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Mixing and reaction fronts in laminar flows

M. Leconte, J. Martin, N. Rakotomalala, and D. Salin
Laboratoire Fluides Automatique et Systes Thermiques, Universitd®. et M. Curie and Paris Sud,
C.N.R.S. (UMR7608), Bianent 502, Campus Universitaire, 91405 Orsay Cedex, France

Y. C. Yortsos
Department of Chemical Engineering, University of Southern California,
Los Angeles, California 90089-1211

(Received 11 December 2003; accepted 12 January) 2004

Autocatalytic reaction fronts between unreacted and reacted mixtures in the absence of fluid flow
propagate as solitary waves. In the presence of imposed flow, the interplay between diffusion and
advection enhances the mixing, leading to Taylor hydrodynamic dispersion. We present asymptotic
theories in the two limits of small and large Thiele modulgtow and fast reaction kinetics,
respectively that incorporate flow, diffusion, and reaction. For the first case, we show that the
problem can be handled to leading order by the introduction of the Taylor dispersion replacing the
molecular diffusion coefficient by its Taylor counterpart. In the second case, the leading-order
behavior satisfies the eikonal equation. Numerical simulations using a lattice gas model show good
agreement with the theory. The Taylor model is relevant to microfluidics applications, whereas the
eikonal model applies at larger length scales. 2@4 American Institute of Physics.
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INTRODUCTION Taylor's approach, we will derive here the corresponding as-
ymptotics, considering specifically a spatially sinusoidal ve-

Interface motion and front propagation occur in manylocity profile. In the other limit of fast kinetics, the eikonal-

different areas, including chemical reactidnatmospheric equation regime applies, which has been extensively

chemistry (ozone holg population dynamics in biologd?  described®**To probe the validity of the asymptotic theo-

and flame propagation in combustib@epending on the re- ries we subsequently perform numerical simulations based

action kinetics, chemical reaction fronts exhibit fascinatingon the lattice Bhatnagar—Gross—KroBGK) method*>*’

phenomena such as Turing patterns, Belousov—Zhabotinskjhe iodate—arsenous-acid autocatalytic reabtiBAAA) is

oscillations, and chaotic or solitary wave propagafigku-  considered. Numerical and theoretical results are then com-

tocatalytic reaction fronts between unreacted and reactepared and found to be in good agreement.

mixtures propagate as solitary waves at a constant velocity

and with a stationary concentration profil2A key issue in

these problems is the selection of the front velocity. ThepRELIMINARIES

problem was addressed long ago, but only a small number of

cases are fully understood, among which are the celebrated Consider a fluid containing an autocatalytic species. The

and pioneering works of Fistfer and Kolmogorov— fluid is advected with an imposed velocity. The mass balance

Petrovskii—Piskuno¥(F-KPP,>* with second-order kinet- for the reacting species is the advection—diffusion—reaction

ics. In contrast to flame propagation in combusfiavhere it~ equatiori’ (ADR)

has been analyzed thoroughly theoretically and experimen- oL

tally, the effect of fluid flow(laminar or turbulenthas not —+U-VC=D,AC+af(C), (1)

been explored in much detail in autocatalytic fronts until

very recently’"'°Even then, many issues remain unresolvedwhere C is a normalized concentration of the autocatalytic
The specific objective of this paper is to analyze thereactant,U the fluid velocity, D, the molecular diffusion

effect of a laminar and spatially sinusoidal flow on autocata-coefficient,« the kinetic parameter of the reaction rate, and

lytic reaction fronts. We will focus on two asymptotic limits, f(C) the functional dependence of the rate on concentration.

which admit an analytical description. At relatively slow ki- We will assume that the viscosity and density of the fluid do

netics, Taylor-like dispersidfi dominates. The interplay be- not depend on the concentratigpassive reacting species

tween diffusion and advection enhances the mixing of theMoreover, we will assume that the flow is steady and lami-

fluids species and leads to an overall macroscopic diffusiomar, and without loss, unidirectional in tlkelirection. In two

known as Taylor hydrodynamic dispersith.Therefore, dimensions2D), which will be the focus of the work from

when advection, reaction, and diffusion act together, one exaow on, Eq.(1) becomes

pects that the effective hydrodynamic mixing could change 2 2

e . - ; aC aC d°C o°C
the overall diffusivity, leading to a different propagation ve- — +U(y) —=D,, + +af(C). )
locity than that obtained in the absence of flow. Following ot X ax?  ay?
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Consider now a problem in which a fluid of concentration 1following a “macroscopic” advection—diffusion equation

is injected into a medium with initial concentration 0. with velocity U and effective diffusion coefficierD .;:

In the absence of flowlW=0), Eq. (2) admits a one- — o
dimensional stationary wave solution, propagating along the §+U£:D 9°C 6)
x direction with velocityV, . In the frame of reference mov- at X E’W’

ing at this velocityV, (X=x—V,t), the traveling wave sat-

isfies the following equation: whereD .4=D,,+D7 includes the Taylor regime contribution

D+. For a Haagen—Poiseuillparabolig type flow between
dc d2c two parallel plates separated by a small gap+ is given by
“Vigx = Dmﬁﬂrf(C). )  Dy=U?b?%210D,,.1
_In the presence of all three effectd £ 0, «#0, and Pe
the order of which can be further reduced by 1. The particu=Ub/D,<L/b), an increase of the diffusive transport is
lar value ofV, depends sensitively on the kinetics. However,expected. Then, both the propagation velocity and the width

general bounds were also derivddr the general case of the front, which vary with the square root of the diffusion
coefficient in the absence of flofEg. (5)], may increase

ZVaDmf'(0)$VX$2\/aDm sup [f(C)/C]. (4)  accordingly. To study the interaction between the three ef-
Cel0:1] fects, it is convenient to use the dimensionless Thiele modu-
lus ®?=ab?/D,=2(b/l,)?. This number expresses the

Interestingly, for the Fisher—Kolmogorov—Petrovskii— ; . e . . : .
Piskunov modelf(C) is a convex functior:? and the two relative magnitude of the diffusion time to the reaction time

bounds merge, leading to the explicit value for the velocityand' in the present case, that of the spatial geometrical scale

of the solitary waveV,=2aDf'(0). For ourreaction to the chemical one. We also note tiif is the product of

involving iodate arsenous acid, the appropriate kinetic modeine® Peclet number with Damkier number Dz ab/U,
is third order,f(C)=Cz(1—C).6’17'18The particular kinetics which compares the advective time over distahaeith the

reaction time—namelyp?=Pe Dal® The effect of flow on
chemical front propagation has already been addressed in
certain asymptotic regimes: The studies in Refs. 9, 14, and

leads to concentration profig(x,t), wave velocityv, , and
characteristic front width, , given by the following:

B 1 15 addressed the issue of smidllcompared td/, , leading
Coxt)= 1+exd (x=V, /1]’ to a second-order correction of the wave velocity; the study
in Ref. 10 addressed the issue of a high flow rate, while Ref.
aD, 11 introduced, under slow reaction conditions, an upper
Vy= 2 ) bound to the front velocity, by replacing in E@t) the mo-
lecular diffusion by its Taylor counterpall;. The case of
2D, third-order kinetics for a 2D flow between two parallel plates
he= Ta was addressed by Refs. 12 and 14 in the following regimes:

a small velocity and/or small gap to first order and also a
Note that the above expression for the velocity also fulfillsvery large gap. The latter regime, corresponding to the eiko-
Eq. (4): 0<V,=<\aD,, The front width and velocity ex- nal model, has been often analyzed theoreticai?'*and
press the balance between diffusion and reaction, as the chaxperimentally:®

acteristic times for diffusion across the froriﬁ/(Dm), reac- As discussed above, in this work we will discuss the two
tion (e~ 1), and the resulting propagation, (V,) are all  different limits of small and large Thiele modulus, corre-
comparable. sponding effectively to the Taylor and the eikonal regimes.

In the absence of chemical reaction=0), Eq. (2) re-  The results will then be compared to numerical solutions
duces to an advection—diffusion equation, which at the macebtained using a Lattice BGK method.
roscale leads to hydrodynamic disperstbiracer particles
transported along the steady streamlines of a laminar veloc-
ity field can chgnge streamlines, due.to molecular diffusionay| OR-LIKE APPROACH FOR ADVECTION
The concentration, averaged over a distamt@nsversely to  piEFFUSION AND REACTION
the mean flow direction, is advected at the mean velddity
of the flow, but spreads in the flow direction at a rate faster ~ Consider a steady-state propagation of concentration in a
than molecular diffusion alone, due to the different velocitiescoordinate system moving with the front velocity, in the
along the different streamlines. This enhanced dispersion igresence of fluid flow. We have

the Taylor regime, which requires a concentration field al- JC 2C  2C
most homogeneous in the transverse direction. For a passive [U(y)—Vi]—==Dp, —+ _2) + af(C), (7
tracer, this is reached when the characteristic transverse dif- 20 28 ay

fusion time rp_~b* Dy, is sufficiently small compared to whereX=x—V;t is the coordinate in the moving frame. As
the advective timer,q which depends on the distance trav- js conventional for upscaling purposes, we express the con-
eledL: 7,4q~L/U. The above requirement becomes one ofcentrationC(X,y) and the velocity fieldJ(y) in terms of
small Peclet number, PeUb/D,<L/b. In the Taylor re- transversely averaged concentratiégX) and velocityU,
gime, the average concentrati@nspreads in space and time respectively:
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C(X,y)=C(X)+c(X,y), U(y)=U+u(y), ®

wherec(X,y) and u(y) denote deviations from the mean.
We noted above that in the Taylor regime, the concentratio
is assumed to be almost uniform transversely; henoep-
resents a small departure from the averag&C. Use of
these expressions in E(/) leads to first order irc to the

following:
Tyt dE+ Jc d26+ azc+(9zc
L=Virwlax " ox) =Pl g T e o2

m

+a[f(C)+cf’(C)], (9

the transverse averaging of which is
UvdE— &EDdZE f(C, 10
U-Vogx="2x * mWﬁLa( ). (10

The vanishing of the average @fc/dy? is due to either
no-flux or periodic boundary conditions. To obtaihfrom
Eqg. (10), the flux uc and hence the deviatioa from the
mean are needed. The solution &s obtained by substract-
ing the equation for the average concentratj&g. (10)]
from that of the total concentratidieq. (9)], thus yielding

Govian . dE_aI:+ 52c+a2c
( UG X T ax TPl e dy?
+acf'(C). (11)

Next, we assume, as is conventional in these problems, th
the variation ofc along the flow directionX is negligible,
thus obtaining the following differential equation for

dE_ 9?c =
_Dma_y2+aCf (C).

Y ax

(12
Under the previous assumptions, this equation showscthat
can be expressed in the form

X,y)=h dc 13
c(X,y)=h(y) g% (13
whereh(y) obeys the differential equation:

Dph"(y) +af’(C)h(y) =u(y). (14)

The flux uc, across the plane moving at velocit¥, is,
therefore, Fickian and reads

dc
~Prgx-

uc= (15
The proportionality coefficiendr, = —uh depends orE, a,
u, D, andb. It follows that the upscaled equation f@
[Eqg. (10)] reads

+af(C). (16)

u-v _ 4 D,+D dc
(U- f)d_X_d_X (Dmt TX)d_X
Under the approximations made, the upscaled equatién
differs from Eq. (3) only by the diffusion coefficienD,,
+Dr, (instead ofD,). However, because of the concentra-
tion dependence oD+, , the equation is one of nonlinear

Leconte et al.

diffusion: D¢4(C)=Dy+Dr,(C). Nonetheless, as th€ de-
pendence oD, comes from the chemical term in EQ.4),

|j1t is not difficult to show that this dependence can be ne-
glected when the Thiele modulus is smab?=ab?/D,,
<1. In this case, the Taylor regime conditiore C reduces

to Pe ®<1, the diffusion across the transverse direction is
fast compared to the convection along the reaction front
(rDm< 7a0=1,/V,). Under these conditions, we have simply

Taylor diffusion—namely,D¢+=D,,+Dt—and the solution
of Eq. (16) is a traveling wave, with velocity/; bounded
according to Eq(4) and whereD,,, must be replaced b ¢,
as also suggested in Ref. 11.

For the third-order kinetics functiof(C)=C?(1— C),
the solution forC in the regime P&<1 and®?<1 is given
by Eq. (5), where the velocity and width of the front are
equal to

_ a(Dn+Dy) —
Vi=U+ \/T=U+VX 1+

2(Dy+ D7) \/ D
|eﬁ=\/T=|X 1+D—m.

From Taylor’s theoryD+ /D, can be expressed in terms of
the normalized average flow velocitg=U/V, , since
D;/Dn,=aP&=a’e? wherea is the geometrical factor in-
volved in Taylor dispersiorg’ =a(VXb/Dm)2. Therefore, in
the limit Pe<1, the normalized front velocity behaves like
VilV, =1+€+ a’' €212, in accordance with Refs. 9 and 14.
at  As an illustration, we will focus in the following on the
sinusoidal velocity profileJ (y)=u(y)=U,, sinky), where

k is the wave vector of the sinusoidal perturbation. This has
the advantage of zero mean flow and also emphasizes Taylor
dispersion effects. The solution of the differential equation
for h(y) [Eqg. (14)] and the calculation oDy, =—uh are,
respectively,

Dy
D,
(17)

Pe sin(ky)
h = — —
) 1-f'(C)®? Kk
18
L Pé D, "
i frc)@? 2

where we have also used the following dimensionless num-
bers:

Um
E—V—X,
Pe DM _ € 19
@ 2 .

Dnk?  (kl,)?

Analogous expressions for Poiseuille flow are given in the
Appendix. Clearly, when the Thiele modulus is sma?
<1, the diffusion coefficienD+, reduces tdD+= PED /2,
leading to the same normalized front velocity and width,
equal to
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(VN Pe

Vo=Vt (20)

vV, |, 2 0.02
This expression shows that the correction to the chemical
wave velocity is a pure Taylor dispersion one. Moreover, in o) O
the limit Pe<1, the normalized front velocity takes the form oz
V¢V, =1+Pé€/4, as also proposed in Ref. 9. -0.02

-0.04 v

EIKONAL REGIME 0000 2000 3000 4000 35000

4
The opposite limit corresponds to larde values, and it G 1T Lution of the velocity of th g rat |
. . . . . 16, L Ime evolution O e veloCity O ree averagea concentration val-
IS_ descnbe_dd?g/_}?e eikonal equatlon’ which has been eXte'Ees toward the asymptotic velocity of the traveling wave, fob?=3.24
sively studied. When®—, diffusion has an effect on a and e=3. Solid line: C=0.7. Dashed lineC=0.5. Dot-dashed lineC
very small scale, compared to the external length scale—for 3.
example, the wavelength of the velocity field. In this case,

the velocity and shape of the front are linked together

through the eikonal equatibfr!* tained at the largest and @ values is characterized by two
- - . inflexion points. In the following, we will refer to this type of
Vi-n=V,+U-n+Dpk. (21 profiles as distorted.

Here,n is the unit vector normal to the front profileriented Figure 3 shows numerical results for the normalized

from C=0 to C=1), U is the imposed flow velocity, and  front extentles/l, as a function of the Peclet number for
is the front curvature. Neglecting the local front curvaturedifferent values of the Thiele modulus. The value kf(1,)*
and considering the unidirectional imposed flow, the eikonalvas obtained by the ratio of the second-order moment of the

equation reads derivative of the numerical copcentrat!on p_rofile over the one
of the analytical concentration profile given by Ep)
Vi=V,/cosp+Ul(y), (22 (#212/3). The theoretical predictions from EQO) are also

whereg is the angle betweemn and the front velocity vector. plotted. There is good agreement between theory and simu-
GivenV;, one can solve Ed22) for the front shape. Results lations for the smaller values of the Thiele modulus, as ex-
will be shown below. pected. The agreement holds for Revalues up to 1.67
(corresponding to Pe2.5). For the larger valuab?=23.24
>1, the agreement is surprisingly good for ®e-1.2 (cor-
LATTICE BGK SIMULATIONS responding to Pe0.7). Above this value, the profiles be-
come distorted, but their width is close to the theoretical
We used Lattice BGK methoti'"***'to simulate the  prediction, up to Pab=6 (Pe=3.5). Figure 4 displays the
solution of Eq.(1), using periodic boundary conditions on front velocity, normalized by, versus the Peclet number,
the transversg direction. A periodic stationary velocity field for two values of®? from Fig. 3. Surprisingly, ford?2
U(y)=Upysinky) was applied, where the wavelenglh  =0.45, the agreement with the theoretical prediction from
=2m/k is equal to the lattice width. In the specific simula- Eq. (20) holds over the entire range of Pep to Pe=10, Pe
tions, the velocityv, and width of the front] , were taken  =6.7). For®?=3.24, the front velocity is overpredicted by
equal to 0.016 and 8, respectively. We used as control parangq. (20) as Pe(or Pe @) increases above the value of 1,
eters the normalized VelOCiW: UM /VX and the normalized where the prof”es become distorted.
wave vectorkl, or, equivalently, the Thiele modulu$? We recall that Eq(20) was derived under the two as-
=2/(kl,)?. The Peclet number may then be expressed agumptionsd2<1 anded2<1 (or Ped<1). Thus, the do-
Pe=e®/v2. The numerical simulations were performed onmain of validity of the Taylor regime is expected to be de-
lattices of typical length 2000 and of a widthranging be-  |ineated, in ae(®) diagram, by the curved=1, ed?=1,
tween 24 and 160. and the two axeg=0 and®=0, as shown in Fig. 5. Note
Figure 1 displays the time evolution of the propagationthat the axise=0 is included, as Eq(20) still holds in the
velocities of three different values of the average concentragpsence of flow, but the axid=0 is excluded, as it does not
tion (C=0.3, 0.5, and 0.7 We note that within a time inter- correspond to the propagation of a solitary wave but to the
val of the order of\/V, all values reach the same asymptotic pure Taylor diffusive procesén which no stationary exten-
velocity, V¢, beyond which the front shape becomes stationsion can be defingdThe numerical results are also shown in
ary. The traveling-wave-averaged concentration profilegig. 5. Solid circles denote agreement, thesymbols denote
C(x) are shown in Fig. 2, for various values of the control departure from Taylor regime predictiofisased on an arbi-
parameters and ®2. In the figure, the value of P® in- trary relative error of 5%
creases in the direction from top to bottom. There is an in- It is shown that the validity of Eq(20) is quite good in
creasing deviation of the profile from the predictions fromthe region of the parameter space under the cedé=1,
Eq. (5), as the product increases, and for higher value®,of and even sligthly above. The arbitrary criterion used corre-
in accordance with the above-mentioned Taylor regime consponds in fact to the parameted? being less than several
dition Pe®<1. It is interesting to note that the profile ob- units. Surprisingly enough, this last condition is found to be
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0.8
0.6
0.4
0.2
50 0
1
Pe=127 FIG. 2. Averaged concentration pro-
0.8 files in the stationary state. Solid line:
numerical simulations. Dashed line:
0.6 theoretical results from Eq5). Left
column: ®2=0.45. Right column®?
0.4 =3.24. From top to bottom, the nor-
02 malized flow velocitye takes the val-
’ ues 0.5, 1, 3, respectively. Also shown
— is the corresponding Peclet number.
%0 B0
1
[Pe =382
0.8
0.6
0.4F
0.2k
100 3007160 300

sufficient, for the Taylor regime predictions to apply, over thesignificant role in the propagation of the stationary front, and
whole range ofP explored numericallfup to®=6.3—i.e., both extent and velocity can be approximated by &f).
®2=40). This suggests that the conditidrf<1, which was We remark, however, that in this domaied?<1 and®?
needed to approximate the nonlinear diffusivity, by its ~ >3) the Taylor counterpai+ indicates only a second-order
linear counterparD;=P€&D,/2, is not necessary for Eq. correction, and the front is hardly affected by flow.

(20) to apply. This is all the more unexpected since for our  In summary, the Taylor regime predictiofgq. (20)]
kinetics reaction functiorf(C)=C?(1—C), the denomina- correctly account for a significant influence of the flow on
tor of D, [Eq. (18)], 1—f'(C)®?, has two real roots be- the chemical front propagation, in the domai®?<1 and
tween 0 and 1, for alb? values greater than 3. Hence, ®?<1. This last condition means that the extent of the front
provided thate®?< 1, the local divergence of the nonlinear in the absence of flowl(=100um for the IAA reaction
diffusivity D+,(C), for ®?>3, does not appear to play any has to be larger than the transverse dimensiai the flow

1 1 1 1 0 1
% 1 2 3 % 0 5 10
Pe Pe
FIG. 3. Normalized front extentl(/I,) vs the Peclet number (Pe FIG. 4. Normalized front velocity \(;/V,) vs the Peclet number (Pe
=Up/V,kl,). B: ®*=0.45@: ®?=3.24,0: ®?=3.24(distorted profile, ~ =uU,,/V ki,). B: $>=0.45, @: $>=3.24, O: distorded profiles. Solid
cf. texd). Solid line: pure Taylor expansiong/l, =1+ PEi2). line: pure Taylor expansion.
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=0.5 andC=0.4 for several different values of the param-

- X
gk N eterse and ®. For a constant value of (left or right col-
X umn), an increase i (occurring from top to bottom in Fig.
i x 1 6) leads to both a sharpening and distortion of the front. The
6F x & y concentration contours approach each other, as expected, and
i X they also exhibit a departure from the sinusoidal shape.
€ 4F x | These features signal the approach of the profile towards the
, ) eikonal regime, which, unlike the Taylor regime, is domi-
L x H 6 .
nated by the nonlinear effects.
2r x x x Consider, now, the eikonal regime. A simulation of the
2 x x x front in this regime(e=14.9 and®?~506) is shown in Fig.
® l X , X . .
00_4, 1 z > 7} ‘—g . 6H7 7. In agreement with Refs. 10-12, the front shape is not

symmetric: while the head of the froiileading edge, low

values ofx in Fig. 7) is flatter(as compared to a sinusoigial

FIG. 5. Region of the validity of the Taylor regime in the parameter spaceits back(trailing edge, higher values ofin Fig. 7) exhibits

The solid line denotes the curee= 1/®2; the dashed line is the curde=1. a cusp shape. It is interesting to plot the normalized front

S_olid circles: simulations an(_i Taylor regime prec.Jictions _in agreement. velocity Vi /V. versus the normalized maximum flow veloc-

simulations and theory not in agreement. Inset: zoom-in for the smaller X . . .

values ofe. ity e=Uy/V,. The results are shown in Fig. 8. We find that
V;/V, tends to ¥e as e increases, as expect&d This
means that the front is advected at the maximum possible

(or the cel). Hence, the Taylor regime applies to a range ofvelocity (with e>0 on the right of Fig. ¥, based on which

flow velocities which increases as the transverse dimensiothe front shape can be determined; then the amighe the

of the system decreases, and for this reason it is likely to beusp is

relevant in microfluidic systems.

Before closing this part, we provide one more figure to

illustrate the effect of the Thiele modulus on the concentra- = 1 c 23)
tion front. Figure 6 shows two isoconcentration contodrs cosf '
2408
£®? =0.23 2406} £ =045
N —a
2406F \\\ 2404',// RN
~ i N
S~ So P
2402} A
2404
2400
24020, . ) 2398, . . "
s 10 15 20 5 10 15 20
2 2
ed? = 0.40 % =0.
24100 £ 82 FIG. 6. Isoconcentration contoui®

=0.4 (dot-dashed line and C=0.5

2405 (dashed ling in the stationary state.
Solid line: theoretical results expected
2400 y in the Taylor regime[from Eg. (5)].
7/ Left column: €=0.5, right column:
2395 - o e=1. From top to bottomdb?=0.45,

3.24, and 20.25.

ed? = 10.13 4800

4800 4760,

4720

4760
4680

4640
4720 P ) 20 T60 0 30 20 T60
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1400

-
U
1200} M
X 0Uu
1000 . . . .
UM QT o1 1 . 10 100 1000
(I)Q
800 FIG. 9. Normalized front velocity/; /V, versus®? for e=3, showing the

U) transition between the Taylor regimemall ®2) and the eikonal regime
L (large ®?). @: simulations. Solid line: pure Taylor expansion. Dashed line:

] 1
20 40y60 80 100 eikonal approach.

FIG. 7. Isoconcentration conto@= 0.5 in the eikonal regimé=14.9 and
i;zti‘;ﬁg :p”edcir?;’t‘i’:i‘: ;’hegof?gzrgr?sﬁﬁ"’t‘sfe" line, axis on the rightNote (pep<1). The opposite, eikonal, regime was also discussed.
' We tested our predictions using numerical lattice BGK simu-
lations for third-order reaction kinetics, in the advection—
leading to the result ca&=1/(2e+1). This suggests that diffusion—re_acti_on equation, and with a sinusoi_dal variation
¢—ml2 whene—; that is, the front shape on the left side of of thg veIO(_:lty field. Good agreement was obtained between
Fig. 7 tends to a cusp whenincreases. Note also that our the simulations and the Taylor expansion, at sibgland the
measurement of~0.03 in Fig. 7 is in reasonable agreement€ikonal regime predictions at large.
with Eq. (23) which predicts 1(2e+1)=0.03 fore=14.9. To
conclude, we plot in Fig. 9 the evolution &f;/V, versus

®2. In agreement with the previous predictions,/V,— 1 ACKNOWLEDGMENTS
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CONCLUSIONS knowledged.

In this paper, we presented a Taylor-like apprdidbr
the development of an autocatalytic reaction front in theAPPENDIX: EFFECT OF A 2D HAAGEN-POISEUILLE
presence of a laminar velocity field, under conditions of slowFLOW ON THE FRONT VELOCITY
kinetics. Analytical results were derived for the velocity and

th tent of th rati file. in th totic t In this Appendix we provide results for the advection—
€ extent ot the concentration protiie, in the asymplotic ravyig ,qion _reaction equation corresponding to the following
eling wave solution. A correction to the purely chemical

. . . ) ; 2D Haagen—Poiseuille flow between two parallel boundaries
wave front arises from Taylor-like dispersion, which does no

. Lo ; L L tIocated aty=*h/2:
include any contribution of the chemical reaction in the limit B o
of small Thiele modulus®?<1) and small Peclet number U(Y)=6U(1-Y)Y= 2U(1-X?). (A1)

Here, we denotedY=1/2+y/b=(1+X)/2. To facilitate

comparison with Refs. 12 and 14, we introduce the reduced

velocity e=U/V, and the reduced widtly=b/(2l ), which

is linked to the Thiele modulus for a third-order reaction,

D2=4792, o
Performing our Taylor-like expansion, with=U—U,

we get the following expression for the front profile correc-

tion:
6Ub2 [ 1 2 coshYzcothz/2)
h(Y)= =Y +Y2+ ——
. , Dz%\ 6 Vi z
% R 15
sinh(Y 2)

+ r(— , (A2)
FIG. 8. Normalized front velocity/; /V, versuse in the eikonal regime z
(P2=506). ®: numerical simulations. Solid line: eikonal theoretical result, —
ViV, =1+e. wherez?= — ®2f’(C), and for the dispersion coefficient,
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