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The threshold of the instability in miscible displacements in a Hele–Shaw
cell at high rates
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For sufficiently large viscosity ratios and injection rates, miscible displacements in a vertical Hele–
Shaw cell at high rates become unstable, leading to three-dimensional~3D! fingering patterns.
Below the instability threshold, the base state is 2D in the form of a ‘‘tongue’’ of constant thickness.
We apply the long wave Saffman–Taylor stability analysis to find an expression for the threshold
of instability as a function of the viscosity ratio and the injection rate. The results are in agreement
with the experimental data. ©2001 American Institute of Physics.@DOI: 10.1063/1.1347959#

BRIEF COMMUNICATIONS
The purpose of this Brief Communications section is to present important research results of more limited scope than regular
articles appearing in Physics of Fluids. Submission of material of a peripheral or cursory nature is strongly discouraged. Brief
Communications cannot exceed four printed pages in length, including space allowed for title, figures, tables, references, and an
abstract limited to about 100 words.
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Introduction. Miscible displacements in a Hele–Sha
cell and/or a tube have recently been extensively investig
numerically,1,2 theoretically3,4 and experimentally.4–6 At suf-
ficiently high flow rates, diffusion is negligible and a wel
defined interface exists between the two fluids, the shap
which is governed only by viscous and buoyant forces. In
experiments reported in Ref. 6 a vertical Hele–Shaw cell is
filled with an initial fluid 1. The cell consists of two paralle
plates of lengthL580 cm~directionx) and widthW510 cm
~direction y), separated by a spacer, ensuring a gap of u
form thicknessb51.00 mm or 1.92 mm~direction z). A
lighter and less viscous fluid 2, miscible to the fluid in plac
is injected at the top of the cell at a constant flow rate, g
erating a downward displacement. This displacemen
buoyant-stable but viscous-unstable. The two control par
eters are the viscosity ratio and the buoyancy-normali
flow rate defined, respectively, by

M5
h1

h2
and U 5

h1q

kDrg
5

q

Vg
, ~1!

whereh denotes viscosity,q the gap-averaged flow velocity
k5b2/12, the permeability of the cell,Dr5r12r2.0, the
density difference between initial and injected fluids a
Vg[kDrg/h1 , the buoyancy-driven velocity. At low flow
rates~but still high enough for Pe5qb/D@1, whereD is the
molecular diffusivity!, the interface between the fluids spa
symmetrically across the gap, and has a 2D tonguelike sh
in the x–z plane, which is invariant in the transverse2y
direction. However, when the viscosity ratio is larger than
critical value,M.MC , and at the same time the normalize
velocity exceeds anM-dependent threshold,UC(M ), the
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tongue becomes unstable leading to a 3D fingering patte6

The purpose of this note is to derive theoretical expressi
for the viscosity and velocity thresholds.

The base state.Below the onset of instability, the 2D
base state was found experimentally4 to consist of a~shock-
like! tongue of the displacing fluid of a constant relati
thickness,t, propagating at a constant velocity,VS , leaving
behind a film of the initial fluid of relative thickness 12t
~Fig. 1!. Except near the leading edge at the tip of the tong
this base state is a 2D parallel flow, in which the pressur
constant across the gap and along the transverse2y direc-
tion, but varies along the vertical,2x, direction. Far from
the tip, the velocity field consists of Poiseuille flow parabo
segments.3,4 Hence, the gap-averaged velocity,f i , for each
fluid i ( i 51,2) can be derived,

f i52
k

h̃ i

~]xP2 r̃ ig!, ~2!

where

h̃1~ t !52h1 /~ t12!~ t21!2,
~3!

h̃2~ t !52h1 /t~31~2M23!t2!,

and

r̃1~ t !5r123tDr/~ t12!,
~4!r̃2~ t !5r122tDr~31~M23!t !/~31~2M23!t2!.

The base state was found to exist within a certain region
M and U values. This region is delineated in Fig. 2 by
lower and an upper boundary. The dashed line is the lo
boundary of the region. It is defined by the condition that t
shape of the interface between the two fluids changes f
© 2001 American Institute of Physics
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one involving two self-spreading segments and an inte
shock~and which characterizes the regime below this bou
ary!, to a frontal shock followed upstream by a se
spreading segment~and which is the base state under cons
eration, Fig. 1!. The region has an upper boundary defined
Fig. 2 by the experimental data, which corresponds to
onset of the 3D instability. The lower boundary, denoted
U23, was analytically determined in Ref. 4. The objective
this note is to derive an analytical expression for the up
boundary, which is currently unknown. For this, we w
make use of the findings from our previous work.4

Between the two boundaries, the thickness of the tong
t, was found experimentally to remain approximately co
stant, as a function ofU, and to vary only as a function ofM.
Although we have no analytical theory at present to expl
this finding, we will combine it with the fact that a full ana
lytical description is available for the flow below this regio
and hence at the limiting boundaryU23.4 Thus, we obtain for
t at U23, and by extension fort in the entire region of the
base state, the expression

t~M !5
2M23

4M23
; M>

3

2
. ~5!

Figure 3 shows a comparison between Eq.~5! and the ex-

FIG. 1. Gap-averaged concentration profiles at four different time inter
(Dt520 s! for M523.6 andU51.2, near the onset of 3D instability~note
that for this particular viscosity ratio,U2350.6 andUC51.3). The base
state is a frontal shock of relative thicknesst and of velocityVS , as shown
schematically in the upper right corner.

FIG. 2. Comparison between the experimental results for the instab
threshold~circles! and its theoretical estimate, Eq.~15! ~full line!. The small
dashed line corresponds toU23(M ) obtained from Ref. 4. The dash-dot lin
corresponds to the threshold calculated by settingt51 in Eq. ~14!.
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perimental data. The agreement between the two is q
good. Equation~5! shows that the shocklike base state
possible only ifM>3/2, and thatt vanishes asM approaches
3/2.

The base state is analogous to the one studied in
Appendix of the classical paper by Saffman and Tay
~ST!.7 In the following, we will apply their long wave analy
sis to determine its stability.

Instability thresholds.Consider, first, the stability of the
more general base state illustrated in Fig. 4, where the
stream and downstream far field regions, denoted below
the subscriptj ( j 5u, d), consist of a central layer of displac
ing fluid 2, with relative thicknessestu and td , respectively.
The two regions are separated by a sharp front, moving w
the velocity

VS5
f 2~ td!2 f 2~ tu!

td2tu
5

f 1~ td!2 f 1~ tu!

~12td!2~12tu!
. ~6!

A combination of Eqs.~2!–~4!, ~6! leads to the following
pressure gradients at the interface:

~]xP! j5r jg2h jVS /k, j 5u,d, ~7!

where the quantitiesr j andh j depend on bothtu and td . In
each far region, the gap-averaged velocityq, obtained from
q5 f 11 f 2 , obeys a Darcy-type equation

q52
k

heff
~]xP2reffg!, ~8!

whereheff andreff depend on the local value oft @see Eqs.
~2!–~4!#. This equation, combined with the parallel flow h
pothesis~uniform t) and mass conservation, leads to the L
placian¹2P50. Thus, the problem becomes identical to t

ls

ty

FIG. 3. Comparison between the thicknesst of the base state~frontal shock!
before the onset of instability~circles! and the calculated values from Eq.~5!
~solid line!.

FIG. 4. Sketch of the base state assuming parallel flow: The displacing
occupies a central layer of relative thicknesstu andtd , upstream and down-
stream of the front, respectively. The front moves at velocityVS .
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



u

s

s
w

x-
on

th
u

e
n
di

lin

er
in
.
re

ex-

ed

the
i-
or
the
at
-

n
t to

ana-
e-

a-

ult-

a
ch

a-
w
tio-
ong
x-

ar-
y a
r.

e-
o.

s.

e-
h.

e-

os,
id

ry

lity

us
R.

ov-

d

n

801Phys. Fluids, Vol. 13, No. 3, March 2001 Instability threshold in miscible fluids in Hele–Shaw cell
ST problem. Consider, next, the rate of growth of a sin
soidal perturbation of the front,x5a exp(iny1st). By apply-
ing the conditions that the pressure perturbation vanishe
infinity, the pressure gradient obeys Eq.~7! at the interface,
with VS5VSo1as exp(iny1st), and that the pressure i
continuous on both sides of the front, we obtain the follo
ing dispersion relation between the growth rates and the
wave vectorn

s

n
~hd1hu!5~hd2hu!~VS2VC!, ~9!

where VC5@k(rd2ru)g/hd2hu# is the critical front
velocity.8 Alternatively, the dispersion relation may be e
pressed in terms of the pressure gradients in the far regi
namely

s

n
~hd1hu!5k@~]xP!u2~]xP!d#. ~10!

Physically, instability occurs when the absolute value of
pressure gradient downstream is larger than its value
stream. By eliminating the pressure gradients using Eq.~8!,
and introducing the normalized flow rateU5q/Vg , one ob-
tains

s

n
5a~U2UC!, ~11!

where

UC5
h1@reff~ td!2reff~ tu!#

@heff~ td!2heff~ tu!#Dr
and

~12!
a5Vg

heff~ td!2heff~ tu!

hd1hu
.

In terms oftu and td , the expression ofUC is
UC~ tu ,td!

5
~2M23!~ tu

21td
21tdtu!1323~M21!tutd~ tu1td!

2~M21!~ tu
21td

21tdtu!
.

~13!

Thus, for our particular base state (td50, tu5t) the disper-
sion relation finally reads

s

n
5Vg~U2UC!

~M21!@31~2M23!t2#t3

2@11~M21!t3#@21~M21!t3#

~14!
where UC5

~2M23!t213

2~M21!t2
.

Given the requirement Eq.~5! for the existence of the bas
state,M>3/2, Eq. ~14! shows that instability occurs whe
(U2UC)t.0, namely, it requires the simultaneous con
tionsM>3/2 andU.UC . Combining Eq.~5! with Eq. ~14!,
we then obtain the final expression for the boundary de
eating the onset of instability

UC~M !5
M ~M21 3

2~M2 3
2!!

~M21!~M2 3
2!

. ~15!

Equation ~15! is an analytical expression for the upp
boundary of the region discussed in Fig. 2. The result
curve is plotted in theM, U plane of Fig. 2 as a solid line
Comparison with the experimental data shows good ag
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ment between theory and experiment. In particular, this
pression gives rise to a threshold viscosity ratio ofMC

53/2, below which no viscous fingering was observ
experimentally6 ~for this high rate miscible displacement!.
We remark that our theoretical expression, derived in
long wave limit, givesa priori an upper bound to the exper
mental critical velocity, as the flow could be destabilized f
smaller velocities, at smaller wavelengths. In addition,
selected wave length in the fully-developed instability
later stages,l;5 b,6 does not clearly satisfy the long wave
length constraint,l@b. However, this selection occurs i
the late, nonlinear regime, which is not necessary relevan
the early-stage linear destabilization analyzed here. The
lytical expressions do provide a good prediction for the v
locity threshold,UC , and a satisfactory account of the vari
tion of the tongue thickness withM and its vanishing at
MC53/2. By contrast, if we were to neglect thet(M ) de-
pendence, and use constantt in Eq. ~14!, the results are less
satisfactory. Plotted in Fig. 2 as a dash-dot line is the res
ing expression for the specific caset51, and where, now,
UC5M /(M21). It is clear that, although fitting the dat
well at largeM, this curve fails to provide an adequate mat
at smaller values ofM.

Conclusions.In this note, we studied the onset of inst
bility for a vertical miscible displacement in a Hele–Sha
cell at high rates. Using a base state which is viscosity ra
dependent, and determined analytically, we applied the l
wave Saffman–Taylor stability analysis to obtain explicit e
pressions for the instability thresholdsMC andUC(M ). The
results are in good agreement with the experiments. In p
ticular, they also predict that in the absence of buoyanc
value ofM larger than 3/2 is required for instability to occu
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