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Gravity Waves at the Interface between Miscible Fluids and at the Top of a Settling Suspension
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Gravity waves were generated at the interface between miscible fluids, or at the top of a settling
suspension or a fluidized bed. For these three systems the dispersion relation was measured and compared
to the theory and calculated between two buoyant viscous fluids without surface tension. The experimental
findings are found to be in good agreement with theory when effective viscosity and volume-averaged
density values are used.
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FIG. 1. Sketch of the experimental setup. L � 50 cm, H �
42 cm, and b � 5 mm.
Suspensions are ubiquitous in physics and engineering.
Colloidal hard-sphere suspensions have been used as
model fluids, addressing a variety of statistical physics
issues (e.g., the nucleation of a solid phase [1]). On the
other hand, the suspension of macroscopic spheres is often
represented using an effective fluid description. This ap-
proach has been demonstrated convincingly in suspensions
of neutrally buoyant particles [2,3]. However, its extrapo-
lation to the nonbuoyant case of sedimenting systems
(where fluid and particles differ in density) presents two
main difficulties. First, the relative velocity between parti-
cles and fluid may affect the configuration of the particle
ensemble, and, consequently, the rheological bulk behav-
ior. Second, as the particles settle, regions of pure fluid
form, requiring the use of two fluid phases to describe the
bulk of the suspension and the behavior of the pseudointer-
face at the top of the settling suspension, have to be
analyzed. Fluid interfaces of this type are not supposed
to be stabilized in the macroscopic domain (range of
medium to large wavelengths) by effective surface tension
effects. Their characterization requires an understanding of
their response to external forces, such as buoyancy. The
evolution of gravitationally unstable interfaces (e.g., in a
Rayleigh-Taylor instability, where a heavy fluid displaces
from the top a lighter one [4]) has been studied at great
length and in a wide variety of physical contexts: between
miscible fluids [5,6], between reactive fluids [7,8], and
between a sedimenting suspension and a fluid [9–12].
From an experimental point of view, however, these studies
have been hampered by the difficulty of obtaining an
initially well-defined ‘‘interface.’’ The usual procedure is
to turn a cell upside down, where a gravity-stable interface
has been created first. The influence of such a rotation on
the initial interface remains unclear, however. Instead, the
understanding of interface behavior is also possible by
studying the response of the pseudointerface to gravita-
tional forces in the stable configuration. This is reported in
this Letter. At least in the linear regime, the information
obtained from the stable configuration can be theoretically
extrapolated to the unstable case, as the two configurations
differ only by the sign of the buoyancy term.
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We analyze experimentally and theoretically gravity
waves propagating at an interface separating two fluids.
Experiments are conducted for the following configura-
tions: between two miscible fluids of different densities
and viscosities, between the clear fluid and the sedimenting
suspension of non-Brownian particles, and at the top of a
fluidized bed. The latter two configurations are obtained by
conducting a sedimentation experiment leading to a set-
tling front, in the first case, and by controlling the upward
liquid flow rate (which compensates for the sedimentation
velocity [13] and leads to a stationary top front), in the
second case. In the fluidization experiments, the flow rate
also controls the volume fraction of the suspended parti-
cles, with larger flow rates leading to smaller volume
fractions. In all experiments, the dispersion relation corre-
sponding to the gravitational waves is obtained by measur-
ing the response of the interface to an imposed perturbation
of controlled amplitude and frequency. We find that the
resulting dispersion relation is identical for the sedimenta-
tion and fluidization experiments, for all volume fractions
and particle sizes considered. A theoretical dispersion
relation is then derived, corresponding to gravity waves
between two buoyant miscible and viscous fluids. The
measured dispersion relation for the three experiments is
found to be in good agreement with the theoretical one,
when, in the case of suspensions, effective viscosity and
averaged density values are used. The agreement applies to
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the macroscopic behavior probed, in the range of medium
and large wavelengths, and may not necessarily apply to
short-wave perturbations, where effective surface tension
effects are of equal importance.

The experimental setup is sketched in Fig. 1. The Hele-
Shaw cell is open at the top and consists of two parallel
glass plates of size 50 cm� 50 cm, separated by a small
gap b � 5 mm. The cell was chosen sufficiently large to
avoid reflection at the lateral boundaries. A thin porous
medium was placed at the bottom inlet of the cell, to ensure
a uniform velocity in the fluidization experiments. The
suspended particles are glass beads of diameter d 2
�100; 125� �m and relative density 2.5. Experiments
were performed with volume fractions in the range � 2
�0:30; 0:52�, corresponding to upward flow velocities be-
tween 0.3 and 1:95 mm=s. These small velocities ensure a
small particle Reynolds number (Rep � Ufluidd=�fluid �
0:1) and, hence, laminar flow and a stable fluidized bed.
Interface perturbations were generated by a vertically os-
cillating cylindrical hammer 1.5 cm long and 4 mm in
diameter, the end of which was placed at the interface.
The oscillatory motion was implemented through a cam-
shaft rotated by a stepping motor. We varied the frequency
f in the range �0:5; 5� Hz and kept the amplitude equal to
0.5 cm. The initial interface was stationary in the fluid-
ization experiments, and settled at a constant velocity in
the sedimentation ones. The results were captured on a
video camera (IIDC CMOS) and analyzed with Image J
software. In the sedimentation experiments, the perturba-
tion device and the video camera were fixed on a glide,
translated by a dc motor, with the same velocity as the
sedimenting front. The experiments between two miscible
fluids consisted of a mixture of water, glycerol, and salt
( � 1260 kg=m3 and � � 8� 10�3 Pa s) for the under-
lying heavier fluid and of pure water for the overlying
lighter one. In these experiments, the frequency f of the
imposed perturbation was in the range �0:5; 1:25� Hz.

Figure 2 is a snapshot of the interface response for a
fluidized bed: small-amplitude waves propagate outwards
from the initial perturbation and are damped at a short
distance away. Such waves were observed in the frequency
range �1:25; 3:5� Hz. At higher frequencies, the waves
were overdamped, whereas at lower frequencies, the am-
plitude of the perturbation was not detectable (the forcing
mechanism becomes inefficient at low frequencies).

A spatiotemporal diagram of the results corresponding
to Fig. 2 is shown in Fig. 3. The white strips in the figure
FIG. 2. Snapshot of the waves generated at the top of a fluid-
ized bed. The volume fraction is � � 0:37, the suspending fluid
is water, and the beads are 125 �m in diameter. (Window width:
22 cm of the 50 cm wide Hele-Shaw cell.)

20450
correspond to the traveling waves; they are parallel equi-
distant straight lines, showing that the waves are periodic
and have a constant velocity. A Fourier transform showed
that the waves have the frequency of the imposed pertur-
bation and do not contain any harmonics, which should
allow comparison with a linear theory. The inset of Fig. 3
displays a typical snapshot of the height of the interface.
Such a curve was fitted by a sinusoidal form with a decay-
ing amplitude. The so-obtained damping length is very
short and comparable with the wavelength �. For each
frequency, 2048 images were processed, and the resulting
values (which differ typically by �10 m�1 for the real part
of the wave number) were averaged.

Fluidized beds are often used to provide stationary
suspensions in the laboratory frame. However, fluidized
and sedimenting suspensions are not necessarily equiva-
lent, as the volume-averaged velocity of the two phases is
zero in sedimentation, while it is equal to the upward flow
velocity in fluidization. This difference may have two
effects. First, the fluidization velocity may impart an iner-
tial contribution to the suspension. Second, the nonzero
velocity profile across the gap of the cell, in the fluidized
bed case, may lead to a different particle configuration
(concentration profile) in the gap, which could affect the
dynamic response of the suspension. We investigated these
possible effects by performing experiments at different
particle volume fractions,�, and perturbation frequencies,
in both sedimentation and fluidization configurations.
The results, plotted, respectively, as open and plain sym-
bols in Fig. 4, compare very well. These trends support
the contention that neither the mean flow rate nor the
configuration in the gap influence wave propagation.
The latter assertion was also tested by changing the bead
size, which may affect the concentration variation in the
gap [14,15]. Experiments carried out with larger beads
FIG. 3. Spatiotemporal image of the interface amplitude cor-
responding to Fig. 2. Imposed frequency: 3 Hz; amplitude:
0.5 cm. Inset: Interface height and exponential fit of its ampli-
tude.
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FIG. 4. Dispersion relations for gravity waves in sedimentation
and fluidization. (a) Wave number kr versus !2 (! � 2�f).
(b) Damping rate ki versus kr. Measurements at the interface
between the clear fluid and the fluidized or sedimenting suspen-
sion (plain or open symbols, respectively). Solid lines: theoreti-
cal predictions. (�, �)� � 0:52; (�, 4)� � 0:44; and (�, �)
� � 0:30.
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(d 2 �200; 250� �m) did not show any significant effect
on the dispersion curve.

Suspensions are often described as a homogeneous ef-
fective fluid with a volume-averaged effective density,
susp � solid�	 fluid
1��� and an effective viscosity
�susp � �fluid�r
��, where the relative viscosity �r
��

depends only on the volume fraction � [16–18]. With
this model, when the wavelength is large compared to the
thickness of the cell, the perturbation in the flow velocity is
~~v � �~u
x; z; t� ~ex 	 ~w
x; z; t� ~ez� � h
y�, where, in this limit
of low frequencies, h
y� is the Poiseuille (parabolic) pro-
file. However, because the viscous length � �

������������
2�=!

p

(� � �= and ! � 2�f) is smaller than the gap b in our
experiments (e.g., � � 1 mm for � � 0:4 and f � 1 Hz),
the phase of the velocity will vary across the gap and
h
y� � 1

N 
1� cos
�y�
cos
�b=2��, where � � 
1	 i�� and N is the

normalization coefficient. In the long-wave approximation,
the gap-averaged velocity ~v � 
1=b�

Rb=2
�b=2

~~vdy, obeys
continuity (div ~v � 0) and the Stokes-Darcy equation
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[6,19],


@ ~v
@t

� � ~rP 	 � ~v � 
�=Keff� ~v 	 ~g�;

where Keff � b2� 2�b tan
�b=2� � 1�=�2�b tan
�b=2�� is the
effective permeability. The above equations also hold in
the case of fluidization, as the Strouhal number St �
!=Ufk, which is the ratio of the phase velocity to the

fluidization velocity, is large, and the inertial term 
 ~Uf 
~r� ~v is negligible.

Writing the z component of the velocity perturbation as
w
x; z; t� � W
z�ei
kx�!t�, with k complex and ! real, and
assuming the same form for the x component u and the
pressure, one finds after linearization, the following equa-
tion:

�i! 	 �
D2 � q2��
D2 � k2�w � 0

with D � d=dz and q2 � � 
i!=�� 	 k2 � K�1
eff . This

equation is satisfied in each of the two fluids. Its solution
in a semi-infinite domain is w � Ae�kz 	 Be�qz, where
the appropriate sign is chosen in each fluid region to ensure
exponential decay away from the sharp interface.
Continuity in the two velocity components, the tangential
viscous stress and the pressure at the interface, leads to a
set of four homogenous linear equations. The dispersion
relation is obtained by setting the determinant to zero. This
must be computed numerically. We, first, tested the validity
of the so-obtained dispersion relation of gravitational
waves between two nonmixing miscible fluids, by per-
forming an experiment with two real fluids. The dispersion
curves, for f 2 �0:5; 1:25� Hz, are displayed in Fig. 5,
together with the corresponding theoretical predictions.
The good agreement between the two validates the theo-
retical description. Noteworthy is the fact that in the range
of frequencies studied, effects of surface tension [20] act at
smaller wavelengths and cannot be accessed in the range of
frequencies we used.

Applying the above theory to suspensions requires the
value of the effective relative viscosity function �r
��.
This was determined by a best fit with the experimental
data. The corresponding dispersion curves for the three
different volume fractions are shown in Fig. 4. A good
agreement is observed between theory and experiments for
all cases tested in sedimentation and fluidization. The
relative viscosities used were �r � 33� 3, �r � 9:25�
1:25, and �r � 3� 0:5 for� � 0:52,� � 0:44, and� �
0:3, respectively. These values can be compared to expres-
sions commonly found in the literature. For example, one
can cite the empirical law of Krieger [18] �r �

1��=�m�

�1:82 (proposed for small volume fractions,
but also used at finite values) and the expression by Ball
and Richmond [16] �r � 
1��=�m�

�3=2 and by Mills
[17] �r � 
1���=
1��=�m�

2. A key parameter in
these expressions is the packing volume fraction �m (at
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FIG. 5. The dispersion relation of gravity waves between two
miscible fluids. (a) Wave number kr versus the square of the
wave frequency !2. (b) Damping rate ki versus wave number kr.
Symbols: experimental results; solid lines: theoretical predic-
tions.
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which the effective viscosity becomes infinitely large).
Currently, there is no consensus on its value. If we use
the measured value in the sediment, �m � 0:58, the com-
parison between the best-fit parameters and the above three
models for the effective viscosity is good for � � 0:3 and
0:44. However, the three expressions disagree with each
other at the largest value � � 0:52, where �r;Krieger � 62,
�r;Ball � 30, and �r;Mills � 34 to be compared to our ex-
perimental value �r � 33� 3. Note that the latter shows
that the Krieger expression should not be used at high
concentrations.

In this Letter, we conducted experiments of gravity
waves on the interface between a clear fluid and a sedi-
menting suspension, or between a clear fluid and a fluid-
ized suspension. The experimental configuration
corresponds to a stable interface. For comparison, waves
at the interface between two miscible fluids were also
studied. For suspensions of different volume fractions
and particle sizes, we obtained an identical response of
20450
the interface in both sedimentation and fluidization. The
corresponding dispersion relations were measured for the
three systems. Our measurements agree with the theory of
gravity waves between two buoyant and viscous fluids,
with an effective viscosity and averaged density for sus-
pensions. This demonstrates that the same description can
be applied to the unstable case.
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