of the expression 
U(C) =-Vo( 1 - C)p- Vo( 1 -PC), where V, is the Stokes 
settling velocity of a single particle. Hence, the particle flux 
is quadratic. Initially, the suspension is homogeneous at con- 
centration Co, then C1 = Ca and CZ= 0, w1 = V,( 1 - 2pCa) 
and w2= V,; the drift velocity is Vs= U(C,). 

Let us plot the protiles in the range of values correspond- 
ing to the measurements of Lee et aL7 (Figs. 2 and 3 of Ref. 
7). We take an initial concentration Co = 1 O%, then 
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FIG. 2. Reduced concentration profile versus X at different times T= 100, 
200,300. Solid lines transient solution [Eq. (7)]; dashed lines, best fit to the 
exact solution with the error function solution with the apparent dispersion 
coefficient D,,. 
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V,- U(Ca) = Vo/2, for p = 5 and a constant dispersion coef- 
ficient D = 22aU(Co) (a, spherical particle radius). Using 
the reduced variables, X=x/a, T= V,t/a, the typical values 
corresponding to the experiment (t =332s, a =68 ,um, 
Y”=io-2 cm/s, x-2 cm) are in the range X-300, 
T-200. We first analyze the transition from the initial sharp 
concentration jump to the stationary profile; the solid lines in 
Fig. 1 are the solutions [Eq. (7)] [C(x,t)lCa vs X] for times 
T= 100, 200, 300, 400; the dashed lines are the correspond- 
ing stationary solutions [Eq. (9)]. This plot shows that an 
invariant shape, traveling at constant velocity V,, is nearly 
achieved for time T=400, about twice the experimental 
value (T-200). Hence, the full transient solution [Eq. (7)] is 
required as expected from the above criterion (TS T,, 
T,- 50). Therefore, in a classical sedimentation experiment, 
the stationary profile is not generally reached before polydis- 
persity effects become important and hence the S shape of 
the profile spreads as time goes on. Following the analysis of 
Davis et al.,” a fit of the broadening of this S shape profile 
with an error function [Eq. (2)] can be tested. The solid lines 
of Fig. 2 are the full transient solutions of Eq. (7) as in Fig. 
1, for T=lOO, 200, 300, the dashed lines are the error func- 
tion [Eq. (2)] best fit to the transient solutions. Surprisingly, 
the agreement is quite perfect, for one reduced time (T 
=200), but the apparent diffusion coefficient needed, 
D,,=4.2aU(Co), is nearly five times smaller than the 
above value [D=22aU(Ce)]. Hence, it is straightforward 
to reconcile both data analysis by Davis et al. and Lee et al. 
Davies et al. used Eq. (2) and obtained D,. Lee et al. 
evaded the problem deriving the partial derivatives involved 
in the convection-diffusion equation [Eq. (l)] directly from 
their experimental data: In this way they determined the 
“correct” D. If we were to fit the experimental data of Fig. 3 
of Lee et al., for t=332 s with an error function, we would 
find a value of D,,=4aU(Co). As a Iast comment, due to 
polydispersity, it is rather difficult to observe this stationary 
traveling profile in a sedimenting suspension. Observation of 
this front, as well as the determination of the dispersion co- 
efficient, is easier in a fluidized bed where the profile is at 
steady state.” 

We have shown that when self-sharpening and hydrody- 
namic dispersion are taken into account in the sedimentation 
of a monodisperse suspension of noncolloidal particles, the 
resulting sedimentation profile is a stationary front shape 
propagating with a constant velocity. The early stage of the 
transient regime has been analyzed in the framework of a 
Burger’s equation and is found to provide a suitable means to 
measure the hydrodynamic coefficient. 
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