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Synopsis

Measurements in a cylindrical Taylor–Couette device of the shear-induced radial normal stress in a

suspension of neutrally buoyant non-Brownian (noncolloidal) spheres immersed in a Newtonian

viscous liquid are reported. The radial normal stress of the fluid phase was obtained by

measurement of the grid pressure Pg, i.e., the liquid pressure measured behind a grid which

restrained the particles from crossing. The radial component of the total stress of the suspension

was obtained by measurement of the pressure, Pm, behind a membrane exposed to both phases.

Pressure measurements, varying linearly with the shear rate, were obtained for shear rates low

enough to insure a grid pressure below a particle size dependent capillary stress. Under these

experimental conditions, the membrane pressure is shown to equal the second normal stress

difference, N2, of the suspension stress whereas the difference between the grid pressure and the

total pressure, Pg � Pm, equals the radial normal stress of the particle phase, Rp
rr . The collected data

show that Rp
rr is about 1 order of magnitude higher than the second normal stress difference of the

suspension. The Rp
rr values obtained in this manner are independent of the particle size, and their

ratio to the suspension shear stress increases quadratically with /, in the range 0 < / < 0:4. This

finding, in agreement with the theoretical particle pressure prediction of Brady and Morris [J. Fluid

Mech. 348, 103–139 (1997)] for small /, supports the contention that the particle phase normal

stress Rp
rr is due to asymmetric pair interactions under dilute conditions, and may not require many-

body effects. Moreover we show that the values of Rp
rr, normalized by the fluid shear stress, gf j _cj

with gf the suspending fluid viscosity and j _cj the magnitude of the shear rate, are well-described by

a simple analytic expression recently proposed for the particle pressure. VC 2013 The Society of
Rheology. [http://dx.doi.org/10.1122/1.4758001]
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I. INTRODUCTION

Suspensions of non-Brownian particles are ubiquitous in a wide range of applications

(concrete, water purification, and “recycling” of nuclear waste) and have been the subject

of many theoretical, numerical, and experimental studies. Despite the large amount of

work performed, the flowing properties of concentrated suspensions remain incompletely

characterized. This work will address the measurement of normal stresses in a suspen-

sion, an area which has received limited attention.

By contrast, numerous studies over the past century have focused on the shear viscos-

ity of particles immersed in a Newtonian fluid. Einstein (1905), in his pioneering work,

calculated the viscosity of a dilute suspension (neglecting hydrodynamic interactions) of

spheres as a function of the particle volume fraction / : g ¼ g0ð1þ 2:5/Þ. Batchelor and

Green (1972), taking into account pair interaction, extended the result of Einstein to the

second order: g ¼ g0ð1þ 2:5/ þ B/2 Þ þ Oð/3Þ with B¼ 6.2 for non-Brownian

spheres. At higher concentration, multibody interactions must be considered and numer-

ous theoretical and empirical expressions for the shear viscosity with / have been pro-

posed [see the review of Stickel and Powell (2005)]. While the various expressions tend

to agree with the Einstein viscosity for dilute suspensions (/ < 0:1), there is no consen-

sus for the maximum packing volume fraction, /max, at which viscosity must diverge. A

factor that complicates the viscosity measurement is shear-induced migration [Leighton

and Acrivos (1987a, 1987b)], which leads to nonuniform volume fraction of the sheared

suspension [Phillips et al. (1992); Morris and Boulay (1999); Chow et al. (1994)].

Gadala-Maria and Acrivos (1980) and Parsi and Gadala-Maria (1987) have shown that

the viscosity is strongly influenced by the macroscopic spatial organization of the par-

ticles. In an attempt to eliminate shear-induced migration and measure the bulk viscosity

of a suspension, Gauthier et al. (2005) used the damping of waves that propagate at the

surface of a suspension, obtaining good agreement with several models but with

/max ¼ 0:58. Recently, Ovarlez et al. (2006) used magnetic resonance imaging (MRI) to

perform simultaneous measurement of shear stress, local shear rate, and local volume

fraction; this work found /max ¼ 0:605. Bonnoit et al. (2010), using an inclined plane

rheometer, measured shear viscosity of non-Brownian suspensions up to similar solid

fraction of / ¼ 0:61.

While the Newtonian viscosity of suspensions seems more or less understood, this is

not the case for the non-Newtonian properties typical of concentrated non-Brownian sus-

pensions. Indeed, the origin of shear thinning [Van der Werff and De Kruif (1989)], shear

thickening [Barnes (1989); Fall et al. (2008)], yield stress [Fall et al. (2009)], and normal

stresses, including both the normal stress differences and the isotropic particle pressure, in

noncolloidal suspensions remains unclear, as discussed in the review by Morris (2009).

Gadala-Maria (1979) was apparently the first to report normal stress differences (NSD

in the following) in sheared non-Brownian suspensions, with his measurements obtained

in a parallel plate rheometer. This led to work in which Gadala-Maria and Acrivos (1980)

and Kolli et al. (2002) showed irreversibility in the torque and normal stress responses,

respectively, of a suspension subjected to large oscillatory straining, and Parsi and

Gadala-Maria (1987) demonstrated an asymmetry in the fore-aft pair distribution func-

tion. The origin of the asymmetry in any given suspension is not clear: It may be due to

the nonlinearity of multiparticle interactions, or, as asserted by Da Cunha and Hinch

(1996), to contact interactions between particles that are allowed by the roughness of the

particles even at low Reynolds number. The latter mechanism for asymmetric interaction

is supported by the work of Rampall et al. (1997), which shows that surface roughness

induces significant asymmetry in the fore and aft region of a two-particle interaction.
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The issue of shear-induced normal stress has been addressed in numerical simulations,

using Stokesian dynamics [Brady and Bossis (1988)], by Sierou and Brady (2001) and in

theoretical work by Brady and Morris (1997), and continuum modeling of suspension

flow by Nott and Brady (1994) and Morris and Boulay (1999). The latter two studies

noted here showed that particle migration may be explained as due to spatial variation of

the particle NS, and can be observed at low Reynolds number (Stokes regime) but with

short range forces between particles, or actual contact. Brady and Morris (1997) argued

that the presence of a nonhydrodynamic interaction force or weak Brownian motion,

however small, results in non-Newtonian effects, such as normal stress differences. They

found that the normal stresses in dilute suspension scale as g _c/2 and vanish in the purely

hydrodynamic regime (when only Stokes-flow interactions are active, i.e., without

Brownian motion or interparticle forces). Their work was then extended by Singh and

Nott (2000) and Sierou and Brady (2002) in the hydrodynamic regime showing that nor-

mal stress differences could have hydrodynamic origin for concentrated suspensions. The

prediction of Brady and Morris (1997) for the influence of the microstructural asymmetry

indicates a close relation between the normal stresses and self-diffusivity of a suspension.

This point is demonstrated by the experimental results of Breedveld et al. (2001, 2002)

who reported anisotropy in the self diffusion coefficient, with differences in the velocity

gradient (D̂22) and in the vorticity direction (D̂33 � 0:66D̂22). Attempts to deduce the

complete normal stress from NSD measurements and other experimental data available

for non-Brownian suspensions have been conducted by Zarraga et al. (2000) and Singh

and Nott (2003). We note however that first Zarraga et al. (2000) have used measure-

ments obtained from the shear-induced migration of buoyant particles, the sedimentation

of which may induce additional particle pressure or gradient diffusion [Martin et al.
(1995)]. Second, Zarraga et al. (2000) and Singh and Nott (2003) have also used the

NSD of the total suspension stress, as measured through the normal force on rheometers

or through the large scale surface deformation. And these NSD of the suspension stress

may differ a priori from the NSD of the particle phase stress [see Lhuillier (2009), for

example]. Quantitative measurements of the particle phase stress are not easy to perform,

but they are crucially needed, as they are necessary to describe particle migration in vari-

ous flow geometries [Morris and Boulay (1999)] and to address such phenomena as the

shear banding instability [see, for example, Besseling et al. (2010)].

The first direct measurement of particle stress in a viscous regime appears to be due to

Prasad and Kyt€omaa (1995) who measured the normal stress for fixed particle volume

fraction or measured the volume fraction for an imposed normal loading in a cylindrical

device that allowed the sheared suspension to suck fluid through a porous wall. The

imposed normal loading approach was used by Boyer et al. (2011) to obtain very clean

data relating the shear and normal stress in sheared suspensions. The results of these stud-

ies are in good general agreement with numerical evaluations of Yurkovetsky and Morris

(2008), and theoretical predictions of Mills and Snabre (2009). Recently, Deboeuf et al.
(2009) measured the fluid pressure of a neutrally buoyant suspension in a cylindrical Cou-

ette flow and argued that fluid pressure is a good approximation of the negative of the par-

ticle pressure DPf � �P. The quantitative agreement of their results with previous

experimental and numerical studies of Morris and Boulay (1999), Sierou and Brady

(2002), Yurkovetsky and Morris (2008), and Mills and Snabre (2009) supports this asser-

tion. Interestingly, the work of Deboeuf et al. showed some dependence of the particle

pressure on the size of the particles, an issue which will be addressed in the present study.

In the present paper, the experimental technique of Deboeuf et al. (2009) is described

in detail and the analysis of the measurements within a rheological framework is revisited.

The technique is extended to include direct measurement of individual phase and
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complete suspension normal stress at the Couette boundary. This increased capability

allows measurement of the second NSD of the suspension stress. Furthermore, more accu-

rate transducers have allowed measurement of fluid and total pressure for suspensions of

volume fraction as low as / ¼ 0:20. Finally, new results show that a dependence of the

measured fluid pressure with the particle size observed previously was due to changes of

the boundary condition at the air-suspension interface at the top of the Couette cell.

The experimental material, setup, and method are presented in Sec. II. Section III is

devoted to the raw experimental results while Sec. IV presents interpreted results con-

fronted with previous studies and existing models.

II. EXPERIMENTAL SETUP

A. Particles

Suspensions, with particle volume fractions ranging from / ¼ 0:2 to 0.5, have been

prepared with two sizes of polystyrene particles, Microbeads Dynoseeds TS-40 and TS-

140, of average diameter ds
m ¼ 40 lm and ds

m ¼ 140 lm, respectively, as reported by the

supplier. The size distribution and the shape of the particles have been measured by a vis-

ual method using a Morphology G3 from Malvern Instruments. In the method, a camera

mounted on an automated microscope images a layer of particles. Images are binarized,

and two measurements are reported here for each particle: The average diameter and the

sphericity (as noted below, this is actually determined as the circularity from simple

images of the particles). From the average diameter measurements, the size distribution

FIG. 1. Top: Size distribution of the particles used for the suspensions. (a) Dynoseeds TS-40 (dm ¼ 37 lm) and

(b) Dynoseeds TS-140 (dm ¼ 130 lm). Bottom: Ellipticity of the particles. Smaller axis a as a function of the

larger axis b normalized with the average particle diameter. (c) Dynoseeds TS-40 (dm ¼ 37 lm) and (d) Dyno-

seeds TS-140 (dm ¼ 130 lm). The average aspect ratios a/b are equal to 0.924 for the TS-40 and to 0.927 for

the TS-140.
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of each batch is constructed. Figures 1(a) and 1(b) display the volume distribution of TS-

40 and TS-140, respectively, with the number distribution of particles in the inset. Both

distributions exhibit a well-defined peak close to the mean diameter of the distribution,

dm ¼ 37 lm for the TS-40 and dm ¼ 130 lm for the TS-140. Figures 1(a) and 1(b) show

that particle distributions are far from monodisperse; for instance, there is a small fraction

of particles ranging from a few micrometers to 200 lm in the batch of TS-140. Likewise,

a secondary peak at 55 lm is clearly visible in the size distribution of the TS-40 [Fig.

1(a)]. Nevertheless, 80% of the volume of TS-40 is in the interval ½34; 41� lm, while

70% of the volume is in the range ½125; 140� lm for TS-140. To quantify the noncircular-

ity of the particles, the contour of each particle image has been fitted with an ellipse of

minor axis a and major axis b. The average aspect ratio a/b is equal to 0.924 and 0.927

for the TS-40 and TS-140, respectively. Figures 1(c) and 1(d) display the population of

the particles in the plane ðb=dm; a=dmÞ, where a=dm and b=dm represent the major and

minor axis, normalized with the average diameter, dm, of the respective distributions

(i.e., dm ¼ 37 lm for TS-40 and dm ¼ 130 lm for TS-140). On these figures, spherical

particles are on the line a=dm ¼ b=dm. On one hand, Fig. 1(d) reveals that TS-140 is

mostly spherical since only a few of them are significantly off this line. Pictures of indi-

vidual particles show that the subset of particles of larger axis b¼ 2a corresponds to the

particles in contact at the time of analysis, which reduces the number of truly nonspheri-

cal particles. On the other hand, TS-40 samples contain a large number of anisotropic

particles [see Fig. 1(c)]. This is especially true for very small (a=dm < 0:5) particles and

particles of minor axis equal to the mean diameter (a=dm � 1). For this latter case,

images of particles in this subset reveal that typically two particles have been stuck to-

gether during the fabrication process. Finally, atomic force microscopy measurements

show that the particle roughness is approximately 100 nm, whatever the size.

B. Viscosity measurements

The carrier fluid is poly(ethylene glycol-ran-polypropylene glycol) monobutyl ether of

density qf ¼ 1:05 g=cm
3

(at 20 �C, with an expansion coefficient of 7:5 � 10�4 �C�1)

that matches the nominal density of the polystyrene particles. It has been tested, by paral-

lel plate (of diameter 50 mm) and cylindrical Couette (of diameter 10 mm) rheometry

(Anton Paar MCR 501), and found to be Newtonian up to a shear rate of j _cj � 700 s�1,

with a viscosity of gf ¼ 2:9 Pa s at T ¼ 20 �C [cf. Fig. 2(a)]. However, the shearing of

FIG. 2. Rheometry: In a 50 mm parallel plate geometry, (a) viscosity of the pure fluid as a function of the shear

rate j _cj. Measurements have been performed at T ¼ 20 �C; (b) viscosity of the suspension as a function of the

particle volume fraction, for j _cj ¼ 20 s�1 and T ¼ 20 �C. The continuous line corresponds to a Krieger–Dough-

erty law [Krieger (1972)]: gs ¼ gfð1� /=/maxÞ�2
, with /max ¼ 0:625.
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highly viscous fluids induces an increase of the fluid temperature which in turn induces a

decrease of the fluid viscosity and density. To quantify this effect, fluid temperature is

permanently recorded. Moreover between two imposed shears, the rotation is stopped to

allow a free cooling of the suspension. This method allow us to keep temperature varia-

tions below 0:5 �C which induces a variation of the viscosity of the order of 2% and a

density variation less than 0.1%.

The bulk effective viscosity of the suspension has been measured in parallel plate ge-

ometry where little particle migration occurs [Morris and Boulay (1999)]. For each sus-

pension, the effective viscosity has been found to be rather constant for

1 � j _cj � 30 s�1. The variation of the viscosity with the solid volume fraction / is

found to be in good agreement with the empirical Krieger–Dougherty form [Krieger

(1972)]: gs ¼ gfð1� /=/maxÞ�2
, with /max ¼ 0:625, as shown in Fig. 2(b). The value

obtained for the maximum volume fraction and the exponent of the Krieger–Dougherty

law are in general agreement with values found in the literature [Stickel and Powell

(2005); Ovarlez et al. (2006)]. Using these suspensions, the P�eclet number, the ratio of

shear to Brownian motion, is Pe ¼ 6pgf j _cja3=kT ¼ Oð108Þ at j _cj ¼ 1 s�1, and therefore

Brownian diffusion is negligible.

C. Experimental apparatus

Experiments are conducted in a cylindrical Taylor–Couette cell sketched in Fig. 3.

The height of the cylinders is h¼ 150 mm. The radii of the inner and outer cylinders

are, respectively, Ri ¼ 17:5 mm and Ro ¼ 20 mm which achieved a constant gap

b0 ¼ 2:5 mm along the axis of the cylinders. Great attention has been paid to the circular-

ity of the two cylinders since any inhomogeneous shear will result in gradients of volume

fraction, as reported by Leighton and Acrivos (1987a, 1987b). The inner cylinder is driven

by a brushless motor, while the outer cylinder is fixed. To easily fill the cell, the inner cyl-

inder can move along the z (vertical) axis.

The outer cylinder is drilled with ten holes, of diameter 6 mm; eight holes are

equipped with nylon grids of 20� 20 lm2 square openings and two with latex mem-

branes 10 lm thick (cf. Fig. 3). Grids and membranes are glued on small tubes of outer

diameter 6 mm, one of whose faces has been machined to match the curvature of the

inner surface of the Couette cell. Each tube is filled with liquid (carrier fluid behind grids

FIG. 3. Sketch of the Taylor–Couette cell.
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and water behind membranes) transmitting the pressure to a piezoelectric transducer (PR-

23 by Keller Drukmesstechnick) of accuracy 1 Pa. Four of the grids are placed along a

circle located 20 mm from the bottom of the cell while the four others are along a circle

60 mm from the bottom of the cell. On each circle, grids are spaced at 90� intervals. The

two membranes are located 40 mm from the bottom of the cell and 90� apart from each

other, vertically aligned with two of the grids. Transducers located behind grids measure

the so-called pore pressure, while the membrane transducers measure the total pressure.

To avoid shear-induced migration to the bottom of the cell, the bottoms of the inner

and outer cylinders are of conical form so that the shear rate is uniform in the entire cell.

Again, great attention has been paid to the inner and outer cylinder co-axiality. In a New-

tonian fluid sheared in a cylindrical Couette geometry, variations of the gap lead to pres-

sure variations. The pressure is higher upstream of a reduction of the gap and lower

downstream [Acheson (1990)]. The angular (h) dependence of the pressure distribution,

at a given constant rotation velocity X, can be determined using lubrication analysis and

is shown to follow the relation [Fl€ugge (1962)]

DPfðh;XÞ ¼ Pfðh;XÞ � Pfðh; 0Þ ¼ 6gf X
�2

kð2þ k cos hÞsin h

ð2þ k2Þð1þ k cos hÞ2
; (1)

where � ¼ b=Ri � 1; k ¼ a=b � 1, a is the eccentricity (distance between the cylinder

axes), and bðhÞ � b0 is the gap variation, maximum at h ¼ 0. The lubrication pressure with

pure fluid is displayed in Fig. 4, for a misalignment a ¼ 100 lm and _c ¼ 100 s�1; here, the

shear rate is written with its sign to indicate the importance of direction of motion. To

achieve a good alignment of the cylinders, the outer cylinder is mounted on four micromet-

ric displacement systems that allow translation in the horizontal, or x-y, plane and rotations

around the x and y axes. After a rough alignment of the outer cylinder axis along the axis

of the rotor (parallel to gravity), we use the lubrication pressures measured with the Newto-

nian fluid alone to align the cylinders axes: The alignment is as good as possible when the

measured pressures are zero whatever the direction of rotation (cf. Fig. 4). We note how-

ever that the replacement of the Newtonian liquid with the suspension requires moving the

FIG. 4. Lubrication pressure, calculated in the pure liquid of viscosity gf ¼ 2:9 Pa s, for an axis misalignment

a ¼ 100 lm and for (- -) _c ¼ �100 s�1 ðX ¼ �14:7 rad s�1Þ, (	 	 	) _c ¼ 100 s�1, (- 	) Pfðh;XÞ � Pfðh;�XÞ, and

the angular gap variation (—) acosh (left axis). Note the cancellation of the lubrication pressure at fixed h when

averaged over the two directions of rotation.
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rotor up and down, a procedure which may result in a very slight misalignment. The impor-

tance of the residual effects of this misalignment relative to measured pressure can be seen

in Fig. 5, which displays typical pressure measurements obtained, for a step ramp of rota-

tions, behind a grid in Fig. 5(a) and behind a membrane in Fig. 5(b). As one can see, there

is a systematic difference between pressure measurements realized with the inner cylinder

rotating in one or the other direction. This systematic error is eliminated by averaging

measurements over the two directions of rotation; the difference in the measured pressures

is a result of the lubrication pressure which is linear in the motion and thus cancels upon

averaging the values for the two directions of motion.

Because the membrane pressure is transmitted through a small confined volume

between the membranes and the transducers, thermal expansion induced by any tempera-

ture variation affects the pressure readings. This effect is corrected by considering only the

deviation from the background pressure in the absence of shearing, DPm ¼ P _c 6¼0
m � P _c¼0

m .

Figure 5(a) [respectively (b)] shows that when a shear rate is applied to the suspension, a

depression, DPg, or overpressure, DPm, is observed, with a magnitude increasing with the

shear rate j _cj. Pressure measurements are performed during one period of rotation (strain

c ¼ 14p); and to overcome residual effects of misalignment, pressure measurements are

averaged over both directions of rotation. Reversing the direction of rotation leads to tran-

sient decrease of suspension viscosity and normal stresses, which reach stationary values

for a strain jcj � 2 [Kolli et al. (2002); Blanc et al. (2011)]. To remove this transient effect,

we discard the initial measurements after a rotation change, and average over those

acquired for a strain jcj > 2 following the reversal.

Finally, measurements of grid (and membrane) pressure are averaged over the eight

(respectively two) pressure transducers to minimize the scattering due to stress fluctua-

tions reported in previous studies [Dasan et al. (2002); Singh et al. (2006)].

III. EXPERIMENTS

A. Observations

Experiments consist in measuring pressure for various shear rates. However, when the

suspension is sheared above a given shear rate j _ccj, a whitish band forms at the top of our

cylindrical Couette cell, as shown in Fig. 6(a). The shear rate threshold depends on the

volume fraction of the suspension and the size of the particles (j _ccj � 20 s�1 for TS-140

and 60 s�1 for TS-40 at / ¼ 0:45). Figure 6(b) displays the spatio-temporal diagram of a

vertical line of Fig. 6(a). The formation time is short compared to the rotation period

FIG. 5. (- -) Ramp of shear rate _c ðs�1Þ (right hand axis) against time (s) and (—) pressure transducer signal

(left hand axis) measured (a) behind one grid and (b) (—) behind one impermeable membrane, for a suspension

of particles of diameter 40 lm at volume fraction / � 0:5.
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(about half a rotation period) and the thickness of this white strip increases in time, desta-

bilizes, and becomes wavy. Once the rotation is stopped, the white strip remains. Analyz-

ing a sample of the suspension taken in the white strip reveals that it contains almost no

suspending liquid.

This “dry cream” layer has been formed by particles that have crossed the air/suspen-

sion interface. We note that corrugations of the interface had been observed by Loimer

et al. (2002), Timberlake and Morris (2005), and Singh et al. (2006) in other free surface

suspension flows and studied numerically by Min and Kim (2010). However, in our case

the particles actually escape from the suspension. Once created, the “dry cream” thick-

ness increases as a result of a downward air flux across its top interface (which rises), and

an upward particle flux across its bottom one (which lowers). Although the bulk suspen-

sion particle fraction is not significantly decreased by the outgoing particles, the dry

cream is likely to exert an axial (vertical) solid frictional stress at the wall. In such a case,

our pressure measurements can no longer be directly related to the magnitude of the par-

ticle stress (see Sec. IV).

B. Measurements

The evolution of the fluid pressure (pressure behind grids) and the total stress at the

outer wall (pressure behind membranes) with the shear rate have been measured for

FIG. 6. (a) Image of the experimental cell with a suspension of TS-140 of volume fraction / ¼ 0:45 for

j _cj ¼ 45 s�1 taken 10 s after the beginning of the shear. (b) Spatiotemporal diagram built by plotting the light

intensity of a vertical line along time (horizontal direction). The white strip on the top of the suspension cor-

responds to a “cream” of particles that have been ejected from the suspension due to shear.

FIG. 7. Evolution of the grid (a) and membrane (b) pressure as a function of the shear rate for a suspension

with volume fraction / ¼ 0:45. (�) Dynoseeds TS-40, (�) Dynoseeds TS-140. The two dashed lines correspond

to the asymptotic values of the pressure (i.e., 540 Pa for TS-140 and 1050 Pa for TS-40).
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suspensions of volume fraction / ¼ 0:45 for both TS-40 and TS-140. Grid pressure, the

negative of which is displayed in Fig. 7(a), decreases with the absolute value of the shear

rate j _cj until a limit value which depends on the particle size and compares to j _ccj. Before

this limit, grid pressure measurement is independent of particle size. Membrane pressure

measurements are presented in Fig. 7(b). As for the grid measurements, membrane pres-

sure increases with j _cj until j _ccj, beyond which measurements seem to reach a plateau.

For the larger-particle suspension (using TS-140), however, pressure signals behind

membranes are weak and measurement errors are of magnitude comparable to the meas-

ured values.

The plateau obtained at j _cj > j _ccj suggests that surface tension plays a role at the free

surface. For a particle to leave the suspension the stress exerted by the surrounding mix-

ture must be larger than the stress which keeps the particle inside, i.e., the Laplace pres-

sure DPL ¼ s=R where (s¼ 55 mN/m) is the fluid-air surface tension and R the curvature

of the interface at the moment the particle escapes. In the experiment, the maximum pore

pressure is �DPgmax
¼ 540 Pa for TS-140 and �DPgmax

¼ 1050 Pa for TS-40. Using the

Laplace pressure to estimate an equivalent diameter, one obtains de ¼ s=DP ¼ 66 lm

for TS-40 and de ¼ 130 lm for TS-140.

These effective diameters are in reasonable agreement with the average diameter found

for the distribution of TS-140 (see Sec. II A) but larger for TS-40 (dm ¼ 37 lm compared

to de ¼ 66 lm). However, the size distribution of TS-40 shows a non-negligible proportion

of particles of diameter �60 lm which is closer to de. In addition, when a particle escapes

from a viscous fluid, the effective diameter is the diameter of the particle added to the

thickness of the liquid film which coats each bead [Maru et al. (1971); de Gennes et al.
(2004)], during the ejection process. This leads to an effective diameter larger than the par-

ticle, and could explain the remaining discrepancy between the estimated Laplace pressure

and the asymptotic one measures for the suspension of TS-40. These measurements support

the interpretation of the formation of the cream at the top of the suspension, and provide a

likely explanation for the size dependence of particle pressure reported by Deboeuf et al.
(2009). Consequently, all further results are for experiments conducted for shear rates

below j _ccj for each suspension. Note that the grid and membrane pressures evolve linearly

with the shear rate for j _cj � 20 s�1 for both TS-40 and TS-140 so that in this range

DPg=j _cj and DPm=j _cj depend only on the volume fraction /.

Evolution with / of DPg=gf j _cj and DPm=gf j _cj is displayed on Fig. 8 for the TS-40 and

TS-140 suspensions. The dependence of DPg and DPm on / is clearly nonlinear, and we

note that DPg is independent of the particle size. The insets of Figs. 8(a) and 8(b) present,

FIG. 8. Evolution of the dimensionless grid (a) and membrane (b) pressure as a function of the particle volume

fraction. Pressures are normalized by gf j_cj. (�) Dynoseeds TS-40 and (�) Dynoseeds TS-140. The insets display

in logarithmic scale the pressures normalized with the shear stress of the suspension (gsj _cj).
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respectively, the evolution of the grid and membrane pressures, normalized with the sus-

pension shear stress in logarithmic scale. We note that the shear stress is not measured in

our device, but is estimated by the product of the imposed shear rate with the viscosity

law [Ovarlez et al. (2006)] obtained in a parallel plate device [see Fig. 2(b)].

IV. RESULTS AND DISCUSSION

A. Normal stresses

To relate the measurements to suspension rheology, grid and membrane pressure

must be translated into normal stress components. In the absence of inertia, the momen-

tum equations, for the two phases, particles and fluid [Jackson (1997); Nott and Brady

(1994); Morris and Boulay (1999); Lhuillier (2009)], are derived from the Cauchy

equations:

$ 	 Rp þ FH þ /ðqp � qfÞg ¼ 0; (2)

$ 	 Rf � FH þ qfg ¼ 0; (3)

where FH is the friction force, proportional to the difference between the phase averaged

velocities, hvip � hvif ; Rf is the fluid phase stress, and Rp is the particle phase stress, in

which the Archimedes force has been included for convenience [Lhuillier (2009)]. In our

experiment, the suspension is neutrally buoyant, qp ¼ qf ¼ q, and (2) reduces to

$ 	 Rp þ FH ¼ 0: (4)

We note that a stress balance equation for the suspension is obtained by the sum of (2)

and (3):

$ 	 Rþ qg ¼ 0; (5)

where the total stress of the suspension,

R ¼ Rp þ Rf ; (6)

is also related to the phase averaged stresses R ¼ ð1� /Þhrif þ /hrip [Jackson (1997)],

although Rf 6¼ ð1� /Þhrif and Rp 6¼ /hrip a priori [Lhuillier (2009); Nott et al. (2011)].

Note that the description of suspension flows, using R, requires nevertheless the concentra-

tion field of the particles, which results from the migration described by either (3) or (4).

As a consequence, unlike the normal stress differences of R which may be neglected in

most suspension flows, the normal stress components of Rf or Rp are definitely needed to

describe the dynamics of the migration of the particles, or at least the stationary (or quasi-

static) migrated state, obtained for hvip � hvif ¼ 0, which corresponds to $ 	 Rp ¼ 0 as

shown by (4); for the case of present interest, this means a uniform particle phase normal

stress in the cross-stream direction. The originality of our experiment is that it addresses a

situation where no migration occurs, but which nevertheless provides a measurement of

the phase stresses in the radial direction, as will be shown in the following.

We note first that to relate our pressure measurements to rheological properties, one

should remove the hydrostatic pressure. Assuming that the shearing of the suspension

does not generate any tangential stress in the vorticity direction (which is true if there is

no solid friction along the z-axis of the walls, i.e., no dry cream layer),
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Rzr ¼ Rzh ¼ 0; (7)

and the z-projection of (5) is written @Rzz

@z þ qg ¼ 0, and can be solved, with the condition

that the pressure at the free surface z ¼ hs is the atmospheric pressure, Pa:

Rzz ¼ �Pa þ qgðz� hsÞ: (8)

As expected, when the suspension is at rest ( _c ¼ 0), the weight of the suspension is bal-

anced by R _c¼0
zz , which obeys a hydrostatic equation.

Moreover, when the suspension is sheared, hs remains uniform in our experiments:

The centrifugal forces, the lubrication pressures, and the anti-Weissenberg effect [see, for

instance, Zarraga et al. (2000)] do not generate any significant large scale (much larger

than the particles diameter a) deformation of the interface. As a result, the right hand side

of (8) remains unchanged, and the variation due to the shearing, DRzz ¼ Rzz � R _c¼0 is

null:

DRzz ¼ 0: (9)

In other words, the hydrostatic contribution (i.e., the z-varying offset of Rii; Rf
ii; DPm, and

DPg) remains unchanged when the shear is applied. To remove this hydrostatic

z-dependence, we introduce the variations DN ¼ N _c 6¼0 � N _c¼0, of a generic normal stress

N, induced by shearing at j _cj 6¼ 0. Due to the cylindrical geometry of the setup, DN does

not depend on h either. As a consequence, all the variations DN, measured or evaluated at

r ¼ Ro, can be combined or compared. They represent actual shear-induced normal

stresses, and are thus expected to vary linearly with j _cj in the Stokesian regime studied

here.

In our setup, there is no radial flux of either the fluid or particle phase across the grids.

On one hand, the particles are stopped by the grids, which means that the radial particle

phase stress is balanced by the grids. On the other hand, the radial fluid phase stress

(inside the Couette device) must be balanced by the “grid pressure,” Pg ¼ �Rf
rr, which

we write in terms of variations:

DPg ¼ �DRf
rr: (10)

The balance between normal stresses (and their variations) on both sides of the mem-

brane is written, with the use of (6):

DPm ¼ �DRrr ¼ �DRp
rr � DRf

rr: (11)

From a combination of (10) and (11), one gets the radial particle stress:

DRp
rr ¼ DPg � DPm: (12)

Moreover, the second normal stress difference of the suspension stress,

N2 ¼ R22 �R33 ¼ Rrr � Rzz (2 and 3 being the directions of the velocity gradient and

the vorticity of the bulk flow, respectively), is obtained by adding (9) and (11):

N2 ¼ DRrr � DRzz ¼ �DPm: (13)

To summarize, the membrane pressure, DPm, the grid pressure, DPg, and their combina-

tion, ðDPg � DPmÞ, provide, respectively, measurements of the second normal stress
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difference, N2, as shown by (13) of the total stress of the suspension, R; of the second

(i.e., radial) normal stress component of the fluid phase stress, Rf , as shown by (10); and

of the particle phase stress, Rp (12), in a cylindrical Couette geometry.

Figure 9 displays the normalized second normal stress difference (�N2 ¼ DPm),

measured for the suspensions containing the beads TS-40 and TS-140, as a function of

the volume fraction / in a semilog scale. For the sake of comparison, numerical predic-

tions of Sierou and Brady (2002), using Stokesian Dynamics, and of Yeo and Maxey

(2010), based on force coupling method, are also displayed in Fig. 9, together with exper-

imental results of Zarraga et al. (2000), Singh and Nott (2003), and Couturier et al.
(2011).

Our two sets of data exhibit a linear behavior on this semilog plot, supporting an expo-

nential increase of the form expð20 /Þ. Such behavior is also observed for the data

reported by Singh and Nott (2003) in the same geometry, but with a significantly higher

prefactor in that work. We have checked the magnitude of N2 by carrying out an experi-

ment, at / ¼ 0:45, with capillary tubes directly connected to the suspension (with no grid

and no membrane): When the suspension was sheared, the liquid level increased only by

a few millimeters, in line with the membrane pressures obtained for the same shear rates.

The discrepancy between our results and other measurements remains to be explained

and although our low N2 values could be due to the small roughnesses of our beads

[Davis et al. (2003)], it is likely that other explanations come into play. One of the rea-

sons that may explain the difference with measurements of Singh and Nott (2003), per-

formed in the same geometry, could be the lubrication effect discussed in Sec. II C,

which to our knowledge has not been canceled in the Singh–Nott (2003) experiment.

Moreover, in contrast with the bulk estimations of simulations, we actually perform

measurements at a wall, which may modify the hydrodynamic interactions between the

particles [Zurita-Gotor et al. (2007)], but may also play a role through its roughness.

There also exists a kind of boundary layer at the wall, in which the particle concentration

decreases from its bulk value to zero. The description of this boundary layer (in terms of

FIG. 9. Variation of the normalized (relative to the shear stress of the pure liquid) second normal suspension

stress difference N2, with the volume fraction /. (�) Dynoseeds TS-40, (�) Dynoseeds TS-140, (þ) Yeo and

Maxey (2010), (�) Sierou and Brady (2002), (�) Zarraga et al. (2000), (�) Singh and Nott (2003), and (?) Cou-

turier et al. (2011).
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boundary conditions) is not well-developed, and its influence on our measurements is not

clear. Moreover, the particle stress tensor, Rp, has been assumed to depend on the local

shear alone, and not on the velocity field curvature. However, it is well known that the

trajectory of a single particle is affected by any flow curvature (Fax�en law), and it is

likely that the flow curvature (i.e., the geometry of the device, cylindrical, plate-plate,

cone-plate, etc.) has also some influence on the particle stress. This could explain in part

the difference between our N2 direct measurements, at a wall of a cylindrical geometry,

and those by Couturier et al. (2011), at the free surface of a tilted trough setup: It may be

due to the differences in the geometry and in the nature of the boundary conditions (i.e.,

free or solid surface).

The particle phase radial normal stress, DRp
rr ¼ DPg � DPm, normalized with the vis-

cous shear stress of the suspension, jR12j ¼ gsj _cj, is plotted as a function of / and /2, in

Figs. 10(a) and 10(b), respectively.

Previous experiments [e.g., Zarraga et al. (2000); Singh and Nott (2003); Couturier

et al. (2011)] reported normal stress differences obtained from classical rheometry or

interface deformation and then related to the suspension stress R which could differ from

the normal stress difference of the particle phase [Lhuillier (2009)]. Nonetheless, we

compare our measurements to those reported by Zarraga et al. (2000) and our data com-

pare fairly well with the fit, Rp
rr ¼ �2:17/3expð2:34/Þgs _c, obtained by Zarraga et al.

(2000) [solid line in Fig. 10(a)]. However, our measurements are slightly larger in abso-

lute value, which is in accordance with the asymptotic behavior, Rp
rr ¼ �2/2gsj _cj,

obtained at low enough particle volume fraction, / < 0:4, in Fig. 10(b). This quadratic

dependence of Rp
rr=ðgsj _cjÞ agrees with the theoretical particle pressure prediction of

Brady and Morris (1997) for small /, and supports the contention that the particle phase

normal stress Rp
rr is due to asymmetric pair interactions under dilute conditions, and may

not require many-body effects. We note that our measurements of Rp
rr displayed on Fig.

10(b) have been obtained for particle concentrations as low as / ¼ 0:2, and do not appear

to suggest a concentration threshold. The data deviation from the /2 scaling appears for

/ > 0:4 ð/2 > 0:16Þ.
For the sake of completeness, we compare in Fig. 11 our measured values, Rp

rr=ðgf j _cjÞ,
with the recent expression proposed by Professor P. Mills (private communication, 2011)

and by Boyer et al. (2011) for the particle pressure P=ðgf j _cjÞ ¼ ð/max=/� 1Þ�2
, with

/max ¼ 0:605, based on the determination of relaxation time sr ¼ gs=Ps where Ps is the

particle pressure used to define the viscous analog of the “inertial number” introduced by

FIG. 10. DRp
rr , normalized with the suspension shear stress, as a function of / (a) and of /2 (b). Our data, (�)

Dynoseeds TS-40 and (�) Dynoseeds TS-140, are compared to the data (�) of Sierou and Brady (2002) and the

fit (solid line) of Zarraga et al. (2000) in (a), and to y ¼ �2/2 (solid straight line) in (b).
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da Cruz et al. (2002) for granular media. Although Rp
rr=ðgf j _cjÞ actually represents only

one component of the normal particle phase stress, it compares remarkably well with the

simple analytical expression for the particle pressure. The normalization (by gf j _cj) used

in Fig. 11 enables the comparison with N2 displayed in Fig. 9. Rp
rr exceeds the fluid shear

stress gf j _cj, for / � 0:3 (i.e., /max=2) (whereas, with the exception of one measurement

at / ¼ 0:5, the values obtained for N2 were always below gf j _cj). More generally, we

recall that our pressure measurements always obeyed jDPgj
 jDPmj (Fig. 8) which

implies, from (10), (12), and (13),

jN2j�jRp
rrj (14)

and

DRp
rr � DPg ¼ �DRf

rr: (15)

Thus, the grid pressure provides an approximate measurement of the particle phase ra-

dial normal stress, DRp
rr � DPg, and a good estimate of the particle pressure if one

assumes that the normal stress difference of Rp is of substantially smaller magnitude. The

normal stress difference, N2, of the suspension stress, R, is found to be small when com-

pared to the particle phase normal stress Rp
rr.

V. CONCLUSION

The method for measuring a normal stress component of the particle phase in a Stoke-

sian suspension through measurements of the grid pressure variation DPg induced by

shear in a Taylor–Couette device [Deboeuf et al. (2009)] has been revisited, including a

measurement of the total suspension radial stress (Rrr) obtained from the pressure varia-

tion behind an impermeable membrane DPm. Analysis shows that the latter is indeed

needed to provide access to the particle phase radial normal stress Rp
rr ¼ DPg � DPm.

Moreover, we showed that DPm is also a measurement of the second normal stress

FIG. 11. Comparison of �Rp
rr , normalized with the fluid shear stress, gf j _cj, with the expression for the particle

pressure, P=ðgf j _cjÞ ¼ ð/max=/� 1Þ�2
(see text).
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difference N2, of the total stress of the suspension, R. Measurements of N2 by the method

described in this work exhibit a linear dependence with the shear rate j _cj and an exponen-

tial variation with the particle volume fraction /, in line with the results of previous stud-

ies [Sierou and Brady (2002); Yeo and Maxey (2010); Zarraga et al. (2000); Couturier

et al. (2011)]; they are also found to be 1 order of magnitude lower than our measured

values of Rp
rr, which can be estimated, therefore, by the grid pressure alone, Rp

rr ’ DPg.

Our measurements of Rp
rr show no particle size dependence and increase linearly with

the shear rate j _cj. When normalized by the suspension shear stress, gsj _cj, they increase

quadratically with /, in the range 0 < / < 0:4, which agrees with the theoretical particle

pressure prediction of Brady and Morris (1997) for small / and supports the contention

that the particle phase normal stress Rp
rr is due to asymmetric pair interactions under

dilute conditions, and may not require many-body effects. When normalized by the fluid

shear stress, gf j _cj, these measurements are found to be nicely described by the analytic

expression for the particle pressure P=ðgf j _cjÞ ¼ ð/max=/� 1Þ�2
, recently used to

describe experimental data by Boyer et al. (2011) and which has, for high /, the same

functional form as the constitutive relation proposed by Morris and Boulay (1999).
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