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Autocatalytic reaction fronts between unreacted and reacted mixtures in the absence of fluid flow
propagate as solitary waves. In the presence of imposed flow, the interplay between diffusion and
advection enhances the mixing, leading to Taylor hydrodynamic dispersion. We present asymptotic
theories in the two limits of small and large Thiele modulus~slow and fast reaction kinetics,
respectively! that incorporate flow, diffusion, and reaction. For the first case, we show that the
problem can be handled to leading order by the introduction of the Taylor dispersion replacing the
molecular diffusion coefficient by its Taylor counterpart. In the second case, the leading-order
behavior satisfies the eikonal equation. Numerical simulations using a lattice gas model show good
agreement with the theory. The Taylor model is relevant to microfluidics applications, whereas the
eikonal model applies at larger length scales. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1665555#

INTRODUCTION

Interface motion and front propagation occur in many
different areas, including chemical reactions,1 atmospheric
chemistry ~ozone hole!, population dynamics in biology,2,3

and flame propagation in combustion.4 Depending on the re-
action kinetics, chemical reaction fronts exhibit fascinating
phenomena such as Turing patterns, Belousov–Zhabotinsky
oscillations, and chaotic or solitary wave propagation.1 Au-
tocatalytic reaction fronts between unreacted and reacted
mixtures propagate as solitary waves at a constant velocity
and with a stationary concentration profile.5,6 A key issue in
these problems is the selection of the front velocity. The
problem was addressed long ago, but only a small number of
cases are fully understood, among which are the celebrated
and pioneering works of Fisher2 and Kolmogorov–
Petrovskii–Piskunov3 ~F-KPP!,1,4,7 with second-order kinet-
ics. In contrast to flame propagation in combustion,8 where it
has been analyzed thoroughly theoretically and experimen-
tally, the effect of fluid flow~laminar or turbulent! has not
been explored in much detail in autocatalytic fronts until
very recently.9–15Even then, many issues remain unresolved.

The specific objective of this paper is to analyze the
effect of a laminar and spatially sinusoidal flow on autocata-
lytic reaction fronts. We will focus on two asymptotic limits,
which admit an analytical description. At relatively slow ki-
netics, Taylor-like dispersion16 dominates. The interplay be-
tween diffusion and advection enhances the mixing of the
fluids species and leads to an overall macroscopic diffusion,
known as Taylor hydrodynamic dispersion.16 Therefore,
when advection, reaction, and diffusion act together, one ex-
pects that the effective hydrodynamic mixing could change
the overall diffusivity, leading to a different propagation ve-
locity than that obtained in the absence of flow. Following

Taylor’s approach, we will derive here the corresponding as-
ymptotics, considering specifically a spatially sinusoidal ve-
locity profile. In the other limit of fast kinetics, the eikonal-
equation regime applies, which has been extensively
described.10–14To probe the validity of the asymptotic theo-
ries we subsequently perform numerical simulations based
on the lattice Bhatnagar–Gross–Krook~BGK! method.13,17

The iodate–arsenous-acid autocatalytic reaction6,18 ~IAA ! is
considered. Numerical and theoretical results are then com-
pared and found to be in good agreement.

PRELIMINARIES

Consider a fluid containing an autocatalytic species. The
fluid is advected with an imposed velocity. The mass balance
for the reacting species is the advection–diffusion–reaction
equation17 ~ADR!

]C

]t
1UW •¹W C5DmDC1a f ~C!, ~1!

whereC is a normalized concentration of the autocatalytic
reactant,UW the fluid velocity, Dm the molecular diffusion
coefficient,a the kinetic parameter of the reaction rate, and
f (C) the functional dependence of the rate on concentration.
We will assume that the viscosity and density of the fluid do
not depend on the concentration~passive reacting species!.
Moreover, we will assume that the flow is steady and lami-
nar, and without loss, unidirectional in thex direction. In two
dimensions~2D!, which will be the focus of the work from
now on, Eq.~1! becomes
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Consider now a problem in which a fluid of concentration 1
is injected into a medium with initial concentration 0.

In the absence of flow (U50), Eq. ~2! admits a one-
dimensional stationary wave solution, propagating along the
x direction with velocityVx . In the frame of reference mov-
ing at this velocityVx (X5x2Vxt), the traveling wave sat-
isfies the following equation:

2Vx

dC

dX
5Dm

d2C

dX2
1a f ~C!, ~3!

the order of which can be further reduced by 1. The particu-
lar value ofVx depends sensitively on the kinetics. However,
general bounds were also derived7 for the general case

2AaDmf 8~0!<Vx<2AaDm sup
CP@0;1#

@ f ~C!/C#. ~4!

Interestingly, for the Fisher–Kolmogorov–Petrovskii–
Piskunov model,f (C) is a convex function,2,3 and the two
bounds merge, leading to the explicit value for the velocity
of the solitary wave,Vx52AaDmf 8(0). For our reaction
involving iodate arsenous acid, the appropriate kinetic model
is third order,f (C)5C2(12C).6,17,18The particular kinetics
leads to concentration profileC(x,t), wave velocityVx , and
characteristic front widthl x , given by the following:

C~x,t !5
1

11exp@~x2Vxt !/ l x#
,

Vx5AaDm

2
, ~5!

l x5A2Dm

a
.

Note that the above expression for the velocity also fulfills
Eq. ~4!: 0<Vx<AaDm. The front width and velocity ex-
press the balance between diffusion and reaction, as the char-
acteristic times for diffusion across the front (l x

2/Dm), reac-
tion (a21), and the resulting propagation (l x /Vx) are all
comparable.

In the absence of chemical reaction~a50!, Eq. ~2! re-
duces to an advection–diffusion equation, which at the mac-
roscale leads to hydrodynamic dispersion.16 Tracer particles
transported along the steady streamlines of a laminar veloc-
ity field can change streamlines, due to molecular diffusion.
The concentration, averaged over a distanceb transversely to
the mean flow direction, is advected at the mean velocityŪ
of the flow, but spreads in the flow direction at a rate faster
than molecular diffusion alone, due to the different velocities
along the different streamlines. This enhanced dispersion is
the Taylor regime, which requires a concentration field al-
most homogeneous in the transverse direction. For a passive
tracer, this is reached when the characteristic transverse dif-
fusion time tDm

;b2/Dm is sufficiently small compared to
the advective timetad which depends on the distance trav-
eled L: tad;L/Ū. The above requirement becomes one of
small Peclet number, Pe5Ūb/Dm,L/b. In the Taylor re-
gime, the average concentrationC̄ spreads in space and time

following a ‘‘macroscopic’’ advection–diffusion equation
with velocity Ū and effective diffusion coefficientDeff :

]C̄

]t
1Ū

]C̄

]x
5Deff

]2C̄

]x2
, ~6!

whereDeff5Dm1DT includes the Taylor regime contribution
DT . For a Haagen–Poiseuille~parabolic! type flow between
two parallel plates separated by a small gapb, DT is given by
DT5Ū2b2/210Dm .16

In the presence of all three effects (UÞ0, aÞ0, and Pe
5Ūb/Dm,L/b), an increase of the diffusive transport is
expected. Then, both the propagation velocity and the width
of the front, which vary with the square root of the diffusion
coefficient in the absence of flow@Eq. ~5!#, may increase
accordingly. To study the interaction between the three ef-
fects, it is convenient to use the dimensionless Thiele modu-
lus F25ab2/Dm52(b/ l x)2. This number expresses the
relative magnitude of the diffusion time to the reaction time
and, in the present case, that of the spatial geometrical scale
to the chemical one. We also note thatF2 is the product of
the Peclet number with Damko¨hler number Da5ab/Ū,
which compares the advective time over distanceb with the
reaction time—namely,F25Pe Da.19 The effect of flow on
chemical front propagation has already been addressed in
certain asymptotic regimes: The studies in Refs. 9, 14, and
15 addressed the issue of smallŪ compared toVx , leading
to a second-order correction of the wave velocity; the study
in Ref. 10 addressed the issue of a high flow rate, while Ref.
11 introduced, under slow reaction conditions, an upper
bound to the front velocity, by replacing in Eq.~4! the mo-
lecular diffusion by its Taylor counterpartDT . The case of
third-order kinetics for a 2D flow between two parallel plates
was addressed by Refs. 12 and 14 in the following regimes:
a small velocity and/or small gap to first order and also a
very large gap. The latter regime, corresponding to the eiko-
nal model, has been often analyzed theoretically10–12,14and
experimentally.13

As discussed above, in this work we will discuss the two
different limits of small and large Thiele modulus, corre-
sponding effectively to the Taylor and the eikonal regimes.
The results will then be compared to numerical solutions
obtained using a Lattice BGK method.

TAYLOR-LIKE APPROACH FOR ADVECTION
DIFFUSION AND REACTION

Consider a steady-state propagation of concentration in a
coordinate system moving with the front velocityVf , in the
presence of fluid flow. We have

@U~y!2Vf #
]C

]X
5DmS ]2C

]X2
1

]2C

]y2 D 1a f ~C!, ~7!

whereX5x2Vft is the coordinate in the moving frame. As
is conventional for upscaling purposes, we express the con-
centrationC(X,y) and the velocity fieldU(y) in terms of
transversely averaged concentrationC̄(X) and velocityŪ,
respectively:

7315J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Mixing and reaction fronts in laminar flows

Downloaded 06 Apr 2004 to 134.157.252.132. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



C~X,y!5C̄~X!1c~X,y!, U~y!5Ū1u~y!, ~8!

where c(X,y) and u(y) denote deviations from the mean.
We noted above that in the Taylor regime, the concentration
is assumed to be almost uniform transversely; hencec rep-
resents a small departure from the average:c!C̄. Use of
these expressions in Eq.~7! leads to first order inc to the
following:

~Ū2Vf1u!S dC̄

dX
1

]c

]XD 5DmS d2C̄

dX2
1

]2c

]X2
1

]2c

]y2D
1a@ f ~C̄!1c f8~C̄!#, ~9!

the transverse averaging of which is

~Ū2Vf !
dC̄

dX
52

]uc

]X
1Dm

d2C̄

dX2
1a f ~C̄!. ~10!

The vanishing of the average of]2c/]y2 is due to either
no-flux or periodic boundary conditions. To obtainC̄ from
Eq. ~10!, the flux uc and hence the deviationc from the
mean are needed. The solution forc is obtained by substract-
ing the equation for the average concentration@Eq. ~10!#
from that of the total concentration@Eq. ~9!#, thus yielding

~Ū2Vf1u!
]c

]X
1u

dC̄

dX
5

]uc

]X
1DmS ]2c

]X2
1

]2c

]y2D
1ac f8~C̄!. ~11!

Next, we assume, as is conventional in these problems, that
the variation ofc along the flow directionX is negligible,
thus obtaining the following differential equation forc:

u
dC̄

dX
5Dm

]2c

]y2
1ac f8~C̄!. ~12!

Under the previous assumptions, this equation shows thatc
can be expressed in the form

c~X,y!5h~y!
dC̄

dX
, ~13!

whereh(y) obeys the differential equation:

Dmh9~y!1a f 8~C̄!h~y!5u~y!. ~14!

The flux uc, across the plane moving at velocityVf , is,
therefore, Fickian and reads

uc52DTx

dC̄

dX
. ~15!

The proportionality coefficientDTx52uh depends onC̄, a,
u, Dm , and b. It follows that the upscaled equation forC̄
@Eq. ~10!# reads

~Ū2Vf !
dC̄

dX
5

d

dX F ~Dm1DTx!
dC̄

dXG1a f ~C̄!. ~16!

Under the approximations made, the upscaled equation~16!
differs from Eq. ~3! only by the diffusion coefficientDm

1DTx ~instead ofDm). However, because of the concentra-
tion dependence ofDTx , the equation is one of nonlinear

diffusion: Deff(C̄)5Dm1DTx(C̄). Nonetheless, as theC̄ de-
pendence ofDTx comes from the chemical term in Eq.~14!,
it is not difficult to show that this dependence can be ne-
glected when the Thiele modulus is small,F25ab2/Dm

!1. In this case, the Taylor regime conditionc!C̄ reduces
to PeF!1, the diffusion across the transverse direction is
fast compared to the convection along the reaction front
(tDm

,tad5 l x /Vx). Under these conditions, we have simply
Taylor diffusion—namely,Deff5Dm1DT—and the solution
of Eq. ~16! is a traveling wave, with velocityVf bounded
according to Eq.~4! and whereDm must be replaced byDeff ,
as also suggested in Ref. 11.

For the third-order kinetics functionf (C)5C2(12C),
the solution forC̄ in the regime PeF!1 andF2!1 is given
by Eq. ~5!, where the velocity and width of the front are
equal to

Vf5Ū1Aa~Dm1DT!

2
5Ū1VxA11

DT

Dm
,

~17!

l eff5A2~Dm1DT!

a
5 l xA11

DT

Dm
.

From Taylor’s theory,DT /Dm can be expressed in terms of
the normalized average flow velocitye5Ū/Vx , since
DT /Dm5aPe25a8e2, wherea is the geometrical factor in-
volved in Taylor dispersion,a85a(Vxb/Dm)2. Therefore, in
the limit Pe!1, the normalized front velocity behaves like
Vf /Vx.11e1a8e2/2, in accordance with Refs. 9 and 14.

As an illustration, we will focus in the following on the
sinusoidal velocity profileU(y)5u(y)5UM sin(ky), where
k is the wave vector of the sinusoidal perturbation. This has
the advantage of zero mean flow and also emphasizes Taylor
dispersion effects. The solution of the differential equation
for h(y) @Eq. ~14!# and the calculation ofDTx52uh are,
respectively,

h~y!52
Pe

12 f 8~C̄!F2

sin~ky!

k
,

~18!

DTx5
Pe2

12 f 8~C̄!F2

Dm

2
,

where we have also used the following dimensionless num-
bers:

e5
UM

Vx
,

Pe5
UM

kDm
5

e

klx
, ~19!

F25
a

Dmk2
5

2

~klx!2
.

Analogous expressions for Poiseuille flow are given in the
Appendix. Clearly, when the Thiele modulus is small,F2

!1, the diffusion coefficientDTx reduces toDT5Pe2Dm/2,
leading to the same normalized front velocity and width,
equal to
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Vf

Vx
5

l eff

l x
5A11

Pe2

2
. ~20!

This expression shows that the correction to the chemical
wave velocity is a pure Taylor dispersion one. Moreover, in
the limit Pe!1, the normalized front velocity takes the form
Vf /Vx.11Pe2/4, as also proposed in Ref. 9.

EIKONAL REGIME

The opposite limit corresponds to largeF2 values, and it
is described by the eikonal equation, which has been exten-
sively studied.10–14WhenF→`, diffusion has an effect on a
very small scale, compared to the external length scale—for
example, the wavelength of the velocity field. In this case,
the velocity and shape of the front are linked together
through the eikonal equation12–14

VW f•nW 5Vx1UW •nW 1Dmk. ~21!

Here,nW is the unit vector normal to the front profile~oriented
from C50 to C51), UW is the imposed flow velocity, andk
is the front curvature. Neglecting the local front curvature
and considering the unidirectional imposed flow, the eikonal
equation reads

Vf5Vx /cosb1U~y!, ~22!

whereb is the angle betweennW and the front velocity vector.
GivenVf , one can solve Eq.~22! for the front shape. Results
will be shown below.

LATTICE BGK SIMULATIONS

We used Lattice BGK methods13,17,20,21to simulate the
solution of Eq.~1!, using periodic boundary conditions on
the transversey direction. A periodic stationary velocity field
U(y)5UM sin(ky) was applied, where the wavelengthl
52p/k is equal to the lattice width. In the specific simula-
tions, the velocityVx and width of the front,l x , were taken
equal to 0.016 and 8, respectively. We used as control param-
eters the normalized velocitye5UM /Vx and the normalized
wave vectorklx or, equivalently, the Thiele modulusF2

52/(klx)2. The Peclet number may then be expressed as
Pe5eF/&. The numerical simulations were performed on
lattices of typical length 2000 and of a widthl ranging be-
tween 24 and 160.

Figure 1 displays the time evolution of the propagation
velocities of three different values of the average concentra-
tion (C̄50.3, 0.5, and 0.7!. We note that within a time inter-
val of the order ofl/Vx all values reach the same asymptotic
velocity, Vf , beyond which the front shape becomes station-
ary. The traveling-wave-averaged concentration profiles
C̄(x) are shown in Fig. 2, for various values of the control
parameterse and F2. In the figure, the value of PeF in-
creases in the direction from top to bottom. There is an in-
creasing deviation of the profile from the predictions from
Eq. ~5!, as the product increases, and for higher values ofF,
in accordance with the above-mentioned Taylor regime con-
dition PeF!1. It is interesting to note that the profile ob-

tained at the largeste andF values is characterized by two
inflexion points. In the following, we will refer to this type of
profiles as distorted.

Figure 3 shows numerical results for the normalized
front extent l eff /lx as a function of the Peclet number for
different values of the Thiele modulus. The value of (l eff /lx)

2

was obtained by the ratio of the second-order moment of the
derivative of the numerical concentration profile over the one
of the analytical concentration profile given by Eq.~5!
(p2l eff

2 /3). The theoretical predictions from Eq.~20! are also
plotted. There is good agreement between theory and simu-
lations for the smaller values of the Thiele modulus, as ex-
pected. The agreement holds for PeF values up to 1.67
~corresponding to Pe.2.5!. For the larger valueF253.24
.1, the agreement is surprisingly good for PeF.1.2 ~cor-
responding to Pe.0.7!. Above this value, the profiles be-
come distorted, but their width is close to the theoretical
prediction, up to PeF.6 ~Pe.3.5!. Figure 4 displays the
front velocity, normalized byVx , versus the Peclet number,
for two values of F2 from Fig. 3. Surprisingly, forF2

50.45, the agreement with the theoretical prediction from
Eq. ~20! holds over the entire range of Pe~up to Pe.10, Pe
F.6.7!. ForF253.24, the front velocity is overpredicted by
Eq. ~20! as Pe~or Pe F! increases above the value of 1,
where the profiles become distorted.

We recall that Eq.~20! was derived under the two as-
sumptionsF2!1 andeF2!1 ~or PeF!1!. Thus, the do-
main of validity of the Taylor regime is expected to be de-
lineated, in ae~F! diagram, by the curvesF51, eF251,
and the two axese50 andF50, as shown in Fig. 5. Note
that the axise50 is included, as Eq.~20! still holds in the
absence of flow, but the axisF50 is excluded, as it does not
correspond to the propagation of a solitary wave but to the
pure Taylor diffusive process~in which no stationary exten-
sion can be defined!. The numerical results are also shown in
Fig. 5. Solid circles denote agreement, the3 symbols denote
departure from Taylor regime predictions~based on an arbi-
trary relative error of 5%!.

It is shown that the validity of Eq.~20! is quite good in
the region of the parameter space under the curveeF251,
and even sligthly above. The arbitrary criterion used corre-
sponds in fact to the parametereF2 being less than several
units. Surprisingly enough, this last condition is found to be

FIG. 1. Time evolution of the velocity of three averaged concentration val-
ues toward the asymptotic velocityVf of the traveling wave, forF253.24
and e53. Solid line: C̄50.7. Dashed line:C̄50.5. Dot-dashed line:C̄
50.3.
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sufficient, for the Taylor regime predictions to apply, over the
whole range ofF explored numerically~up to F.6.3—i.e.,
F2.40). This suggests that the conditionF2!1, which was
needed to approximate the nonlinear diffusivityDTx by its
linear counterpartDT5Pe2Dm/2, is not necessary for Eq.
~20! to apply. This is all the more unexpected since for our
kinetics reaction functionf (C)5C2(12C), the denomina-
tor of DTx @Eq. ~18!#, 12 f 8(C̄)F2, has two real roots be-
tween 0 and 1, for allF2 values greater than 3. Hence,
provided thateF2,1, the local divergence of the nonlinear
diffusivity DTx(C̄), for F2.3, does not appear to play any

significant role in the propagation of the stationary front, and
both extent and velocity can be approximated by Eq.~20!.
We remark, however, that in this domain (eF2,1 andF2

.3) the Taylor counterpartDT indicates only a second-order
correction, and the front is hardly affected by flow.

In summary, the Taylor regime predictions@Eq. ~20!#
correctly account for a significant influence of the flow on
the chemical front propagation, in the domaineF2,1 and
F2,1. This last condition means that the extent of the front
in the absence of flow (l x.100mm for the IAA reaction!
has to be larger than the transverse dimensionl of the flow

FIG. 2. Averaged concentration pro-
files in the stationary state. Solid line:
numerical simulations. Dashed line:
theoretical results from Eq.~5!. Left
column:F250.45. Right column:F2

53.24. From top to bottom, the nor-
malized flow velocitye takes the val-
ues 0.5, 1, 3, respectively. Also shown
is the corresponding Peclet number.

FIG. 3. Normalized front extent (l f / l x) vs the Peclet number (Pe
5Um /Vxklx). j: F250.45,d: F253.24,s: F253.24 ~distorted profile,
cf. text!. Solid line: pure Taylor expansion (l eff /lx5A11Pe2/2).

FIG. 4. Normalized front velocity (Vf /Vx) vs the Peclet number (Pe
5Um /Vxklx). j: F250.45, d: F253.24, s: distorded profiles. Solid
line: pure Taylor expansion.
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~or the cell!. Hence, the Taylor regime applies to a range of
flow velocities which increases as the transverse dimension
of the system decreases, and for this reason it is likely to be
relevant in microfluidic systems.

Before closing this part, we provide one more figure to
illustrate the effect of the Thiele modulus on the concentra-
tion front. Figure 6 shows two isoconcentration contoursC

50.5 andC50.4 for several different values of the param-
eterse and F. For a constant value ofe ~left or right col-
umn!, an increase inF ~occurring from top to bottom in Fig.
6! leads to both a sharpening and distortion of the front. The
concentration contours approach each other, as expected, and
they also exhibit a departure from the sinusoidal shape.
These features signal the approach of the profile towards the
eikonal regime, which, unlike the Taylor regime, is domi-
nated by the nonlinear effects.

Consider, now, the eikonal regime. A simulation of the
front in this regime~e514.9 andF2;506) is shown in Fig.
7. In agreement with Refs. 10–12, the front shape is not
symmetric: while the head of the front~leading edge, low
values ofx in Fig. 7! is flatter~as compared to a sinusoidal!,
its back~trailing edge, higher values ofx in Fig. 7! exhibits
a cusp shape. It is interesting to plot the normalized front
velocity Vf /Vx versus the normalized maximum flow veloc-
ity e5UM /Vx . The results are shown in Fig. 8. We find that
Vf /Vx tends to 11e as e increases, as expected.12 This
means that the front is advected at the maximum possible
velocity ~with e.0 on the right of Fig. 7!, based on which
the front shape can be determined; then the angleu at the
cusp is

11e5
1

cosu
2e, ~23!

FIG. 5. Region of the validity of the Taylor regime in the parameter space.
The solid line denotes the curvee51/F2; the dashed line is the curveF51.
Solid circles: simulations and Taylor regime predictions in agreement.3:
simulations and theory not in agreement. Inset: zoom-in for the smaller
values ofe.

FIG. 6. Isoconcentration contoursC
50.4 ~dot-dashed line! and C50.5
~dashed line! in the stationary state.
Solid line: theoretical results expected
in the Taylor regime@from Eq. ~5!#.
Left column: e50.5, right column:
e51. From top to bottom:F250.45,
3.24, and 20.25.
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leading to the result cosu51/~2e11!. This suggests that
u→p/2 whene→`; that is, the front shape on the left side of
Fig. 7 tends to a cusp whene increases. Note also that our
measurement ofu;0.03 in Fig. 7 is in reasonable agreement
with Eq. ~23! which predicts 1/~2e11!50.03 fore514.9. To
conclude, we plot in Fig. 9 the evolution ofVf /Vx versus
F2. In agreement with the previous predictions,Vf /Vx→1
1e when F2→` ~eikonal regime for largeF2), and
Vf /Vx;A11Pe2/2 for F2→0 ~Taylor-like regime forF2

less than 1!.

CONCLUSIONS

In this paper, we presented a Taylor-like approach16 for
the development of an autocatalytic reaction front in the
presence of a laminar velocity field, under conditions of slow
kinetics. Analytical results were derived for the velocity and
the extent of the concentration profile, in the asymptotic trav-
eling wave solution. A correction to the purely chemical
wave front arises from Taylor-like dispersion, which does not
include any contribution of the chemical reaction in the limit
of small Thiele modulus (F2<1) and small Peclet number

~PeF<1!. The opposite, eikonal, regime was also discussed.
We tested our predictions using numerical lattice BGK simu-
lations for third-order reaction kinetics, in the advection–
diffusion–reaction equation, and with a sinusoidal variation
of the velocity field. Good agreement was obtained between
the simulations and the Taylor expansion, at smallF, and the
eikonal regime predictions at largeF.
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APPENDIX: EFFECT OF A 2D HAAGEN-POISEUILLE
FLOW ON THE FRONT VELOCITY

In this Appendix we provide results for the advection–
diffusion–reaction equation corresponding to the following
2D Haagen–Poiseuille flow between two parallel boundaries
located aty56b/2:

U~Y!56Ū~12Y!Y5 3
2 Ū~12X2!. ~A1!

Here, we denotedY51/21y/b5(11X)/2. To facilitate
comparison with Refs. 12 and 14, we introduce the reduced
velocity e5Ū/Vx and the reduced widthh5b/(2l x), which
is linked to the Thiele modulus for a third-order reaction,
F254h2.

Performing our Taylor-like expansion, withu5U2Ū,
we get the following expression for the front profile correc-
tion:

h~Y!5
6Ūb2

Dmz2 S 1

6
2Y1Y21

2

z2
2

cosh~Yz!coth~z/2!

z

1
sinh~Yz!

z D , ~A2!

wherez252F2f 8(C̄), and for the dispersion coefficient,

FIG. 7. Isoconcentration contourC50.5 in the eikonal regime~e514.9 and
F25506) and imposed velocity profile~dashed line, axis on the right!. Note
that the aspect ratio of the figure is not 1.

FIG. 8. Normalized front velocityVf /Vx versuse in the eikonal regime
(F25506). d: numerical simulations. Solid line: eikonal theoretical result,
Vf /Vx511e.

FIG. 9. Normalized front velocityVf /Vx versusF2 for e53, showing the
transition between the Taylor regime~small F2) and the eikonal regime
~largeF2). d: simulations. Solid line: pure Taylor expansion. Dashed line:
eikonal approach.
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DTx5
Ū2b2

210Dm
G~z!,

~A3!

G~z!5
210

5z6
@720160z22z42360z coth~z/2!#.

Note that expression~A2! is valid for real or imaginaryz. It
is instructive to expand the above results in series ofz ~i.e.,
in terms of the Thiele modulus!,

h~y!5
Ūb2

Dm
S 1

60
2

Y2

2
~12Y2!1O~z2! D ,

G~z!512
z2

40
, ~A4!

which, after introducinge andh, leads to

2h~X!

b
5

eh

2 S X2

4
2

X4

8
2

13

120D . ~A5!

This is exactly Spangler and Edward’s result.14 Likewise for
dispersion and hence for the velocity correction using Eq.
~17!, we get

u5Vf /Vx5A11
4e2h2

210
G~z!

.11e1
~eh!2

105
1O~z2!, ~A6!

again in agreement with Spangler and Edward’s second-
order expansion.
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