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We report on experiments with two miscible fluids of equal density but different viscosities. The
fluids were injected co-currently and concentrically into a cylindrical pipe. The resulting base state
is an axisymmetric parallel flow. The ratio of the two fluid flow rates determines the relative amount
of the fluids, thus the radius of the inner core fluid. Depending on this radius and the total flow rate,
two different and unstable axisymmetric patterns, denoted by mushrooms and pearls, were observed.
We delineate the diagram of occurrence of the two patterns as a function of the various
parameters. © 2008 American Institute of Physics. [DOI: 10.1063/1.2838582]

I. INTRODUCTION

The hydrodynamic stability of two phase flows in a
pipe has been widely investigated, both theoretically and
experimentally,l_7 following the pioneering theoretical work
of Hickox.?

Miscible fluid displacement in the same geometry,
in which an injected fluid displaces another initially occupy-
ing the pipe, has been addressed more recently,
experimentallygf13 and using numerical simulations.'*!
When the displacing fluid is less viscous than the displaced
one, a moving finger of the injected fluid develops and
propagates into the fluid in place following a stationary pro-
file, analogous to the Taylor’s bubble observed in immiscible
fluids.'® Many studies have focused on the thickness of the
displaced fluid layer left behind the finger, while some others
have reported on the destabilization of the (pseudo-) inter-
face between the fluids at large Reynolds numbers. Various
patterns, such as axisymmetric sausagelike, or asymmetric
corkscrew patterns have been reported.m’w’l7 Scoffoni et
al.”® delineated the stability map in the case of a stabilizing
density contrast in such flows. They noticed that the ob-
served instability was likely due to the destabilization of the
quasiparallel flow upstream of the finger tip, as typically ob-
served in immiscible core annular parallel flows.>>'® Charru
and Hinch'® discussed the different mechanisms able to de-
stabilize stratified parallel flows in plane Couette geometry,
in the absence of surface tension and showed that the desta-
bilization could result either from the ratio or the difference
of the shear stress on both sides of the interface.

A recent numerical study20 addressed the linear destabi-
lization of miscible neutrally buoyant core annular parallel
flows; such flows could exhibit corkscrew or axisymmetric
unstable modes when the diffusion coefficient of mass and
momentum are close to each other (Schmidt number close to
unity therefore corresponding to gas flows). The study also
indicates that at larger Schmidt numbers, the axisymmetric
mode should prevail, and be observed for rather small Rey-
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nolds numbers and large wave numbers. These last predic-
tions partly agree with the observation of corkscrew insta-
bilities by Cao et al.* at low Reynolds number, but using
non-Newtonian power-law fluids. Here we report on experi-
mental investigations of the nonlinear regime of unstable
miscible Newtonian liquid core annular flows. For a fixed
viscosity ratio (i.e., a fixed shear ratio at the interface), we
delineate the occurrence of the different patterns, for varied
Reynolds numbers and core fluid radius.

Il. EXPERIMENTS

Experiments were performed in a vertical transparent
Perspex cylindrical tube of 1 m length and an internal radius
of R=1.0 cm. An upwards injection of the two fluids was
implemented, using a concentric inner tube of radius smaller
than R, as sketched in Fig. 1. Obtaining a parallel flow along
the length of the tube required a sufficiently large inner tube
radius (of internal and external radii equal to 0.75 cm and
0.85 cm, respectively). The core fluid and the wall fluid were
simultaneously injected with two pumps, at the constant flow
rates, Q... and Q... respectively. The apparatus was en-
closed in a square box filled with water in order to avoid
significant optical distortion, and a video camera recorded
the fluid displacement. The optical contrast between the two
fluids was obtained by blue dying of the core fluid. The use
of a thin laser sheet (I mm wide), illuminating a plane con-
taining the central axis of the tube, allowed us to capture the
details of the patterns in the plane (the dye was fluorescein in
that case). Most of the experiments were conducted with
water-natrosol mixtures, which can provide large variations
in viscosity (typically from 1073 to 0.3 Pas), with small
variations in density. These mixtures are perfectly Newtonian
in the range of shear rates used in our experiments.zz’23 The
core fluid viscosity and the viscosity ratio were chosen equal
t0 Yeore=107> Pa's and M= 1y,.1/ Deore =25, respectively. The
fluid densities were matched to p=999.8 kg/m? by adding
calcium chloride. This leads to the following kinematic vis-
Cosities, Voore= Teore/ P= 1070 m?/s and vy, =25 X 107° m?/s.
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FIG. 1. Sketch of the injection device used to implement core annular flow.
The cylindrical tube (of 1 m length and R=1.0 cm radius) surrounds a con-
centric smaller tube (of inner radius 0.75 cm). The core fluid is injected into
the smaller tube and the wall fluid is injected into the annular volume sur-
rounding the small tube. The core flow converges towards a parallel flow
over a viscous entry length, L,.

For a given viscosity ratio, the experimental control pa-
rameters are the two fluid flow rates. The total flow rate,

0=0,0e+ Oy sets the average flow velocity, U=Q/(7R?),
and consequently the Reynolds and Péclet numbers of the
experiment, Re=UR/v,,.. and Pe=UR/D,,. The molecular
diffusion coefficient, D,,, was estimated as in Refs. 22 and 23
to D,,=10"1""m?/s, setting the Schmidt number to
Sc=v/D,,=10* The range of Re used in the experiment is
between 2 and 60; the corresponding Pe ranged between
2% 10* and 6 X 10°. Parallel flow of the two fluids is estab-

lished beyond a viscous inlet length, L, = UR?/ v, which is
of the order of 1 cm for the typical parameter values (Fig. 1).
Under parallel flow conditions, the flow rates set the radius
R.ore Of the core fluid. Assuming that the two fluids have not
diffused (large Pe), the Poiseuille-type velocity profile ex-
presses itself in terms of the relative core fluid radius
r=Reoe/ R as vy(h)=2U[1-Mh*+(M-1)r2]/[1+(M-1)r*]
and v,(h)=2U0(1-h>)/[1+(M-1)r*] for 0<h<r and
r<h<1, respectively (where h is the relative distance from
the axis). This velocity profile is in reasonable agreement
with our Particle Image Velocimetry (PIV) measurements be-
yond the viscous entry length. Accordingly, the relative core
fluid radius satisfies the relation

Qcore_2r2+(M_2)r4
Q0 1+WM-1)rt

(1)

As the above function is monotonic for r € [0, 1], the relative
core radius is uniquely determined from the flow ratio
Qcore’ Q. Moreover, the difference between the shears on
both sides of the interface Ay=4r(M—1)U/[1+(M~-1)r*]R
is almost linear in r, for *<1/3(M-1), i.e., r<0.35 for
M =25, so that r can be also considered as a measure of the

FIG. 2. Typical flow geometry near the injection plane. Depicted is the
typical length, Lg, beyond which the parallel core flow destabilizes.

Phys. Fluids 20, 024104 (2008)

FIG. 3. Patterns observed at r=0.25 and for different values of Re increas-
ing from top to bottom (Re=5,9,12,18). The sequence shows the evolution
from a pearl-like to a mushroom-like pattern.

shear difference, Ay=4r(M—-1)U/R, in most of our experi-
ments. In the following, the control of the relative flow rates
will be expressed in terms of the variable r, for the sake of
simplicity.

lll. INSTABILITY PATTERNS

Figure 2 displays a typical flow geometry obtained in the
vicinity of the tube inlet. We observe the following:

(a)  Close to the injection, the convergence towards a par-
allel flow takes place over a viscous entry length, L,
of the order of the tube radius R;

(b)  Further downstream, the (pseudo-) interface between
the fluids is parallel over a length L;

(c) Even further downstream, an instability pattern devel-
ops, the shape of which is “mushroom”- or “pearl”-
like, depending on the values of Re and r.

Figure 3 shows instability patterns obtained for r=0.25
and different Re numbers (increasing from top to bottom in
the figure). In the upper two panels, the instability results in
a succession of “egg-shaped” patterns of the core fluid, de-
noted by pearl patterns; in the lower two panels, the patterns
take the form of “mushrooms.” They are closer to one an-

FIG. 4. (Color online) Time evolution of one particular pearl-like pattern,
traveling at about 2 mm/s, at Re=10.5 and r=0.26. Time increases from left
to right and from top to bottom. Notice the bursts of the wall fluid which
propagate through the traveling pattern and exhibit a kind of umbrella
inversion.
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Pearl and mushroom instability patterns

FIG. 5. Patterns observed at Re=18 and for different values of r increasing
from top to bottom (r=0.12,0.19,0.24,0.25). The sequence shows the evo-
lution from a pearl-like to a mushroom-like pattern.

other and exhibit a curling backwards of the flow direction.
Unlike the “mushrooms,” the “pearls” are connected by thin
filaments of diffuse core fluid. Figure 4 shows that the trav-
elling “pearls” are crossed by bursts of the wall fluid swept
along by the flow. These bursts exhibit a kind of “umbrella”
inversion as they propagate through the “pearls.”

Figure 5 shows instability patterns at Re=18 and differ-
ent r values (increasing from top to bottom in the figure).
Again, the patterns evolve from “pearls” to “mushrooms” as
r increases.

The various patterns obtained for different values of Re
and r are arranged in the r—Re plane of Fig. 6. The figure
shows that mushroom patterns are obtained at large Re or
large r, whereas pearl patterns correspond to smaller Re and
r, and the boundary delineating the two corresponding re-
gions is rather well defined. We note that for r larger than
roughly 0.4 and for moderate values of Re, the fluid interface
was too diffuse for the difference between the patterns to be
discernible.

To characterize the patterns more quantitatively, we have
measured their typical wavelengths, N. Figure 7 plots the
wavelength normalized by the tube radius R, as a function of
Re, for r=0.26. For the mushroom patterns (larger Re) the
wavelengths are of the order of R, and decrease when Re is
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FIG. 6. Domain of occurrence of the two patterns in the r—Re plane.
Mushroom-like patterns (A) are obtained at large Re or r; pearl-like patterns
(@) correspond to smaller Re and r. The empty symbol (O) denotes the
coexistence of the two patterns in the same experiment.
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FIG. 7. Normalized pattern wavelength, N\/R vs Re, for r=0.26 [(®):
pearls, (A): mushrooms].

increased. This decrease holds, and may be even stronger, for
the pearl patterns (below Re=10), and the wavelength is
significantly larger than R. We note that this decrease over
the range of Re is close to A~ 1/ Re?2, which is not accounted
for by any of the predictions of the linear stability analysis
(either long wave or short wave regimes).>"”

IV. CONCLUSIONS

We report on core annular flow experiments with two
neutrally buoyant miscible fluids of different viscosities. The
radius of the less viscous core fluid was varied with the help
of a centerline injector. Whatever the core fluid radius, the
parallel flow obtained near the injection plane always desta-
bilizes downstream, leading to two axisymmetric patterns the
shape of which is either mushroom-like or pearl-like. The
occurrence of these two patterns has been delineated; pearls
form for small core radius or Reynolds number, and mush-
room patterns are observed otherwise.
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