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Gravitational instability of miscible fluids in a Hele-Shaw cell

J. Martin,2 N. Rakotomalala, and D. Salin ;
Laboratoire Fluides Automatique et Sysies Thermiques, Université®. et M. Curie and Paris Sud,
C.N.R.S. (UMR 7608), Binent 502, Campus Universitaire, 91405 Orsay Cedex, France

(Received 28 February 2001; accepted 30 October 2001

We revisit the Rayleigh—Taylor instability when the two fluids are miscible and in the geometry of

a Hele-Shaw cell. We provide analytical dispersion relations for the particular cases of either a sharp
front between the two fluids or of a uniform density gradient stratification and for various fluid flow
models, including an unbounded geometry, a two-dimensional gap-averaged Navier—Stokes—Darcy
equation, and an effective porous medium. The results are compared to three-dimensional lattice
BGK simulations, based on which the relevance of the various models in different wavelength
regimes is discussed. @002 American Institute of Physic§DOI: 10.1063/1.1431245

When a denser fluid rests on top of a lighter one in a  Consider a base state consisting of a mixture of two
gravitational field, the interface between the fluids is un-miscible fluids of concentratio@(z) varying along the up-
stable. This so-called Rayleigh—Tayl@RT) instability' has ~ ward oriented vertical coordinate This gives rise to a cor-
been extensively studied for the case of two immiscible fluresponding density profilep,(z)=po+Ap(C(z)—0.5),
ids. There, viscosity and interfacial tension act as stabilizingvhereAp andp, denote the difference and the average of the
factors. The instability has also been analyzed in the case efensities of the two miscible fluids, respectively. The kine-
miscible fluids in porous media geometrfe miscible flu-  matic viscosity v and the molecular diffusivityD are as-
ids, the stabilizing role of interfacial tension is played by sumed to be constant in the mixture. In the case of laterally
molecular diffusion. A reduced density contrast, as a result ofinbounded geometries, a linear stability analysis of such a
a mixing zone between the fluids, also acts to mitigate th@ase state was obtained by Batchelor and Nit§ansing a
instability>* The present Brief Communication addresses theconvection-diffusion equation(CDE), the Navier—Stokes
RT instability between miscible fluids in a Hele-Shaw cell. €quations under the Boussinesq approximatitie density
This geometry, consisting of two parallel plates separatedariations affect only the gravitational forceand a quasi-
by a small gap of thickneds is routinely used in laboratory static base state approximation. In the absence of vertical
experiments. Our objective is to compare the linear stabiliPoundaries, the Fourier components of the disturbance with
predictions of various models describing miscible flow in respect to the horizontal coordinatare independent. There-
the Hele-Shaw cell, with three-dimensioné3D) lattice fore for a normal mode of wave vectérin the horizontal
Bhatnagar—Gross—Kroo8GK) simulation§ to discuss the direction and a corresponding growth ratgx), the vertical
relevance of the various models. In particular, we focus oY€lOCity in the perturbed state is(x,z,t) = W(z)e” "™,
the use of the averaged two-dimensior@D) Navier— Wlth analogous'expressmns for' the denglty, pressure, and
Stokes—DarcyNSD) equation, which allows us to unify the honzqntal velocity. After calculations one finds 'Fhat the ver-
linear stability analyses in unbounded geometries, poroufic@l disturbanceN(z) obeys the following equation:
media and Hele-Shaw cells. Based on the RT problem ing/p +k2—d,,)(o/v+k?—d,,)(k?—d,,)W(2)
unbounded geometriéswe define a miscible Rayleigh—

Taylor (MRT) lengthL, involving buoyancy, and viscous and =(gk?/Dvpo) Ap(dCldz) W(2), 1)

molecular diffusion, to normalize length scales. The Darcywhere is the gravity acceleration. For a given concentration
model for the Hele-Shaw cell description is valid when the g g y : 9

cell aap is small compared to this characteristic lendth profile C(z), the dispersion relationr(k) can be obtained by
gap 1 P ' ISt gt ( various methods, including matched asymptotic expansions
<L), whereas the unbounded geometry case is obtained

¥r the vari i fth ber. Taking th -
the opposite limit i>L). Use of the NSD approach allows fihe varous regimes of e wave numpoer. faing the com

- : ~~ monly used S-shape stratification of width
us to recover these two limits, and is shown to also give a

good approximation in the intermediate range of cell thick-  ¢(z)= 1Erfc(z/e), 2
nesses. Results for the analytical dispersion relations are

given for two limiting cases involving a uniform density gra- allows us to treat uniformly the steplike density profile (
dient stratification or a sharp front between the two fluids.—0) and the uniform density gradient stratificatioe (
This could find applications in chemical wave fronts, where— ) cases. To convert E¢l) to dimensionless notation, we
autocatalytic reactions create a mixing zone of a very smalfhoose the characteristic length and time as the following:

extension compared to the characteristic lerfgth. L=(2porDIApg)® and T=L%\sD, 3)

aAuthor to whom correspondence should be addressed. Electronic maite S_e|ECti0n of which emph_aSiZ_eS the symmetric role playe_d
martin@fast.u-psud.fr by viscous and molecular diffusions. We note that for classi-
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cal fluids, the MRT lengthL, will vary typically between
100 um and 1 mm. This leads to dimensionless wave vector
g=kL and growth ratsm= o T, based on which Eq1) be-
comes

08—

(0p—dz2) (05— dz2) (9 — dzz)W(Z) = 2g%(d C/dZ) W(sz
4

Here,Z=z/L and

g5=0*+nySc and q’=g?+n/\Sc, (5)

where Sc=v/D is the Schmidt number. We point out that
the normalized cutoff wave vectay: of the neutral mode
(n=0) is independent 08:. Two cases of Eq(4) can be
solved analytically, the steplike base state=(Q) and the ob— )
case of a uniform density gradieht. ’

The step case yields an analytical dispersion rel&tion
given by

0.6

(v

FIG. 1. Plot of the normalized cutoff wave vectaz=kcL vs (1b)Y4,
qVqD(qV+ qD)(qV+ q)(q+ qD) =q(g,+ap+ q)_ (6) for the RT instability. Herepb=e/L is the normalized mixing width, using
L=(2povD/Apg)*. The results(crosses are humerical solutions of the

For the case of a uniform density gradient, the dispersiorfigenvalue problem, in the case of unbounded fi{iitss. (4) and(5)]. The
relation was established in Ref. 4. In the case of a S-shap‘é‘fhed lines correspond to the limits of step concentration prdfited),

. . . . .. Where qco=(3/8)"", and that of a constant gradient, whemg; ..
proflle, thg latter is also obtame_d in t_he I|_m|'F o.f large NOr- _(2//b)¥. The full line curve is a fit to the data usingc
malized width o= (e/L)> 1. Identifying in this limit the uni-  =[1/(qc ) 3+ (qc..) “5]]¥% The inset displays the normalized dispersion
form gradiem with Ap(d C/d Z)(Z=O)= (Ap/ \/;e), one relation,n=cT vs q=KkL, for the RT instability in unbounded geometries.
finds Here, T=L2/\/vD. The curves are numerical solutions of the eigenvalue

problem for two different values of the Schmidt numb8g= v/D =500
2.2
azdp=2/\mb. (7)

(full line) and 1000(dashed ling and for a normalized mixing widttp
=10. The circles correspond to 2D lattice BGK simulatiog € 500).

The general case requires solution of the full dispersion re-

lation [Eqg. (4)]. We computed the eigenvalue problem using

a numerical method for the case of a finite width. Results for

b=10 and forS;=500 and 1000, are plotted in the inset of

Fig. 1. Also shown by open circles are corresponding 2D o 2ian o
results from latice BGK simulatiofisperformed atSe wherek=h</12 is the permeability and all vectors are two-

—500. The latter are in good agreement with the linear Sta‘(_dlmensmnal. As the nonlinear term is negligible in our case,

bility analysis. A description of the simulations will be Eq. (8) leads to the unbounded geometry case for—10

briefly described in a later section. Comparison of the two(th'Ck celly, and to the classical Darcy's law of a porous

curves shows that the maximum growth rate does not varme‘j'um for«—0 (thin cells.

y . . .
drastically with the Schmidt number, in the range of typical We performed a I|ne_ar stability analysis of E@) by
orking along the same lines as above, namely using a CDE,

fluid Schmidt numbers. For completeness, we also note th:%{ﬁe Boussinesq approximation and a frozen-state approxima-

the cutoff wave vectorgc~0.53 is lower than the corre- . . .
sponding values e o~ 0.72 andg. ..~ 0.58 obtained from tion for the base-state concentration. It was found that it
c.0 C leads to the same normalized differential equafigg. (4)]

Egs.(6) and(7) corresponding to the two asymptotic regimes . dispersion relatiorf€gs. (6) and (7)], in the asymptotic

>

Vv

ot

+ 2 0T)V=
g( . ) =

VP . V.
——+vAV——V+g, (8
p K

(b=0 andb—=). The range of validity of the latter two

regimes can be assessed in Fig. 1, which shows the cuto

wave vectom plotted versus (b)Y (crosses The dashed

lines correspond to the zero width and uniform gradient lim-

its, gco=(3/8)Y® and qc.=(2/Nmb)Y4 respectively,

@gimesbﬂo andb— <, but now with

n

9
5 ©)

1
dp=0°+nVSc and gi=g’+ +

which are expected to be recovered in the respective limitslere, the finite gap of the cell is contained in the normalized

b<1 andb>1. Figure 1 shows that in practice, these two
limits hold for b<<0.5 andb> 20, respectively. An empirical

permeabilityK, which is proportional to the square of the
ratio of the geometric length and the fluid-dependent MRT

fit (full line) of the numerical data is also given to describelengthL: K= /L% =h?/12L2.

the crossover between the two regimes.

Model 2 In a recent paper it was shoWthat accelera-

Describing the flow in a Hele-Shaw cell requires aver-tion and viscous dissipation induce some departure of the
aging the Navier—Stokes equations along the gap of the celjap velocity profile from the parabolic. The work in Ref. 9
In this paper, we will consider two different models. accounts for first-order corrections to the Poiseuille flow, un-

Model 1 Averaging the assumed parabolic profile acrossder small 2D acceleration and viscous dissipation. The re-
the gap has led to the following 2D NSD equatfon: sulting 2D equation reads as follows:
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6V 54 . . . VP 6 _ wv._
= —+ =(V-V)V=——+ —-vAV—-—=V+g. (10 L
p 5 K 0.08
It is interesting to note that model 2 also leads to the correct i
porous media limit,k—0 (long wave limit, LW), but does i
not allow to recover the Navier—Stokes equation foe20. 0.06
Clearly, the linear stability analysis of the RT problem i
on the basis of this equation will lead to a similar equation as [
before, with the exception of a correction factor 5/6. We find 0.04
the equation I

(05— dz2) (62— dz2) (92— dz) W(Z) = 22qX(dC/dZ)W(Z),
(12)

0.02

where

5 n
2=0g%+n and q’=q%+ — + —. 12
ap=0?+nySc SRl T S (12)
The dispersion relations in the asymptotic limits=0 and F_IG. 2._ Plot of the dis;_)_ersion2 relatziorm, vs g, in a Hele-Shaw cell of
b—soo, respectively, are given by Eq€6) and(7), modified ﬂwpensmnless permeabllmﬁ:h /12_ .:40.33, for_SC:500,b:0. Here, .
' N is the gap thickness. The full line is the solution to the NSD equation
by the factor 5/6 on the right-hand side. (model 9, the dotted-dashed line is derived from the first order correction
Stability predictions based on these two models will be(Ref. 9 to the NSD(model 2, the short-dashed line corresponds to an
compared below to the results of lattice BKG simulations.&ffective porous med'iurqu.(14)], y\(hile the long-dashed line corresponds
. . . to the unbounded fluid case, modified to correct the wave nufitzpi(1)].
Before doing so, however, we also provide the CorreSpondmghe circles are results of 3D lattice BGK simulations.
stability calculations for an effective porous medium.
The Hele-Shaw cell geometry is often taken to model
porous media flows. This analogy comes from the fact that
the gap-averaged velocifassuming a parabolic Poiseuille- plane of the cell(x-direction). The equations simulated are
like profile across the gapeads to a 2D Darcy'’s law, where the CDE of a tracefthe concentration of the mixture of the
the 2D velocity is proportional to the pressure dfopis-  two miscible fluid$ with a diffusion coefficienD, subject to
placements in porous media were addressed mainly in thine Navier—Stokes equations, with a kinematic viscosit
context of viscous fingering; new phenomenology appeardody force proportional to the concentration is applied to
when viscosity and density contrasts act togeth€r'In the  model the gravity force under the Boussinesq approximation.
present case of buoyancy instability without viscosity con-Using as initial condition a frozen base state, where the con-
trast, the pure porous medium case is obtained from @gs. centration along the vertical directianis steplike, or varies
and(9) of model 1[or Eqgs.(11) and(12) of model 2 in the  according to Eq(2), we follow the time evolution, folD
limit K—0 (and under the assumption of a frozen base—=10 * andS.=500, of a sine perturbation of wavelength
statg. We then obtain In the 2D simulations we varied the normalized wave vector
2 P _ 2 g by varying the characteristic length(through the gravita-
(A~ dz2)(q"~dzz)W(Z2)=2Kg" (dC/dZ)W(Z). (13 tional force, while keeping as constant the lattice size
For a step concentration profile, the dispersion relation an@56x64 and the wavelength=64. In the 3D simulations,
cutoff wave vectomc are given by the lateral dimension of the lattigequal to\) was varied
from 24 to 264, and the choice of the normalized permeabil-

(Go*+@)do=aK,  qe=K/2 (149 ity, K=1 and 40.33, and of the gap thicknéséset to 7 and
and for a uniform density gradient, by 44 for the smaller and the largé&t, respectively yielded a
q2D=2K/\/;B, qé=2K/\/;b. (15) MRT lengthL=h/\/12K of the order of 2.

To compare the results of the different linear stability
As Hele-Shaw cell experiments are routinely used to mimicanalyses with the 3D lattice BKG simulations, we first chose
porous media flows, it is of practical interest to delineate thean intermediate regime between the effective porous medium
range of physical parameters for which the porous mediand the unbounded medium regimes, namely a gap thickness
regime holds in the range of unstable wave lengths. As thi® such that its permeability i =h?/12.2=40.33, and a
regime is a LW approximatiofii.e., g°K<1), the required Schmidt number ofS.=500. Plotted in Fig. 2 are results
condition isq2K <1, namelyK <1 andK< b in the limit-  corresponding to the step profile limib=0. The full line
ing casedh<1 andb>1, respectively. denotes the result from the analysis based on model 1, the
The results from the stability analyses of the variousdotted—dashed line corresponds to model 2, the short-dashed
models were compared to lattice BGK simulations. We usedine corresponds to the porous medium ddse. (14)], while
models which are 2D with nine directions for the case ofthe long-dashed line is the 3D unbounded solufigg. (1)],
unbounded fluids, and 3D with 19 directions for the Hele-modified to account for the wave vector in the gap of the cell
Shaw casé,and with periodic boundary conditions in the (namely wherek is replaced by\k?—(#/h)?). The open
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same dispersion curves f&r<0.2. The valu&K=0.2 corre-
sponds to a gap sizeof the order ofL. Simulations have not
been performed in this range &f values, as they are more
computing-time demanding@lue to smaller growth rates and

/ Y 1 wave numbers whereas the present 2D analyses are even
more valid.

In conclusion, using the characteristic MRT lendth
=(2povD/Apg)*” has allowed us to differentiate among the
different regimes of the Rayleigh—Taylor instability of mis-
cible fluids as a function of the confinement. In particular,
% \ ] the RT instability in a Hele-Shaw cell was found to be best
described by the gap-averaged NSD model 1, which provides
a correct approximation in the whole range of wave vectors,
thus avoiding the need to handle the more complicated full
Pt ca sl Cht s plo 3D problem. We have also showed that the extension of the

mixing zone comes into play when it is of the order or
q greater tharL.. Hele-Shaw cells can be used to mimic these
instabilities in porous media, provided that the dimensionless

NN B L L L L L B B
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0.003

0.002
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FIG. 3. Plot of the dispersion relatiom vs g, in a Hele-Shaw cell of o i : : "
rm ility, K, and mixing width,b, fulfill th ndition
dimensionless permeabilitit =1, for Sc=500, b=0 (upper two curves permeability, K, and g width,b, fu the conditions

and b= /12K~ 3.46 (lower two curveg The latter case corresponds to K.<1 andK<‘/B. for b.<l andb>1, reSp_eC.tlvely' Outside

e=h. The full lines are the solutions to the NSD equatiorodel ) and the  this porous media regime, the 2D descriptitdSD, model

dashed lines correspond to an effective porous medium. The circles arg) is necessary. Such a model is expected to also find appli-

results of 30 lattice BGK simulations. cations in the context of chemical wave reaction-diffusion
fronts in Hele-Shaw cell8.
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