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We address the issue of the convective or absolute nature of the instability of core-
annular pipe flows, in experiments using two miscible fluids of equal density but
different viscosities, the core fluid being much less viscous than the wall one. We
use a concentric co-current injection of the two fluids. An axisymmetric parallel base
state is obtained downstream the injector. The core radius RI and the Reynolds
number Re of the so-obtained base state are varied independently due to the control
of the flow rate of each fluid. However, a downstream destabilization of this base
state was observed within the explored range of the two control parameters RI and
Re. Moreover, the fixed location of this destabilization, observed for some particular
parameters, suggests an absolute nature of the instability. We present a tentative
delineation of the nature (convective or absolute) of the instability and discuss the
accessible measurements to experimentally address this issue.

1. Introduction
First discovered in the context of plasma physics (Briggs 1964), the concept of

absolute and convective instability has been significantly used in hydrodynamic open
flows (Huerre & Monkewitz 1990) such as a falling film down an inclined wall
(Brevdo, Laure & Bridges 1999) or a fibre (Duprat et al. 2007), wakes (Chomaz
2005). When a given unstable flow is locally perturbed by a small disturbance, two
different types of evolution can be encountered (Huerre & Monkewitz 1990). For a
convectively unstable flow (CU), the disturbances are amplified and advected away
from their initial location. Such a flow behaves like a noise amplifier. For an absolutely
unstable flow (AU), although advected, the perturbation is so strongly amplified that
it invades the whole space (downstream and upstream). In such a case, the so-called
global mode will prevail at long times and the system will behave like a self-sustained
resonator, which oscillates at an intrinsic frequency (Huerre & Rossi 1998; Chomaz
2005). In a theoretical frame, the transition corresponds to the pinching of two spatial
branches of the dispersion equation. Therefore, the transition can be either computed
or obtained by the study of the impulse response as carried out in the companion
paper (Selvam et al. 2008). However, except in devoted experiments where artificial
perturbations have been introduced by means of a magnetically driven vibrating
ribbon (Huerre & Monkewitz 1990) or in the case of a subcritical transition (Gondret
et al. 1999), the transition is experimentally difficult to determine (Duprat et al. 2007).
Indeed, it is non-trivial to perturb the system at a particular location away from the
boundary conditions. Moreover, in the absolute case, the base state is experimentally
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Figure 1. Sketch of the experimental setup used to achieve a core-annular flow. One metre
long cylindrical tube has a radius R = 1 cm. The core fluid is injected in the smaller tube of
inner radius 0.75 cm and outer radius 0.85 cm. The wall fluid is injected in the remaining
annular, between the smaller tube and the wall. The flow rate of each fluid is monitored by a
pump.

unachievable as the presence of some noise, which may trigger the instability, cannot
be avoided.

Here, we address the issue of the experimental delineation of the CU/AU transition
for the case of the core-annular flow (CAF) of two miscible non-buoyant fluids, as
sketched in figure 1. Note that miscible CAFs are used to feed some static mixers,
which lose efficiency when axial segregation of the fluids occurs upstream the mixer,
which may happen in the case of absolute instabilities (Cao et al. 2003).

The instabilities of CAFs have been widely investigated in the case of immiscible
fluids (Hickox 1971; Joseph, Renardy & Renardy 1984; Hu & Joseph 1989; Bai,
Chen & Joseph 1992; Joseph & Renardy 1992a ,b; Joseph et al. 1997; Kouris &
Tsamopoulos 2001, 2002; Guillot et al. 2007). They involve competition between
viscous shear, inertia, capillarity and buoyancy and can be enlightened by the analysis
of the two-dimensional shear flows, as performed by Hinch (1984), Albert & Charru
(2000) and Charru & Hinch (2000). Taking into account buoyancy and surface
tension, Hickox (1971) showed that a CAF with the less viscous fluid in the core
was unstable. Later, Joseph et al. (1984) showed that the CAF configuration with
the less viscous fluid at the wall, used to lubricate pipeline flows, was unstable if the
annular film was not thin enough. These early works have been completed by the
study of the nonlinear effects (Papageorgiou, Maldarelli & Rumschitzki 1990; Kouris
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& Tsamopoulos 2001, 2002). More recently, Guillot et al. (2007) have studied the
lubrication regime of the CAF for microfluidic applications. They have shown that
the CU/AU transition could be invoked to explain the onset of the drop-producing
regime (allowing various applications as emulsification and encapsulation).

For the miscible case, most effort has been paid to characterize the influence of
the viscosity ratio and of the buoyancy effects on the displacing front (Chen &
Meiburg 1996; Petitjeans & Maxworthy 1996; Scoffoni, Lajeunesse & Homsy 2001;
Kuang, Maxworthy & Petitjeans 2003; Balasubramaniam et al. 2005). Miscible fluids
are usually used under conditions such that the two fluids have not time enough to
mix, i.e. at high Péclet number. The fluids therefore exhibit a sharp pseudo-interface
between them, but without surface tension. The issue of the comparison of the miscible
fluid displacement in the limit of large Péclet numbers with the immiscible fluid one
in the limit of large capillary numbers has been addressed (Petitjeans & Maxworthy
1996): In these two limits, the flows of miscible fluids without diffusion are similar
to the flows of immiscible fluids without surface tension. In addition, we note that
the lack of surface tension in miscible flows leads to a configuration similar for
two-dimensional flows and for axisymmetric ones. Recently, Selvam et al. (2007) have
performed the temporal linear stability analysis of the non-buoyant miscible core-
annular flow instabilities, using spatially periodic perturbations. They have shown
that such a flow was subject to axisymmetric instabilities at high Schmidt number.
However, this temporal analysis does not address the issue of the convective/absolute
nature of the instability which characterizes open flows, where perturbations develop
spatially.

In the present paper, we study experimentally the effect of the Reynolds number
and of the core fluid radius on the convective/absolute nature of the instability for
a fixed viscosity ratio. In § 2, we present the experimental setup. In § 3, we introduce
all the different measurements used to investigate the instability and the CU/AU
transition presented in § 4. A discussion of the results follows in § 5. In a following
companion paper (Selvam et al. 2008), our results will be quantitatively discussed and
compared to the linear stability analysis and nonlinear numerical simulations.

2. Experimental setup
2.1. Core-annular flow setup

The experimental setup is sketched in figure 1. Experiments are performed in a vertical
transparent Perspex cylindrical tube of length 1 m and internal radius R = 1 cm. An
upwards injection of the two fluids is implemented, using a concentric inner nozzle
tube of inner and outer radii 0.75 and 0.85 cm. The two fluids, namely the core
fluid and the wall fluid, are simultaneously injected with two pumps, at the constant
flow rates, Qcore and Qwall , respectively. Note that for the experiments of harmonic
excitation (§ 4.2), an electronic device enables to impose an oscillating Qcore , while
maintaining the total flow rate Q =Qcore + Qwall constant. The two fluids are salted
water for the core and a water–natrosol mixture for the wall, of viscosities equal to
ηcore =10−3 Pa · s and ηwall = (25 ± 2) × 10−3 Pa · s, respectively. Salt (calcium chloride)
was added to match the densities of the two fluids to ρ = 1000 kg m−3, with an
accuracy of ±10−1 kg m−3. These mixtures are perfectly Newtonian in the range of
shear rates used in our experiments (Torrest 1982; Le Bars & Davaille 2002), and
have a viscosity ratio M = Log(ηwall/ηcore) = 3.2 ± 0.1. To ascertain the validity of
our results, some additional experiments were also performed with water–glycerol
mixtures with the same viscosity ratio.



308 M. d’Olce, J. Martin, N. Rakotomalala, D. Salin and L. Talon

L||

Lv

(a) (b)

2RI 2R

Figure 2. (a) Instability pattern for a core fluid relative radius R̃I =0.37, with the core fluid
dyed blue. (b) Instability pattern for a core fluid relative radius R̃I = 0.48, with the core fluid
dyed with fluorescin, obtained using a laser sheet. The well-defined pseudo-interface between
the two fluids r̃I (x, t) is determined from these images. We can observe streamwise from the
inlet: (1) the viscous entry length Lν , of the order of the tube radius; (2) a quasi-parallel length
L‖ where the pseudo-interface between fluids looks parallel; (3) an axisymmetric instability

pattern, the shape of which is mushroom like (eM = 25, Re = 20).

As can be seen in figure 2, a parallel core-annular flow is achieved beyond an
inlet length Lν (∼1 cm in our experiments). This length results from the competition
between advection and diffusion of mass momentum. The core radius in the parallel
flow region is set by the ratio Qcore/Q. Indeed, under the parallel flow conditions and
assuming that the two fluids do not mix, the base Poiseuille parabolic-like velocity
profile expressed in terms of the core fluid relative radius R̃I =Rcore/R and the relative
radial coordinate r̃ = r/R reads

Uwall =
2 (1 − r̃2)

1 + (eM − 1) R̃I

4
Ū (2.1)

for the wall fluid (R̃I < r̃ < 1) and

Ucore =
2

(
1 + (eM − 1) R̃I

2 − eM r̃2
)

1 + (eM − 1) R̃I

4
Ū (2.2)

for the core fluid (0 < r̃ < R̃I ), where Ū = Q/(π R2) is the average flow velocity. Thus,
the core fluid relative flow rate reads

Q̃core =
Qcore

Q
=

2 R̃I

2
+ (eM − 2) R̃I

4

1 + (eM − 1) R̃I

4
. (2.3)

As the above function is monotonic for R̃I ∈ [0, 1], the core radius is uniquely
determined from the flow ratio Q̃core . Here, we will use R̃I as a control variable,
together with the Reynolds number, defined by Re = ρŪ R/ηcore . We explored the
ranges R̃I ∈ [0, 0.6] and Re ∈ [2, 60], for the fixed viscosity ratio ηwall/ηcore = eM = 25.
We note that our experiments were performed with a fixed Schmidt number
Sc = ηcore/ρDm. The molecular diffusion coefficient Dm estimated as in Torrest
(1982) and Le Bars & Davaille (2002) is Dm � 10−10 m2s−1, and thus Sc ∼ 104.
Since the Péclet number reads Pe = Ū R/Dm = Sc Re, the control parameter Re
also quantifies the relative magnitude of convective and diffusive effects. As a
consequence, keeping a well-defined interface requires a high enough Pe, and thus
Re (Re > 3 in our case). On the other hand, for either high Re values (Re > 60) or
high R̃I values (R̃I > 0.6), the instability patterns exhibit some asymmetry. One
may note that in our range of R̃I , the difference between the shears on both
sides of the interface, �γ̇ = (4r (eM − 1)Ū )/(1 + (eM − 1) r4R), is almost linear in r
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Figure 3. PIV measurements of the velocity field in the vicinity of the inlet across the whole
tube diameter. (a) Velocity field. The direction of the velocity is indicated by an arrow and its
intensity is coded in grey scale. Note that the pseudo-interface contour between the two fluids
is barely visualized. (b) Three transverse velocity profiles measured at distances 2.2, 2.7, 3.2 cm
from the inlet. For clarity, the profiles have been shifted. The lines through the data correspond
to the theoretical Poiseuille velocity profile obtained for parallel flows of two non-mixing fluids
(eM =25, Re = 14, R̃I = 0.36).

(for r4 < 1/(3 (eM − 1)), i.e. r < 0.35 for eM = 25), so that r quantifies also the shear
difference, �γ̇ � 4r (eM − 1)Ū/R, in most of our experiments.

Here, we will use characteristic length and time R and R/Ū , respectively, to define
non-dimensionalized physical quantities (marked with a tilde).

2.2. Optical setup

2.2.1. Concentration measurement

Measurements were achieved using a video camera. To minimize any optical
distortion induced by a variation of optical indices between the tube and the
atmosphere, we enclosed the apparatus in a square box filled with water. We observed
a small magnifying effect with no distortion. Preliminary experiments were performed
using a dyed blue core fluid (figure 2a). However, to analyse more precisely the
pseudo-interface between the two fluids, we used fluorescin as a dye and illuminated
the axis of the tube with a thin 1mm wide laser sheet as sketched in figure 1 and
shown in figure 2(b). This technique provides a measurement of the interface radius
r̃I (x̃, t̃) with an accuracy better than 5%. In these figures, we can observe streamwise
from the inlet: (1) the viscous entry length Lν , of the order of the tube radius; (2) a
quasi-parallel length L‖ where the pseudo-interface between the fluids is parallel; (3)
an axisymmetric instability pattern, the shape of which is mushroom like. We have
already reported on these nonlinear axisymmetric patterns (d’Olce et al. 2008).

2.2.2. PIV measurements of the velocity profile

In order to measure the flow field in the inlet region, we used the Particle Image
Velocimetry (PIV) software (LaVision GmbH, Goettingen, Germany). The camera
has a resolution of 1280 × 608 pixels in the plane of the laser sheet (figure 1). The
PIV algorithm requires a window of 32 × 32 pixels. Measurements over the whole cell
diameter (2 cm) provide typically 20 data points across the tube section. The spatial
resolution is therefore of the order of 1 mm. Figure 3(a) gives a typical velocity field.
Figure 3(b) displays three velocity profiles Ũ (r̃) at three locations from the inlet (2.2,
2.7 and 3.2 cm). The three solid lines correspond to the theoretical velocity profile (2.1)
and (2.2). The agreement of the latter with the measurements supports the contention
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that a parallel flow is achieved and that the diffusive mixing is actually negligible. The
latter statement agrees with the estimation of the pseudo-interface thickness (smaller
than 0.03 cm) obtained from figure 2(b).

3. Experimental observations and quantities of interest
In this section, we introduce the different quantities that will be used to investigate

the CU/AU transition.

3.1. Interface spatio-temporal diagram

In the axisymmetric patterns (see figure 2b), the inflexion point of the light intensity
provides the space- and time-dependent radial position of the pseudo-interface r̃I (x̃, t̃).
In figure 4(a), we plot the time dependence of r̃I (x̃, t̃) for four different locations x̃. As
expected for a spatially unstable regime, we observe, downstream from the inlet, an
increase of the amplitude of the fluctuations. It is convenient to plot these variations
r̃I (x, t) on a spatio-temporal diagram: The vertical axis is the time t̃ , the horizontal
axis the distance x̃ from the inlet and the position r̃I (x, t) of the interface is encoded
into a grey level. A typical spatio-temporal diagram is displayed in figure 4(b). The
homogeneous grey level close to the inlet corresponds to a region of constant r̃I

(quasi-parallel flow base state). Further downstream, one can observe dark and light
stripes, the slope and contrast of which give the velocity and the amplitude of the
instability waves.

3.2. Temporal power spectrum of the interface fluctuations

As mentioned above, a key difference between convective and absolute states is their
spatial response to noise. Therefore, it may be useful to analyse the spatial evolution
of the frequency spectrum with x̃. For that purpose, we decompose at each location x̃

the temporal fluctuations of r̃I (t) into Fourier modes characterized by their amplitude
and their phase, i.e. A(x̃, f̃ )ei(φ(x̃,f̃ )−2πf̃ t̃). From this formulation, one can compute the
local wavenumber k̃r (x̃, f̃ ) = ∂φ/∂x̃ and the local wave speed c̃(x̃, f̃ ) = 2πf̃ /k̃r (x̃, f̃ )
for each mode.

A typical frequency power spectrum A2(x̃, f̃ ) measured at a given x̃ position, is
plotted in figure 4(c). Such a frequency distribution is characterized by the frequency
at which the distribution is maximum f̃ max(x̃) and by the spectrum width measured
by the root mean square deviation from the mean, r.m.s.(x̃):

r.m.s.(x̃) =

√∫
p(x̃, f̃ )f̃ 2df̃ −

(∫
p(x̃, f̃ )f̃ df̃

)2

with p(x̃, f̃ ) = A2(x̃, f̃ )/

∫
A2(x̃, f̃ )df̃ . (3.1)

Figure 4(d ) gives an example of the spatial evolution of the maximum amplitude of
the power spectrum, A2

m(x̃). One can observe an increase of the amplitude followed
by its saturation. Close enough from the inlet, the spatial growth appears to be
exponential, revealing a linear regime. We will measure the characteristics of the
instability patterns in this linear range, namely the spatial growth rate −k̃i , the phase
velocity c̃ and the real part of the wavenumber k̃r .

A typical spatial evolution of the root mean square deviation is plotted in figure 4(e).
Near the inlet, no instability is detectable, so the spectrum is a random noise one
(infinite r.m.s.), and the measured r.m.s. is fixed by the size of the measurement
window. Downstream, the r.m.s. decreases as the instability grows and reaches a
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Figure 4. (a) Time (̃t) variations of the interface location r̃I (x̃, t̃) at four different distances
from the inlet, x̃ = 1.5, 3, 4.5, 6. For clarity, the mean position R̃I has been shifted along the
horizontal axis. (b) Spatio-temporal diagram. The vertical axis is the time t̃ , the horizontal
axis is the distance x̃ from the inlet and the grey level corresponds to the position r̃I (x̃, t̃) of
the interface. (c) Power spectrum. Square of the amplitude of the modes A2(f̃ ) versus their
frequency f̃ , of the Fourier transform of the temporal variations of the interface at x̃ = 4. The
frequency at which the distribution is maximum is denoted f̃max(x̃). (d) Square of the amplitude
of the frequency f̃max(x̃), A2

m(x̃), versus the distance x̃ from the inlet. The spatial growth rate is
measured by an exponential fit of the linear regime. (e) R.m.s. of the power spectrum, r.m.s.(x̃),
versus x̃ and definition of the minimum of the r.m.s., r.m.s.min , of the filtering length L̃p and

of the spatial rate of filtering α. ( f ) Frequency f̃ versus x̃ diagram where the amplitude of the
power spectrum is coded in grey scale (eM = 25, Re = 20, R̃I =0.48).
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minimum value, denoted by r.m.s.min , at large x̃. Since a CU flow behaves like a noise
amplifier and because our inherent noise is broadband, we can expect that the CU
state will have a r.m.s.min larger than the one of an AU state which resonates at a
single frequency.

To account for the spatial variations of these spectra, we built a frequency f̃

versus space x̃ diagram where the amplitude of the power spectrum is encoded in
grey scale. Such a typical diagram is given in figure 4(f ). Like in the spatio-temporal
diagram, one can observe that a minimum distance from the inlet is required for
the most unstable mode to be amplified. One can also note, further downstream, the
appearance of the corresponding harmonic modes.

3.3. Quasi-parallel length L̃‖, filtering length L̃P and filtering rate α

An important feature of the observed instability pattern is the presence of a parallel
flow region at distances from the inlet between the viscous entry length Lν and
the position where the instability appears. The extension of this region might be a
relevant feature to discriminate the nature of the instability. Indeed, in a very precise
theoretical context (no background noise in a semi-infinite domain), this region is
expected to extend over an infinite or finite length for a CU or an AU instability,
respectively (see Couairon & Chomaz 1997a , b). In our experimental context, in which
background noise cannot be avoided, this parallel region remains finite in any case.
In order to evaluate it, we compute, for each location x̃, the time average of the
magnitude of the interface oscillation. We define the quasi-parallel length L̃‖ as being
the location at which this average magnitude is equal to a given threshold.

An alternative characterization of the parallel region can be obtained from the plot
of the r.m.s. of the frequency power spectrum versus x̃, r.m.s.(x̃) (figure 4e). We denote
by L̃P the intersection location of the tangent at the inflexion point with the minimum
of the r.m.s. Physically, as r.m.s.min evaluates the inverse of the quality factor of the
noise filter, L̃P quantifies the distance needed for the filter to be efficient. The latter
may indeed be different from the length needed for the instability to appear, L̃‖. One

may note that L̃‖ and L̃P are defined as distances from the inlet nozzle (x̃ = 0), which
does not match at all the theoretical semi-infinite domain origin (i.e. a location with
a non-noisy unstable basic state).

Another characterization of the spatial decrease of r.m.s.(x̃), which is not linked
to the inlet location, may be obtained through the value of the slope at the inflexion
point as sketched in figure 4(e). The maximum slope of r.m.s.(x̃), α, will be called the
filtering spatial rate. We note that −1/α is a typical length, which should compare
with L̃P but which is measured locally.

We have already pointed out the differences between the theoretical frame of work
and the experimental constraints which may raise difficulties in delineating the change
of nature of the instability. However, since an AU system behaves like a frequency
resonator and since global modes saturate at a finite distance from the inlet, we
expect, for a background noise small enough, that r.m.s.min , L̃P , L̃‖ and α drastically
change from a CU to an AU state.

4. Delineation of the transition between the convectively and absolutely
unstable states

In this section, we shall first measure the characteristics of our experimental
instability, as defined in the previous section. Then, the response of the system to a
harmonic perturbation will be analysed.
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4.1. Natural instability

The two control parameters of the experiment are the Reynolds number Re and
the relative core radius R̃I of the quasi-parallel base state. As mentioned above,
the interface is well defined and the patterns remain axisymmetric in limited ranges
of these two parameters, R̃I ∈ [0, 0.6] and Re ∈ [2, 60]. In these ranges, the parallel
core-annular flow never extended all along the tube, whatever attention paid to the
injection conditions. We have investigated various features of the instability which
develops naturally in the system, in the parameter space (R̃I , Re). For the sake of
clarity, we will first analyse the evolution of our different measurements, with one
of the two control parameters fixed (Re =48 and R̃I = 0.48 for the left column and
right column, respectively, of the graphs of figures 5 and 6). The variations of the
quantities of interest in the plane Re–R̃I are then discussed and displayed in figure 7.

Figure 5 displays the measured frequency f̃ max , wavenumber k̃r (f̃ max) and phase
velocity c̃(f̃ max) of the most amplified mode. The latter decreases continuously
with R̃I (figure 5e) whereas it remains almost constant as Re is varied (figure 5f ).
Moreover, the measurements of c̃(f̃ max) compare very well with the phase velocity
c̃SW (dashed lines in figures 5e and 5f ) obtained in the short wave limit of the
temporal linear stability analysis (Joseph & Renardy 1992b). The latter equals the
fluid velocity at the interface in the parallel base state and can be obtained with (2.1)
or (2.2): c̃SW = Ũwall (R̃I ) = Ũcore(R̃I ) = (2 (1 − R̃2

I ))/(1 + (eM − 1) R̃4
I ). We note that in

our experiments, this expression of c̃SW is found to hold for the phase velocity of the
most amplified mode, despite the not very large values of the normalized wavenumber
k̃r (f̃ max) (between 3 and 10, typically). Thereby, the frequency and the wavenumber
of the most amplified mode are linked by the relation 2πf̃ max/k̃r (f̃ max) = c̃SW (R̃I ).
As a matter of fact, the frequency f̃ max and the wavenumber k̃r (f̃ max) do increase
proportionally (by a factor 2) as Re is varied from 5 to 50, keeping R̃I = 0.48 constant
(right column of figure 5). It has to be noted that the ratio 2πf̃ max/k̃r , obtained by a
linear stability analysis and direct numerical simulations by Selvam et al. (2008), was
also found to be independent of Re, although slightly higher than c̃SW . Conversely, as
the core radius is increased at a fixed Re = 48 (left column of figure 5), the frequency
exhibits a strong decrease whereas the wavenumber remains nearly constant. In
other words, the rather strong variations of the phase velocity, c̃(f̃ max) = c̃SW (R̃I ),
with the core radius are accounted by the frequency variations. To summarize, the
wavenumber of the most amplified mode is fixed by the Reynolds number whereas its
phase velocity is set by the core radius. And despite a small jump in f̃ max and k̃r (f̃ max)
in the vicinity of R̃I ∼ 0.45 and Re ∼ 45, we do not observe any drastic change in the
most amplified mode which could characterize a change in the instability nature.

To address the issue of the nature of the instability, we have defined quantities
which are expected to be more discriminating, namely r.m.s.min , L̃P , L̃‖ and α. Figure 6
displays the following:

(a, b): The minimum of the frequency r.m.s., r.m.s.min , which characterizes the
oscillator at work. The frequency distribution width decreases significantly with both
R̃I and Re and levels off at a value corresponding to the minimum measurable width
of our frequency window (∼0.02), for RI � 0.45 and Re � 40, respectively.

(c, d ): The quasi-parallel length L̃‖ (�) and the filtering length L̃P (•). The two
lengths exhibit the same trend: A strong decrease from about 7 to a value smaller
than 1 as either R̃I or Re is increased. Note that the minimum measured values are
smaller than 1, which is of the order of the viscous length. In other words, both
lengths are so small that the instability develops before the parallel state is completely
achieved.
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Figure 5. (a, b) Frequency of the most amplified mode f̃ max . (c, d) Real part of the
wavenumber at the frequency f̃ max , k̃r (f̃ max ). (e, f ) Phase velocity c̃(f̃ max ). All the quantities
are plotted versus R̃I at constant Re = 48 (left column) and versus Re at constant R̃I = 0.48
(right column). The dashed lines in (e) and (f ) correspond to the theoretical velocity obtained
in the short wave regime, c̃SW .

(e, f ): The spatial filtering rate α. As expected, α behaves as −1/L̃P and ac-
cordingly exhibits the same trend as L̃P , with, however, steeper variations at RI ∼ 0.5
and Re ∼ 35. We recall that α, which gives a local estimation of L̃P , has been intro-
duced to bypass the difficulty in defining the location of the ‘entry’ in an experimental
system. Thereby, −1/α can a priori reach values lower than the normalized viscous
entry length L̃ν , but we note that such values (α < − 1) have not been obtained in
our experiments. Besides, we should point out that, when the parallel base state does
not exist anywhere in the system, α may lose its physical meaning. This could also
explain a dispersion in the corresponding α measurements (as can be noticed from
the values at high Re displayed in figure 6f ). Nevertheless, a steep decrease towards
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Figure 6. (a, b) Minimum of the r.m.s., r.m.s.min . (c, d) Quasi-parallel length L̃‖ (�) and

filtering length L̃p (�). (e, f ) Filtering rate α. All the quantities are plotted versus R̃I at

constant Re = 48 (left column) and versus Re at constant R̃I = 0.48 (right column).

low values of α is still a good candidate for the signature of a convective to absolute
transition.

To summarize, in this series of figure 6, we clearly observe a strong decrease of the
minimum of the frequency r.m.s., of the stable and filtering lengths and of the filtering
rate with either R̃I or Re, while keeping the other parameter constant. Although the
decreases are steep, the experimental constraints, namely the frequency window width
for r.m.s.min and the viscous entry length L̃ν for L̃‖, L̃P and α, raise difficulties in
measuring the threshold of the transition. Still, the variations of the four measured
quantities, presented in figure 6, all support a transition towards an AU state described
above RI ∼ 0.45 and Re ∼ 30. Although, an agreement for the RI ∼ 0.45 transition is
obtained with both linear stability analysis and nonlinear simulations (Selvam et al.
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Figure 7. Representation in the (Re–R̃I ) plane. (a) Frequency of the most amplified mode
f̃max . (b) Inverse of the minimum of the r.m.s., 1/r.m.s.min . (c) Inverse of the filtering length
1/L̃P . (d) Absolute value of the filtering rate |α|. The size of the data points is proportional to
the depicted quantity.

2008), our so-obtained transition Re ∼ 30 is significantly higher than the one obtained
numerically (Re ∼ 10).

Figure 7 collects, in the (Re–R̃I ) plane, all the measurements obtained for: The
frequency of the most amplified mode f̃ max (figure 7a), the inverse of the minimum of
the r.m.s. 1/r.m.s.min , i.e. the quality factor (figure 7b), the inverse of the filtering length
1/L̃P (figure 7c) and the absolute value of the spatial filtering rate |α| (figure 7d ).
In each diagram, the size of the data point is proportional to the value of the
depicted quantity. As steep increases of 1/r.m.s.min , L̃P and |α| are expected at the
absolute instability transition, absolute states should be pointed out by large dots.
Note that the results presented in figures 5 and 6 correspond (in figure 7) to data
points on two straight lines parallel to either axis. The general trends obtained from
figures 5 and 6 are confirmed in the (Re–R̃I ) plane of figure 7. The frequency of the
most amplified mode f̃ max (figure 7a) increases with Re and decreases with R̃I , but
does not exhibit any steep variation. This is not true for the other three quantities
displayed in figure 7: The three of them exhibit a steep increase at large R̃I and
Re. The corresponding three plots help estimating the reliability of an experimental
delineation of the CU/AU states: The frontiers will slightly vary from one plot to
the other and with the arbitrary threshold. However, they are very similar and agree
qualitatively with the linear stability analysis carried out by Selvam et al. (2008).
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A last check of the CU/AU transition accessible with our experimental device is
the investigation of the response to a harmonic time perturbation forcing.

4.2. Response to a time harmonic excitation

In terms of an oscillator, the response of the system to a disturbance at a given
frequency is a key issue (Chomaz, Huerre & Redekopp 1988). Due to the control
of the two pumps by an electronic device (figure 1), the experimental setup enables
us to keep the total flow rate constant, while modulating sinusoidally the flow rates
of the core and annular fluids. The overall effect of such a forcing is an almost
sinusoidal modulation of the interface at the inlet. Figure 8 displays the spatio-
temporal and spatio-frequency diagrams obtained at Re = 31 and R̃I = 0.48, for
two different forcing frequencies, and also without forcing. In the latter case, the
spatio-temporal diagram (figure 8a) and the spatio-frequency diagram (figure 8b)
are similar to those displayed in figures 4(b) and 4(f ): A region of parallel flow
(L̃‖ ∼ 3) is followed by a region of instability waves, of rather well-defined wavelength
and velocity (figure 8a). Note, however, that the frequency power spectrum of the
natural instability has a finite width around the frequency f̃ max =0.63 (figure 8b).
In the presence of forcing at f̃ f = 0.91 (figures 8c and 8d ), the forced mode, at f̃ f ,
is very narrow, it appears close to the injector, whereas the natural instability still
develops beyond a distance of the order of L̃‖, but its amplitude is weakened. This
behaviour has been observed experimentally with the forcing frequencies lying outside
the natural power spectrum (figure 8b). On the contrary, when the forcing frequency
is close to f̃ max , as for f̃ f = 0.53 (figures 8e and 8f ), the natural instability disappears.

The peak at f̃ f = 0.53 is narrow (one line in figure 8f which accounts for the regular
straight lines in figure 8e), and appears even closer to the injector than for the case
f̃ f = 0.91. One may infer from these experimental observations that, once the forced
mode is established, the system reaches a ‘stable’ bifurcated state. Unlike numerical
studies (Selvam et al. 2008), we did observe this behaviour whatever be the values
of the control parameters. As a matter of fact, the frequency range in which the
forcing annihilates the natural instability is similar to r.m.s.min . Moreover, this range
depends on the forcing amplitude (compared to the background noise). We note that
this behaviour is compatible with the theoretical predictions by Pier (2003) and the
recent experimental results of Hallberg & Strykowski (2008). These authors showed
that the oscillation frequency of an absolute global mode could be selected with a
forcing amplitude high enough. Accordingly, conclusive measurements would have
required, in our case, a forcing amplitude below the experimental limit. Consequently,
the measurements presented here do not provide any improvement for the CU/AU
threshold determination.

However, forcing experiments can allow the determination of spatial branches
−k̃i(f̃ ). In the presence of forcing at f̃ f , the logarithm of the forced mode amplitude

exhibits a linear part (lying between L̃ν and L̃‖), the slope of which provides −k̃i .

Figure 9 shows the so-obtained spatial growth rate −k̃i(f̃ f ) at Re = 48 for three values

of R̃I . The response of the system to the forcing frequency looks like a resonance
curve, which becomes sharper and sharper as R̃I increases and presents a cusp-like
shape for R̃I = 0.43. A similar evolution is observed on the curves of figure 9(b), as
Re is increased at a fixed R̃I = 0.48. Note that the results obtained from the natural
instability analysis are recovered: As R̃I is increased at constant Re, one observes a
decrease of the frequency of the most unstable mode (figures 9a and 5a) and of the
width of the frequency peak (figures 9a and 6a). As Re is increased at constant R̃I ,
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Figure 8. Spatio-temporal (left column) and spatio-frequency (right column) diagrams
obtained at Re =31, R̃I = 0.48, in the absence of forcing (a, b) and with modulation frequencies
f̃ f = 0.91 (c, d) and f̃ f =0.53 (e, f ). The forced mode appears closer to the entry than

the natural mode, f̃ max =0.63. It is either superimposed to the spectrum obtained without
modulation (f̃ f = 0.91) (d ), or it screens the natural instability (f̃ f = 0.53) (f ).

the frequency of the most unstable mode increases (figures 9b and 5b) and the width
of the frequency peak decreases (figures 9b and 6b).

We could not determine the dispersion curves for values larger than Re = 31 and
R̃I = 0.43, as L̃‖, and thus the linear region, becomes too small to enable reliable
measurements. The vicinity of the threshold is once again difficult to investigate.
Nevertheless, according to Huerre & Rossi (1998), the appearance of a cusp should
be taken as a strong warning signal of a pinch of the two spatial branches k̃+

i (f̃ ) and
k̃−

i (f̃ ). This infers that a non-cuspy dispersion curve is a proof for a CU state. This is
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Re values (Re = 6 (�), Re = 10 (�), Re =20 (�), Re = 31 (�)). The lines are guides to the eye.

the case for the dispersion curves measured for R̃I � 0.36 at Re = 48 and for Re � 20
at R̃I = 0.48, which gives, respectively, two lower bounds of the transition. Moreover,
one can suspect from figure 9 that the thresholds are close to R̃I ∼ 0.43 at Re =48 and
Re ∼ 31 at R̃I = 0.48. These transitions are comparable with the estimations obtained
from figure 6.

5. Discussion/Conclusions
We performed experiments of miscible non-buoyant core-annular flows, which

always developed an axisymmetric instability. Some features of the resulting flows
suggested that they might be either convectively unstable or absolutely unstable,
depending on the control parameters Re and R̃I . We have attempted to delineate
experimentally the transition CU/AU. The results obtained from the present
experimental work may be summarized as follows.

The standard measurements used to characterize instabilities, such as the
wavelength, the frequency and the wave speed of small perturbations of the pseudo-
interface, do not exhibit any steep variation which could indicate the transition. And
yet, a jump could have been expected, as the selection process differs from CU to
AU states. Indeed, the most spatially unstable mode, which dominates in a CU state
should differ from the absolute mode, observed in an AU state. Actually, although
different, these two modes merge at the transition. Therefore, the latter should not
correspond to a discontinuity, but to a change of slope which is difficult to localize
on the experimental curves characterizing the evolution of the most amplified wave
(figure 5).

As an AU system behaves like a self-frequency resonator, we have analysed the
frequency content of our system in terms of the minimum of the frequency width
r.m.s.min , the filtering length L̃P (which was found almost identical to the quasi-parallel
length L̃‖) and the rate of filtering α. As a result, r.m.s.min , L̃P , L̃‖ and α are good

indicators of the states which are likely to be AU, at large values of R̃I and Re.
But because their evolutions are relatively smooth, we have difficulties in determining
experimentally a threshold for the transition.
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R̃n = 0.5 (�)). (a) At constant Re = 48, varying R̃I . (b) At constant R̃I = 0.48, varying Re.

According to the theoretical approach (see Couairon & Chomaz 1997a , b), the
healing length, which denotes the length needed for a global mode to grow from
the inlet, is infinite at the absolute transition, and decreases with the distance to
criticality. This property should provide a good criterion to analyse the evolution
of either L̃P or L̃‖. However, it is important to stress the reasons why the lengths
measured in experiments may not be comparable with the healing length, defined
in a theoretical context. Firstly, the latter was introduced considering a semi-infinite
domain, for which the base state holds at x̃ = 0. In our experiments, the boundary
conditions are perturbed by the viscous entry length. Secondly, the characterization
of the healing length assumes that no noise is injected in the system, once the latter
has been initially perturbed. In the presence of a permanent noise, any CU system
(AU or not) will amplify it over a typical finite length. As a matter of fact, L̃P and
L̃‖ do not diverge as the control parameters approach the transition CU/AU.

Nevertheless, the analysis of the response of the system to a time harmonic forcing
has enabled us to obtain the spatial branches of the dispersion curve. And the cusp-
like shape of these curves, which become sharper and sharper in the area of large
radius and high Reynolds numbers is a strong warning of the occurrence of an
absolute region.

Theoretical analyses for non-parallel real flows have shown that in some absolute
unstable states (for the so-called pulled fronts), global modes may be selected by
the linear dispersion relation at the inlet (x̃ =0) (see Couairon & Chomaz 1997a , b;
Chomaz 2003). In such a case, the inlet conditions should control the instability
features (frequency, healing length, etc.). On the contrary, in a CU state, these features
are controlled by the noise. Therefore, one can expect a different response of the two
states to a change in the boundary conditions. This can be experimentally achieved
by using different inlet nozzles. Figure 10 shows the evolution of the frequency f̃ max

of the most amplified mode, for a constant Re = 48 and different R̃I (figure 10a)
and for a constant R̃I = 0.48 and different Re (figure 10b), for two nozzles with
different inner radius, R̃n = 0.5 and R̃n = 0.75. We observe that the selected frequency
is almost the same for small Re and R̃I but rather different for higher values. From
this observation one could have inferred that the system is AU when the frequency is
inlet dependent. Unfortunately, the frequency mismatch is obtained in experiments for
which L̃‖ ∼ L̃ν (see figure 6). Hence, the amplification of the noise is totally achieved

in the viscous entry length L̃ν , where the dispersion curve depends on the injection
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nozzle. Consequently, a frequency mismatch can be observed even in a CU state and
no conclusion can be drawn from figure 10.

In conclusion, r.m.s.min , L̃P , L̃‖ and α behaviours and the evolution of the cusp-
like shape of the forced spatial growth rate build a body of evidence for an
absolute unstable region to develop at high R̃I and high Re numbers. A more
quantitative determination of the transition threshold is not achievable due to
the inherent imperfection of experiments. These experimental results are discussed
and compared to linear stability results and nonlinear numerical simulations in the
following companion paper of Selvam et al. (2008). In this paper, it is shown that the
CU/AU transition is indeed very close to our experimental results.
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