
Part 3 REFLECTION  AND
TRANSMISSION OF
ULTRASONIC  WAVES

Nearly all applications of ultrasonics involve the interaction of waves with boundaries.

Nondestructive testing, medical imaging and sonar are ready examples of this. Even basic studies

of material properties, usually involving the attenuation of waves, require in the final analysis

accounting for boundary interactions.

3.1 Reflection/transmission - normal incidence

The simplest situation of reflection and transmission occurs when waves are impinging

normal to the surface. In Fig. 3.1, the case of a longitudinal wave incident on the interface

between two media is shown. This situation may be described mathematically in terms of three

propagating waves

ρ , c1 1

ρ , c2 2

Incident Wave Reflection

Transmission

Figure 3.1 Reflection and transmission of an acoustic wave at normal incidence to a

plane boundary.
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u A k x ti i= −sin ( )1 ω  , (3.1)

u A k x tr r= − − +sin[ ( )]1 ω  , (3.2)

u A k x tt t= −sin( )2 ω  . (3.3)

The amplitude of the reflected and transmitted waves may be found by noting that the

displacements and stresses must be the same (continuous) at the interface. Thus, for x = 0, it is

required that

u u ui r t+ =     and    τ τ τi r t+ =  . (3.4)

This leads directly to the result
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This gives the ratio of the displacement amplitude. More commonly, the stress (or pressure)

amplitudes are given. Thus,
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where  R  and  T  are known as the reflection and transmission coefficients. It is seen that these

results are in terms of the respective acoustic impedances of the materials.
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Illustration of the reflection and transmission at various interface combinations are worth

considering.  For steel-water, we have   ρs sc = ×465 106. kg / m s2    and

ρw wc = ×15 106. kg / m s2  .  From Eqs. 3.7 and 3.8, one obtains   R = − 0938.     and

T = 0 063.  . The interpretation of this result is that the amplitude of the reflected stress wave is

0.938 (or 93.8%) that of the incident amplitude. The negative sign indicates that the reflected

wave is 180o out of phase with the incident wave. Thus, when the incident wave is compressive,

the reflected wave is tensile and vice-versa. The transmitted pressure amplitude is but 6.3% of

the incident amplitude. This reflection/transmission situation is shown in Fig. 3.2a. For  water-

steel, by using the previous values for  ρs  cs,,  ρw,  and  cw, we obtain from Eqs. 3.7 and 3.8

R = 0938.    and   T = 1938. . Thus, the reflected wave amplitude is nearly the same as the

incident amplitude, where the transmitted (stress) amplitude is nearly twice the incident

amplitude, as shown in Fig. 3.2b.
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Figure 3.2 Sound pressure values in the case of reflection from (a) a steel-water and

(b) a water-steel interface at normal incidence.

The preceding result may appear strange, as though conservation of energy were being violated.

However, both wave amplitude and wave velocity determine the time rate of flow of energy (i. e.,

power) at the interface. In terms of power, there should be a net balance. That is,
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P P Pr t i+ = (3.9)

should be satisfied. The power per unit area (i. e., intensity) will be given by  I = − τv ,  where

τ ∂ ∂ ∂ ∂= =C u x u t11 / /and v . Using Eqs. 3.1-3.3 to calculate Pi, Pr, Pt  and substituting in the

power balance expression shows it to be satisfied.

Special cases: Suppose media 2 is vacuum, so that  2 2 0ρ c = . One obtains

Rd
free = −1,     Td

free = 2 ,     Rs
free = −1,     and     Ts

free = 0

indicating a simple phase reversal of the incident wave. Suppose media 2 is infinitely rigid, so
that 2 2ρ c → ∞ . Then from Eqs. 3.5 through 3.8 one obtains

Rd
clamped = 1,     Td

clamped = 0,     Rs
clamped = 1,     and     Ts

clamped = 2

There is thus no phase reversal of the incident displacement wave.

The case of shear waves normally incident on a boundary may also be considered.

However, a small subtlety arises. If the two media are bonded together, then conditions at the

interface would be that  i r t i r tv v v+ = + =, τ τ τ ,  and expressions of the form Eqs. 3.5 trough

3.8 would be obtained, with all velocities merely being changed to shear wave velocities.

However, the more common cases of a fluid-solid interface or of two solids separated by a thin

film of lubricant would prevent transmission of shear waves across the interface.

The case of waves normally incident on a layer sandwiched between two media is the

next step of complexity and represents a situation frequently arising in ultrasonics. Reflection at

and transmission through an elastic layer exhibit strong frequency dependence associated with

resonances in the layer. One of the simplest approach to describe this problem is applying the

impedance-translation theorem to the layer [See for example, L. M. Brekhovskikh, Waves in

Layered Media (Academic, New York, 1980) pp. 23-26]. The impedance-translation theorem

says that the input impedance  Zinput  of a layer can be calculated from the loading impedance

Zload  presented by the medium behind the layer and the acoustic impedance  Zo  of the layer

itself as follows:
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Z Z
Z i Z k d

Z i Z k dinput o
load o o

o load o
= −

−
tan( )

tan( )
. (3.10)

Although this theorem is well known and widely used in several area, such as electrical

engineering, it is very instructional to derive it from the boundary conditions prevailing at the

two interfaces. Let us write the stress distribution in the layer in the following general form:

τ( ) exp( ) exp( )x A i k x A i k xo o= + −+ − , (3.11)

which is the sum of a forward and backward propagating plane wave.  A+  and  A-  are the

complex amplitudes of the two waves and we omitted the common  exp(- i ω t )   term. The

velocity distribution is given by

v( ) [ exp( ) exp( )]x
x

i Z
A i k x A i k x

o o
o o= − = − − −+ −

∂ τ ∂
ωρ
/ 1

 . (3.12)

The input impedance of the layer is

Z Z
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A Ainput o= − = +
−

+ −

+ −

τ( )

( )

0

0v
, (3.13)

where the ratio of the complex amplitudes  A+   and  A−   can be determined from the condition

that
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Substitution of (3.15) into (3.13) yields

Z Z
Z k d i Z k d

Z k d i Z k dinput o
load o o o

o o load o
= −

−
cos( ) sin( )

cos( ) sin( )
(3.16)

which is identical with the previously given form of (3.10).
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The reflection coefficient of the layer can be easily obtained from (3.7) as

R
Z Z

Z Z
input

input
=

−
+

1

1
(3.17)

from  Z Zload = 2. In the simplest case of  Z Z2 1= ,  the reflection coefficient turns out to be

R
i k d Z Z

i k d Z Z Z Z
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2
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12
, (3.18)

while the transmission coefficient can be calculated from the law of energy conservation as

T R= −( )1 2 . (3.19)

From Equations 3.18 and 3.19, the moduli of the reflection and transmission coefficients

can be written as follows

R
k d

k d

o

o

=
+

ξ

ξ

sin( )

sin ( )2 2 1
(3.20)

and

T
k do

=
+

1

12 2ξ sin ( )
 , (3.21)

where  ξ = −½ Z Z Z Zo o/ /1 1   is a measure of the impedance contrast between the layer and

the surrounding host materials.

The general situation is shown in Fig. 3.2a, where repeated reflections occur within the

layer until a steady reflection, transmission state is reached. Not only do the material impedances

enter, the ratio of layer thickness to acoustic wavelength (d/λo)  strongly influences the result,

too. The particular cases of steel and Plexiglas plates in water are shown in Fig. 3.3b.
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Figure 3.3 (a) Schematic diagram of reflection at and transmission through a layered

medium and (b) specific cases of steel and Plexiglas plates in water.
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Equation 3.20 can be used to answer one of the basic questions of ultrasonic

nondestructive evaluation concerning the reflectivity of thin cracks in solids. As an example,

Figure 3.4 shows the reflectivities of air-filled and water-filled cracks in steel as functions of the

frequency-thickness product [J. Krautkramer and H. Krautkramer, Ultrasonic Testing of

Materials (Springer, Berlin, 1977) p. 29]. For very thin cracks,

lim
d

oR k d
→

=
0

ξ  , (3.22)

i. e., the reflectivity is proportional to the product of impedance mismatch, frequency, and layer

thickness.
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Figure 3.4 The reflectivities of air-filled and water-filled cracks in steel as functions 

of the frequency-thickness product.
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One of the most important consequence of the impedance-translation theorem of Eq. 3.10

is the impedance matching capability of a single layer. When the layer thickness is an odd

multiple of the quarter-wavelength in the layer material, i. e., d n= +( )2 1 4λ / , the input and

load impedances are related through

Z
Z

Zinput
o

load
=

2
 . (3.23)

This means that perfect matching (total transmission and zero reflection) can be achieved even
between widely different impedances if a quarter-wavelength matching layer of  Z Z Zo = 1 2

acoustic impedance is applied at the interface. Let us denote the center frequency where the layer

thickness equals to one quarter-wavelength by  fo.  In the vicinity of this center frequency,

sin( ) , cos( ) ,k d k d
f f

fo o
o

o
≈ ≈ = −

1
2

and where∆ ∆ π
, (3.24)

and the reflection coefficient can be approximated as follows
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2
∆

∆  , (3.25)

where  r Z Z= 2 1/   denotes the impedance ratio between the two media to be matched. The

energy transmission coefficient through the matching layer can be approximated as

T
r

renergy ≈ − −
1

1

4
2

2
∆ ( )

 . (3.26)

Figure 3.5 shows the energy transmission coefficient through a quarter-wavelength matching

layer between quartz (typical transducer element) and water.

Of course, good matching is limited to the vicinity of the center frequency. The relative

bandwidth (inverse quality factor) can be approximated as

1 4 2

1

18

1
2 1

Q

f f

f

r

r

r

ro
= − ≈

−
≈

−π ( )

.
, (3.27)
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where  f1  and  f2  are the half-power (-6 dB) points. In the previously given example of quartz

coupled to water, the relative bandwidth is reasonably wide at  69 %. In the case of larger

impedance differences, the bandwidth where good transmission occurs is much lower. For

example, Figure 3.6 shows the energy transmission coefficient through a quarter-wavelength

matching layer between steel and water where the relative bandwidth is only 33 %.

It can be also seen from Equation 3.10 that whenever the layer thickness is equal to an

integer multiple of the half-wavelength, i. e., d n= λ / 2 , the input impedance is equal to the

load impedance and the presence of the layer does not affect the transmission and reflection

coefficients of the interface between the two surrounding media.
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Figure 3.5 Energy transmission coefficient through a quarter-wavelength matching

layer between quartz and water.
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Figure 3.6 Energy transmission coefficient through a quarter-wavelength matching

layer between steel and water.

3-11



3.2 Reflection/transmission - oblique incidence

A more general situation of reflection and transmission of waves at an interface occurs

when the incident wave strikes at an oblique angle. A large number of possibilities exist,

depending on the combinations of solid, fluid and vacuum of the two media and, if the incident

media is a solid, whether the incident wave is pressure or shear wave. There are two somewhat

opposite approaches to handle this complexity. One can start from the simplest case of

longitudinal wave interaction with a fluid-fluid interface and build up build up the complexity

step-by-step by introducing solid on one side then on the other. We shall follow another approach

by giving formal solution for the most general solid-solid interface for an arbitrary incident wave

then simplify the resulting formulas for the simpler cases. This approach was adapted from B. A.

Auld Acoustic Fields and Waves (John Wiley & Sons, New York, 1973) Vol. II, pp. 21-38.

General case:  In the most general case, either a longitudinal or a shear incident wave interacts

with a solid-solid interface. This situation is shown in Figure 3.7.

θdi

solid 1

Id Rd

Rs

Td

solid 2

Ts

θsiIs

z

y
θs1

θd1

θs2

θd2

Figure 3.7 General acoustic wave interaction with a solid-solid interface.
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From Snell's Law,

sin sin sin sin sin sinθ θ θ θ θ θdi

d
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sc c c c c c1 1

1

1

1

1

2

2

2

2
= = = = = . (3.28)

The particle displacement amplitudes of the incident, reflected, and transmitted longitudinal

waves are I R Td d d, , and , respectively. Similarly, the particle displacement amplitudes of the

incident, reflected, and transmitted shear waves are I R Ts s s, , and . Only two stress components

are relevant to the boundary conditions:
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1 1 1 1
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2
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22= + =c cs d, and .

The boundary conditions require that both normal and transverse velocity and stress components

be continuous at the interface:
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where the incident wave can be either longitudinal  (Id = 1, Is = 0) or shear (Is = 1, Id = 0).

Equation 3.31 can be written by using the displacement amplitudes as follows
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depending on whether longitudinal or shear wave incidence is considered. The matrix elements

aij ,  bi,  and  ci  can be easily calculated from simple geometrical considerations:

a =
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−

− − −

− − −
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(3.33)

For brevity, the common  -i ω   factor was omitted in the last two rows. (The sign of all elements

in the third column of matrix  a  has been changed with respect to Auld's results to account for

the opposite polarization of the reflected shear wave in his book.)
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The reflection and transmission coefficients can be determined by applying the well-known

Cramer's rule.

R T R Td d s s= = = =det[ ]

det[ ]
,

det[ ]

det[ ]
,

det[ ]

det[ ]
,

det[ ]

det[ ]

( ) ( ) ( ) ( )a
a

a
a

a
a

a
a

1 2 3 4
, (3.35)

where a ( )i  is the matrix obtained by replacing the  ith  column of  a  by either  b  or  c  vectors

depending on whether longitudinal or shear incidence is used. It will be possible to give only a

few specific results, with just the general behavior outlined for most cases. Figure 3.8a-d shows

the schematic diagrams of reflection and transmission of waves for various combinations of

materials. In these figures and in the following, the first index of the reflection and transmission

coefficients indicate the type of the incident wave. For example,  Rsd  is the dilatational

reflection coefficient for shear wave incidence and  Tdd  is the dilatational transmission

coefficient for dilatational wave incidence.
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a) fluid-vacuum b) fluid-fluid (cd2 > cd1)
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Figure 3.8a-d Reflection and transmission of waves for various combinations of

materials.
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e) fluid-solid

fluid

solid

θi θr

θs

θd

Id

Tdd

Rdd

Tds

f) solid-fluid g) solid-fluid

(longitudinal incidence) (shear incidence)

solid

fluid

θi

Id

Tdd

Rdd

Rdsθs1

θd2

θd1θ  =r

 

solid

fluid

θiIs

Tsd

Rsd

Rss

θd1

θd2

θs1θ  =r

Figure 3.8e-g Reflection and transmission of waves for various combinations of

materials.
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h) solid-solid i) solid-solid
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Figure 3.8h-i Reflection and transmission of waves for various combinations of

materials.

The simplest situation of a fluid-vacuum boundary will be considered first.

Fluid-vacuum: The case of a pressure wave incident on a fluid-vacuum interface is shown in Fig.

3.8a. This is the simplest reflection case and results in

dd r iR ≡ =1 , θ θ . (3.36)

Fluid-fluid: Two fluid media in contact result in a reflected and a transmitted (or refracted) wave.

The relationships governing the angles are (Snell's law):

r i
d

d

i

dc c
θ θ θ θ= =,

sin sin2

2 1
 . (3.37)

From the second equation, we have
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sin sind
d

d
i

c

c
2

2

1
θ θ=  . (3.38)

This leads to the conclusion that if

d d d ic c2 1 2< <then θ θ (3.39)

and if

d d d ic c2 1 2> >then θ θ  . (3.40)

In Figure 3.8b, the dashed line in media 2 is at the incidence angle. When medium 2 is "slower"

than medium 1, the refracted wave is bent or steered toward the normal. When medium 2 is

"faster" than medium 1 (which is the case illustrated), the wave is bent toward the surface.

It may be also seen from (3.31) that for a given ratio of  c cd d2 1/ ,  there will exist an

angle  θic  (critical angle) for which sin ,d d2 21 90θ θ→ → °. Thus , the refracted wave is

parallel to the interface. For any angle beyond the critical angle, total reflection of the incident

wave occurs.

Solid-vacuum: Since the incident wave is in a solid medium, it may be either pressure (Fig. 3.8c)

or shear (Fig. 3.8d). The most remarkable feature of this and other cases involving solid media is

the phenomenon of mode conversion. What occurs is that a P-wave generates both a P-wave and

an S-wave upon reflection. Similar mode conversion can also occur in the case of an incident

shear wave. The angular relations are as follows:

P-wave incident: r d i
s

s

i

dc c
θ θ θ θ θ

( ) ,
sin sin

= = =  (3.41)

S-wave incident: r s i
d

d

i

sc c
θ θ θ

θ θ
( ) ,

sin sin= = =  . (3.42)

For the case of an incident shear wave, it may be seen that there will again exist a critical value

of the incidence angle for which  sinθd → 1,  or  θd → °90 . This will inevitably occur since

3-18



d sc c>   always. For an incident angle beyond the critical angle, total reflection occurs for the

shear wave and the reflected P-wave completely disappears.

We shall use this simple case as an example to demonstrate how to obtain the reflection

and transmission coefficients from the previously given general formulas of  Eqs. 3.31-3.35. In

the case of a free solid surface, the boundary conditions require that both normal and transverse

stress disappear at the surface but do not put any limitation of the particle displacement. At the

same time, there are no transmitted shear or longitudinal waves to take into account at the

boundary. Consequently, the first two rows and the second and fourth columns of the  a  matrix

given in Eq. 3.33 can be eliminated and we get a 2-by-2 matrix.  For longitudinal incidence:
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By using Cramer's rule, the longitudinal-to-longitudinal reflection coefficient of the free solid

surface can be obtained as
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d
s d
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d
s d

= −
−

+

cos sin sin

cos sin sin

2
2

2

2
2

2

2 2 2

2 2 2

θ θ θ

θ θ θ
 , (3.44)

which depends on the Poisson ratio of the solid only and  R Rdd dd( ) ( )0 90 1° = ° = − . Naturally,

the longitudinal-to-shear as well as the shear-to-longitudinal and the shear-to-shear wave

reflection coefficients can be calculated in the same way.

Specific mathematical formulas have been obtained for the amplitudes of the reflected

waves, with the results presented in a number of ways. Basically, the reflection behavior is

dependent on incidence angle and material properties (specifically, Poisson's ratio). One

illustration of this is given in Fig. 3.9 for the case of a solid-vacuum interface. In the case of

shear wave incidence (Fig. 3.9b), the critical angle occurs where the  Rss  becomes  -1. Beyond

the critical angle,  Rss ≡ −1  and the reflected dilatational wave is evanescent. Another useful

representation of this type of data is by a polar plot shown in Fig. 3.10 for  ν  = 0.3.
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Figure 3.9 Absolute values of the longitudinal and shear wave reflection coefficients

from a solid-vacuum interface as functions of the angle of incidence for

two different Poisson's ratios (solid lines: ν  = 0.3, dashed lines: ν  = 0.35).
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Figure 3.10 Polar diagram of the longitudinal (solid line) and shear (dashed line) wave

reflection coefficients from a solid-vacuum interface in the case of (a)

longitudinal and (b) shear incident waves (ν  = 0.3).
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Displacement, stress, intensity, and power coefficients

The reflection and transmission coefficients determined from Eq. (3.32) denote

displacement ratios (without explicitely indicating it). In many cases, it is necessary to express

the relative strength of the reflected and transmitted waves in terms of stress, intensity, or power.

The stress coefficients can be obtained from the corresponding displacement coefficients by

accounting for the impedance differences as follows:

Γ Γαβ αβ
β

α

( ) ( )stress displacement jZ

Z
=

1
  or simply,  Γ Γαβ αβ

β

α

( )stress jZ

Z
=

1
(3.45)

where  Γ   stands for either  R  (j  =  1)  or  T  (j  =  2),  and  α  and  β  are either  d  or  s.  For

propagating modes, the intensity coefficients then can be easily calculated as a product of the

corresponding displacement and stress coefficients:

Γ Γ Γ Γαβ αβ αβ αβ
β

α

( ) ( ) ( )intensity = =displacement stress jZ

Z
2

1
, (3.46)

Finally, for propagating modes the power coefficients can be obtained from the corresponding

intensity coefficients by accounting for the different refraction angles as follows:

Γ Γ Γαβ αβ
β

α
αβ

β

α

β

α

θ
θ

θ
θ

( ) ( )power intensity cos

cos

cos

cos
= =j j jZ

Z1

2

1 1
. (3.47)

It should be mentioned that the power coefficients are identically zero for evanescent waves,

which do not carry energy away from the interface. The law of energy conservation can be

written as follows:

R R T Td
power

s
power

d
power

d
power

α α α α
( ) ( ) ( ) ( )+ + + ≡ 1. (3.48)

The law of reciprocity can be written as follows:

Γ Γαβ βα
( ) ( )power power≡ . (3.49)
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Fluid-solid: This case shown in Fig. 3.8d is of great interest when the fluid is liquid. Figure

3.11 shows the energy reflection and transmission coefficients for two cases of particular

importance, i. e., for aluminum and steel immersed in water. Generally the transmission is much

higher from water into aluminum than into steel, which is caused by the more than eight times

higher density of the latter. Note that there is a wide range of incidence angle above the second

(shear) critical angle for which the water wave is completely reflected. Of course there is no

transmission into the shear component at normal incidence. The longitudinal transmission

disappears above the first critical angle which is approximately  13.5° for aluminum At this

angle, the transmitted longitudinal wave propagates along the surface. At higher angles, the

longitudinal transmitted wave is evanescent and does not carry energy away the interface.

Solid-fluid: Two cases may arise here, that of an incident P-wave, and an incident S-wave, as

shown in Figs. 3.8f and g. Again, this is of great interest when the fluid is a liquid. The specific

case of an aluminum/water interface is shown in Fig. 3.12. It is very important to realize that,

according to the Reciprocity Theorem, the energy transmission coefficients are the same for the

fluid-solid and the corresponding solid-fluid interfaces. For example, at  18°  angle of incidence,

the energy transmission coefficient from water into aluminum is  45.7 %,  and the refraction

angle of the shear wave is  39.4°.  At the same  39.4°  angle of incidence, the energy transmission

coefficient of the aluminum-water interface for an incident shear wave is also  45.7 %  and the

compressional wave in the water is refracted at  18°.

Solid-solid: This situation is complicated by the fact that the two media may be solidly bonded

together, or there may be a lubricated interface.  The nature of distinction between the two

situations is that for a bonded interface, both the normal and shear stresses must match at the

interface. For a lubricated, or so-called slip, interface, it is only the normal stress and normal

displacement that must match. It should be noted that the angles of reflection and transmission

are not changed by the interface condition, only the various wave amplitudes are affected. The

specific case of a Plexiglas/aluminum combination is shown in Fig. 3.12. The behavior in Fig.

3.12 is somewhat complicated because of the four possible secondary waves generated by mode

conversion. The first critical angle, θi = 25.6°, is the angle at which the transmitted (or refracted)

longitudinal wave disappears. The second critical angle, θi = 62.4°, corresponds to the angle of

total reflection of the incident wave. Above this angle, all incident energy is reflected either as a

longitudinal wave or as a mode-converted shear wave. Between  25.6°  and  62.4°, one has a

method of generating (just) shear waves in steel. This technique of assuring a single transmitted

wave by working above the first critical angle is often used in everyday NDE.
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Figure 3.11 Energy reflection and transmission coefficients for (a) aluminum and

(b) steel immersed in water.
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Figure 3.12 Energy (a) reflection and (b) transmission coefficients for a

Plexiglas/aluminum interface in the case of longitudinal incidence.
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Rayleigh wave

Another interesting application of Eq. (3.43) is to derive the characteristic equation of the

free vibration (as opposed to forced vibrations) of a solid-vacuum interface (free surface). The

free vibration has to satisfy the homogeneous equation of
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The mathematical condition on the existence of a nontrivial solution (the trivial solution is

Rd = Rs = 0) is that the determinant, i. e., the denominator of Eq. (3.50) be zero:

cos sin sin2
2

2
2 2 2 0θ θ θs

s

d
s d

c

c
+ = . (3.51)

Later we shall show that this is the characteristic equation of the well-known Rayleigh wave with

sound velocity  cR  lower than both shear and longitudinal wave velocities in the unbounded

solid:

sin sinθ θs

s

d

d Rc c c
= = 1

. (3.52)

Relative velocities:

ξ ν
ν

= = −
−

c

c
s

d
(

( )
)

1 2

2 1
(3.53)

η = c

c
R

s
(3.54)

Exact Rayleigh equation:

η η ξ η ξ6 4 2 2 28 8 3 2 16 1 0− + − − − =( ) ( ) (3.55)
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Approximate expression

η ν
ν

≈ +
+

0 87 112

1

. .
(3.56)

Longitudinal incident wave: Suppose the P-wave is incident at 50° (θ θd i= = °50 ). Then the

reflected P-wave has an amplitude of 0.35% and negative phase (ν  = 0.3).  θs  can be readily

calculated from

sin sin . sin .41s
s

d
i

c

c
θ θ= = ° =0 55 50 0   which yields  θs = °24 2.

and the shear wave reflection coefficient is -1.08 (since the shear wave impedance is much lower

than the longitudinal one, the displacement amplitude of the reflected shear wave can be higher

than the amplitude of the incident longitudinal wave) It is worthwhile to mention, that the phase

of the reflected shear wave includes an arbitrary 180° component depending on the choice of the

coordinate system.

S wave incident. Suppose θ θs i= = °20  again. Then the shear-to-shear reflection coefficient is

sR ≈ 0 69.   and  θd  can be determined from

sin sin .θ θ θd
d

s
s d

c

c
= → = °38 5 .

The shear-to-longitudinal reflection coefficient is  dR ≈ − 0 53. . Note that the critical angle of

incidence of the shear wave is  32.3° and beyond that angle, there is no reflected pressure wave.
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