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Gravitational instability of miscible fluids in a Hele-Shaw cell
J. Martin,a) N. Rakotomalala, and D. Salin
Laboratoire Fluides Automatique et Syste`mes Thermiques, Universite´s P. et M. Curie and Paris Sud,
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~Received 28 February 2001; accepted 30 October 2001!

We revisit the Rayleigh–Taylor instability when the two fluids are miscible and in the geometry of
a Hele-Shaw cell. We provide analytical dispersion relations for the particular cases of either a sharp
front between the two fluids or of a uniform density gradient stratification and for various fluid flow
models, including an unbounded geometry, a two-dimensional gap-averaged Navier–Stokes–Darcy
equation, and an effective porous medium. The results are compared to three-dimensional lattice
BGK simulations, based on which the relevance of the various models in different wavelength
regimes is discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1431245#
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When a denser fluid rests on top of a lighter one in
gravitational field, the interface between the fluids is u
stable. This so-called Rayleigh–Taylor~RT! instability1 has
been extensively studied for the case of two immiscible
ids. There, viscosity and interfacial tension act as stabiliz
factors. The instability has also been analyzed in the cas
miscible fluids in porous media geometries.2 In miscible flu-
ids, the stabilizing role of interfacial tension is played
molecular diffusion. A reduced density contrast, as a resu
a mixing zone between the fluids, also acts to mitigate
instability.3,4 The present Brief Communication addresses
RT instability between miscible fluids in a Hele-Shaw ce
This geometry, consisting of two parallel plates separa
by a small gap of thicknessh, is routinely used in laboratory
experiments. Our objective is to compare the linear stab
predictions of various models describing miscible flow
the Hele-Shaw cell, with three-dimensional~3D! lattice
Bhatnagar–Gross–Krook~BGK! simulations5 to discuss the
relevance of the various models. In particular, we focus
the use of the averaged two-dimensional~2D! Navier–
Stokes–Darcy~NSD! equation, which allows us to unify th
linear stability analyses in unbounded geometries, por
media and Hele-Shaw cells. Based on the RT problem
unbounded geometries4 we define a miscible Rayleigh–
Taylor ~MRT! lengthL, involving buoyancy, and viscous an
molecular diffusion, to normalize length scales. The Da
model for the Hele-Shaw cell description is valid when t
cell gap is small compared to this characteristic lengthh
!L), whereas the unbounded geometry case is obtaine
the opposite limit (h@L). Use of the NSD approach allow
us to recover these two limits, and is shown to also giv
good approximation in the intermediate range of cell thic
nesses. Results for the analytical dispersion relations
given for two limiting cases involving a uniform density gr
dient stratification or a sharp front between the two flui
This could find applications in chemical wave fronts, whe
autocatalytic reactions create a mixing zone of a very sm
extension compared to the characteristic length.6
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Consider a base state consisting of a mixture of t
miscible fluids of concentrationC(z) varying along the up-
ward oriented vertical coordinatez. This gives rise to a cor-
responding density profiler1(z)5r01Dr(C(z)20.5),
whereDr andr0 denote the difference and the average of
densities of the two miscible fluids, respectively. The kin
matic viscosityn and the molecular diffusivityD are as-
sumed to be constant in the mixture. In the case of later
unbounded geometries, a linear stability analysis of suc
base state was obtained by Batchelor and Nitsche,4 using a
convection-diffusion equation~CDE!, the Navier–Stokes
equations under the Boussinesq approximation~the density
variations affect only the gravitational force!, and a quasi-
static base state approximation. In the absence of ver
boundaries, the Fourier components of the disturbance w
respect to the horizontal coordinatex are independent. There
fore for a normal mode of wave vectork in the horizontal
direction and a corresponding growth rates(k), the vertical
velocity in the perturbed state isw(x,z,t)5W(z)est1 ikx,
with analogous expressions for the density, pressure,
horizontal velocity. After calculations one finds that the ve
tical disturbanceW(z) obeys the following equation:

~s/D1k22dZZ!~s/n1k22dZZ!~k22dZZ!W~z!

5~gk2/Dnr0! Dr~dC/dz! W~z!, ~1!

whereg is the gravity acceleration. For a given concentrati
profile C(z), the dispersion relations(k) can be obtained by
various methods, including matched asymptotic expansi
for the various regimes of the wave number. Taking the co
monly used S-shape stratification of widthe,

C~z!5 1
2 Erfc~z/e!, ~2!

allows us to treat uniformly the steplike density profilee
→0) and the uniform density gradient stratificatione
→`) cases. To convert Eq.~1! to dimensionless notation, w
choose the characteristic length and time as the followin

L5~2r0nD/Drg!1/3 and T5L2/AnD , ~3!

the selection of which emphasizes the symmetric role pla
by viscous and molecular diffusions. We note that for clas
il:
© 2002 American Institute of Physics
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cal fluids, the MRT length,L, will vary typically between
100mm and 1 mm. This leads to dimensionless wave vec
q5kL and growth raten5sT, based on which Eq.~1! be-
comes

~qD
2 2dZZ!~qn

22dZZ!~q22dZZ!W~Z!52q2~dC/dZ! W~Z!.
~4!

Here,Z5z/L and

qD
2 5q21nASC and qn

25q21n/ASC , ~5!

where SC5n/D is the Schmidt number. We point out th
the normalized cutoff wave vectorqC of the neutral mode
(n50) is independent ofSC . Two cases of Eq.~4! can be
solved analytically, the steplike base state (e50) and the
case of a uniform density gradient.4

The step case yields an analytical dispersion relatio4,7

given by

qnqD~qn1qD!~qn1q!~q1qD!5q~qn1qD1q!. ~6!

For the case of a uniform density gradient, the dispers
relation was established in Ref. 4. In the case of a S-sh
profile, the latter is also obtained in the limit of large no
malized width,b5(e/L)@1. Identifying in this limit the uni-
form gradient with Dr(dC/dz)(z50)5(Dr/Ape), one
finds

qn
2qD

2 52/Apb . ~7!

The general case requires solution of the full dispersion
lation @Eq. ~4!#. We computed the eigenvalue problem usi
a numerical method for the case of a finite width. Results
b510 and forSC5500 and 1000, are plotted in the inset
Fig. 1. Also shown by open circles are corresponding
results from lattice BGK simulations5 performed at SC

5500. The latter are in good agreement with the linear s
bility analysis. A description of the simulations will b
briefly described in a later section. Comparison of the t
curves shows that the maximum growth rate does not v
drastically with the Schmidt number, in the range of typic
fluid Schmidt numbers. For completeness, we also note
the cutoff wave vectorqC;0.53 is lower than the corre
sponding values ofqC,0;0.72 andqC,`;0.58 obtained from
Eqs.~6! and~7! corresponding to the two asymptotic regim
~b50 and b→`!. The range of validity of the latter two
regimes can be assessed in Fig. 1, which shows the c
wave vectorqC plotted versus (1/b)1/4 ~crosses!. The dashed
lines correspond to the zero width and uniform gradient li
its, qC,05(3/8)1/3 and qC,`5(2/Apb)1/4, respectively,
which are expected to be recovered in the respective lim
b!1 andb@1. Figure 1 shows that in practice, these tw
limits hold for b,0.5 andb.20, respectively. An empirica
fit ~full line! of the numerical data is also given to descri
the crossover between the two regimes.

Describing the flow in a Hele-Shaw cell requires av
aging the Navier–Stokes equations along the gap of the
In this paper, we will consider two different models.

Model 1. Averaging the assumed parabolic profile acro
the gap has led to the following 2D NSD equation:8
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wherek5h2/12 is the permeability and all vectors are tw
dimensional. As the nonlinear term is negligible in our ca
Eq. ~8! leads to the unbounded geometry case for 1/k→0
~thick cells!, and to the classical Darcy’s law of a porou
medium fork→0 ~thin cells!.

We performed a linear stability analysis of Eq.~8! by
working along the same lines as above, namely using a C
the Boussinesq approximation and a frozen-state approx
tion for the base-state concentration. It was found tha
leads to the same normalized differential equation@Eq. ~4!#
and dispersion relations@Eqs.~6! and~7!#, in the asymptotic
regimesb→0 andb→`, but now with

qD
2 5q21nASC and qn

25q21
1

K
1

n

ASC

. ~9!

Here, the finite gap of the cell is contained in the normaliz
permeabilityK, which is proportional to the square of th
ratio of the geometric lengthh and the fluid-dependent MRT
lengthL: K5k/L2 5h2/12L2 .

Model 2. In a recent paper it was shown9 that accelera-
tion and viscous dissipation induce some departure of
gap velocity profile from the parabolic. The work in Ref.
accounts for first-order corrections to the Poiseuille flow, u
der small 2D acceleration and viscous dissipation. The
sulting 2D equation reads as follows:

FIG. 1. Plot of the normalized cutoff wave vector,qC5kCL vs (1/b)1/4,
for the RT instability. Here,b5e/L is the normalized mixing width, using
L5(2r0nD/Drg)1/3. The results~crosses! are numerical solutions of the
eigenvalue problem, in the case of unbounded fluids@Eqs.~4! and~5!#. The
dashed lines correspond to the limits of step concentration profile (b50),
where qC,05(3/8)1/3, and that of a constant gradient, whereqC,`

5(2/Apb)1/4. The full line curve is a fit to the data usingqC

5@1/@(qC,0)
251(qC,`)25##1/5. The inset displays the normalized dispersio

relation,n5sT vs q5kL, for the RT instability in unbounded geometrie
Here, T5L2/AnD. The curves are numerical solutions of the eigenva
problem for two different values of the Schmidt number,SC5n/D5500
~full line! and 1000~dashed line!, and for a normalized mixing widthb
510. The circles correspond to 2D lattice BGK simulations (SC5500).
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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It is interesting to note that model 2 also leads to the cor
porous media limit,k→0 ~long wave limit, LW!, but does
not allow to recover the Navier–Stokes equation for 1/k→0.

Clearly, the linear stability analysis of the RT proble
on the basis of this equation will lead to a similar equation
before, with the exception of a correction factor 5/6. We fi
the equation

~qD
2 2dZZ!(qn

22dZZ)(q22dZZ)W~Z!5 5
6 2q2~dC/dZ!W~Z!,

~11!

where

qD
2 5q21nASC and qn

25q21
5

6K
1

n

ASC

. ~12!

The dispersion relations in the asymptotic limitsb→0 and
b→`, respectively, are given by Eqs.~6! and ~7!, modified
by the factor 5/6 on the right-hand side.

Stability predictions based on these two models will
compared below to the results of lattice BKG simulation
Before doing so, however, we also provide the correspond
stability calculations for an effective porous medium.

The Hele-Shaw cell geometry is often taken to mo
porous media flows. This analogy comes from the fact t
the gap-averaged velocity~assuming a parabolic Poiseuille
like profile across the gap! leads to a 2D Darcy’s law, wher
the 2D velocity is proportional to the pressure drop.3 Dis-
placements in porous media were addressed mainly in
context of viscous fingering; new phenomenology appe
when viscosity and density contrasts act together.2,10,11In the
present case of buoyancy instability without viscosity co
trast, the pure porous medium case is obtained from Eqs~4!
and~9! of model 1@or Eqs.~11! and~12! of model 2# in the
limit K→0 ~and under the assumption of a frozen ba
state!. We then obtain

~qD
2 2dZZ!~q22dZZ!W~Z!52Kq2 ~dC/dZ!W~Z!. ~13!

For a step concentration profile, the dispersion relation
cutoff wave vectorqC are given by

~qD1q!qD5qK, qC5K/2 ~14!

and for a uniform density gradient, by

qD
2 52K/ApB , qC

2 52K/Apb . ~15!

As Hele-Shaw cell experiments are routinely used to mim
porous media flows, it is of practical interest to delineate
range of physical parameters for which the porous me
regime holds in the range of unstable wave lengths. As
regime is a LW approximation~i.e., q2K!1!, the required
condition isqC

2 K!1, namelyK!1 andK!Ab in the limit-
ing casesb!1 andb@1, respectively.

The results from the stability analyses of the vario
models were compared to lattice BGK simulations. We u
models which are 2D with nine directions for the case
unbounded fluids, and 3D with 19 directions for the He
Shaw case,5 and with periodic boundary conditions in th
Downloaded 18 Jan 2002 to 134.157.252.132. Redistribution subject to 
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plane of the cell~x-direction!. The equations simulated ar
the CDE of a tracer~the concentration of the mixture of th
two miscible fluids! with a diffusion coefficientD, subject to
the Navier–Stokes equations, with a kinematic viscosityn. A
body force proportional to the concentration is applied
model the gravity force under the Boussinesq approximat
Using as initial condition a frozen base state, where the c
centration along the vertical directionz is steplike, or varies
according to Eq.~2!, we follow the time evolution, forD
51024 andSC5500, of a sine perturbation of wavelengthl.
In the 2D simulations we varied the normalized wave vec
q by varying the characteristic lengthL ~through the gravita-
tional force!, while keeping as constant the lattice si
256364 and the wavelengthl564. In the 3D simulations,
the lateral dimension of the lattice~equal tol! was varied
from 24 to 264, and the choice of the normalized permea
ity, K51 and 40.33, and of the gap thicknessh ~set to 7 and
44 for the smaller and the largerK, respectively! yielded a
MRT lengthL5h/A12K of the order of 2.

To compare the results of the different linear stabil
analyses with the 3D lattice BKG simulations, we first cho
an intermediate regime between the effective porous med
and the unbounded medium regimes, namely a gap thick
h such that its permeability isK5h2/12L2540.33, and a
Schmidt number ofSC5500. Plotted in Fig. 2 are result
corresponding to the step profile limit,b50. The full line
denotes the result from the analysis based on model 1,
dotted–dashed line corresponds to model 2, the short-da
line corresponds to the porous medium case@Eq. ~14!#, while
the long-dashed line is the 3D unbounded solution@Eq. ~1!#,
modified to account for the wave vector in the gap of the c
~namely wherek is replaced byAk22(p/h)2!. The open

FIG. 2. Plot of the dispersion relation,n vs q, in a Hele-Shaw cell of
dimensionless permeabilityK5h2/12L2540.33, forSC5500, b50. Here,
h is the gap thickness. The full line is the solution to the NSD equat
~model 1!, the dotted-dashed line is derived from the first order correct
~Ref. 9! to the NSD ~model 2!, the short-dashed line corresponds to
effective porous medium@Eq. ~14!#, while the long-dashed line correspond
to the unbounded fluid case, modified to correct the wave number@Eq. ~1!#.
The circles are results of 3D lattice BGK simulations.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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circles in Fig. 2 correspond to the lattice BGK simulation
Overall, the best agreement with the lattice BGK data

obtained by NSD model 1. Indeed, this model is closer to
3D simulations, both in the vicinity of the maximum grow
rate, as well as in that of the cutoff. In the LW limit, the be
approximation to the data is given by NSD model 2, but
note that model 1 is also quite close. The unbounded ge
etry model, corrected for the wave number, compares w
with the simulations in the short wave limit (q2K@1), but
not in the long-wave limit. Conversely, the effective poro
medium results approach the long-wave limit, but not
short-wave limit. In fact, the lattice BKG result for the sma
est wave vector tried~for which q2K;0.1! already deviates
from the porous media curve, although it does fall on
NSD model 2 curve.

Plotted in Fig. 3 are the results for a regime closer to
effective porous medium, namelyK51, and b50 and b
5A12;3.46, which corresponds to a mixing lengthe equal
to the gap sizeh. The full lines denote the result from th
analysis based on model 1, the dashed lines correspond t
porous medium case, and the circles denote the results
the lattice BGK simulations. Note that the predictions
model 2 would be for these cases slightly below the cur
given by model 1.

Figure 3 shows that the effective porous medium a
NSD model 1 give very similar results at low wave vecto
~typically q,0.07!, but exhibit some discrepancies for th
maximum growth raten and the cutoff wave numberqC .
Although n and qC are larger for the porous medium ca
than for model 1, they both decrease whenb increases. Over-
all, the NSD model 1 is closer to the 3D simulations.

Calculations~not displayed in the figure! show that the
results of NSD model 1 and Darcy description fall on t

FIG. 3. Plot of the dispersion relation,n vs q, in a Hele-Shaw cell of
dimensionless permeabilityK51, for SC5500, b50 ~upper two curves!
and b5A12K;3.46 ~lower two curves!. The latter case corresponds
e5h. The full lines are the solutions to the NSD equation~model 1! and the
dashed lines correspond to an effective porous medium. The circles
results of 3D lattice BGK simulations.
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same dispersion curves forK<0.2. The valueK50.2 corre-
sponds to a gap sizeh of the order ofL. Simulations have not
been performed in this range ofK values, as they are mor
computing-time demanding~due to smaller growth rates an
wave numbers!, whereas the present 2D analyses are e
more valid.

In conclusion, using the characteristic MRT lengthL
5(2r0nD/Drg)1/3 has allowed us to differentiate among th
different regimes of the Rayleigh–Taylor instability of mi
cible fluids as a function of the confinement. In particul
the RT instability in a Hele-Shaw cell was found to be be
described by the gap-averaged NSD model 1, which provi
a correct approximation in the whole range of wave vecto
thus avoiding the need to handle the more complicated
3D problem. We have also showed that the extension of
mixing zone comes into play when it is of the order
greater thanL. Hele-Shaw cells can be used to mimic the
instabilities in porous media, provided that the dimensionl
permeability,K, and mixing width,b, fulfill the conditions
K!1 andK!Ab for b!1 andb@1, respectively. Outside
this porous media regime, the 2D description~NSD, model
1! is necessary. Such a model is expected to also find ap
cations in the context of chemical wave reaction-diffusi
fronts in Hele-Shaw cells.6
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