Part 3 REFLECTION AND
TRANSMISSION OF
ULTRASONIC WAVES

Nearly all applications of ultrasonics involve the interaction of waves with boundaries.
Nondestructive testing, medical imaging and sonar are ready examples of this. Even basic studies
of material properties, usually involving the attenuation of waves, require in the final analysis
accounting for boundary interactions.

3.1 Reflection/transmission - normal incidence

The simplest situation of reflection and transmission occurs when waves are impinging
normal to the surface. In Fig. 3.1, the case of a longitudinal wave incident on the interface
between two media is shown. This situation may be described mathematically in terms of three
propagating waves
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Figure 3.1 Reflection and transmission of an acoustic wave at normal incidence to a
plane boundary.

3-1



Uy = Asin(kpx-wt), (3.1)

Yy = - Asin[-(lg x+ o 9], (3:2)

U = Asin(koX — wt). (3.3)
The amplitude of the reflected and transmitted waves may be found by noting that the
displacements and stresses must be the same (continuous) at the interface. Xbu8, itas
required that

U+ 4y =y and T+T =T . (3.4)

This leads directly to the result

Poc2 —P1C1
Ry = A _ P27 PG (3.5)
A Picrt P2
and
2
Ty= Ao cha (3.6)
A pPicrt Poac2

This gives the ratio of the displacement amplitude. More commonly, the stress (or pressure)
amplitudes are given. Thus,

_ T _ pZCZ_ p]_Cl _
Ry = 1r =22 1A= g 37
T pPicrtpyc2
and
_ Tt _ 2Py
T,=—=—=2=_2Ty, (3.8)

Ti pPicitPoc2

where R and T are known as theeflectionandtransmissiorcoefficients. It is seen that these
results are in terms of the respective acoustic impedances of the materials.
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lllustration of the reflection and transmission at various interface combinations are worth
considering. Fosteel-wateywe have pgcg = 46.5x 16 kg/m?2s and
PwCw = 15% 1P kg/m?2s . From Egs. 3.7 and 3.8, one obtaifs = —-0.938 and
T = 0.063. The interpretation of this result is that the amplitude of the reflected stress wave is
0.938 (or 93.8%) that of the incident amplitude. The negative sign indicates that the reflected
wave is 180 out of phase with the incident wave. Thus, when the incident wave is compressive,
the reflected wave is tensile and vice-versa. The transmitted pressure amplitude is but 6.3% of
the incident amplitude. This reflection/transmission situation is shown in Fig. 3.2a&fter-
stee| by using the previous values fpg cg, py, and g,, we obtain from Egs. 3.7 and 3.8
R = 0938 and T = 1938 Thus, the reflected wave amplitude is nearly the same as the
incident amplitude, where the transmitted (stress) amplitude is nearly twice the incident
amplitude, as shown in Fig. 3.2b.

a) steel . water

o]

b) water | steel
Aanana i /N
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Figure 3.2 Sound pressure values in the case of reflection from (a) a steel-water and
(b) a water-steel interface at normal incidence.

The preceding result may appear strange, as though conservation of energy were being violated.
However, both wave amplitude and wave velocity determine the time rate of flow of energy (i. e.,
power) at the interface. In terms of power, there should be a net balance. That is,
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R+R =P (39

should be satisfied. The power per unit area (i. e., intensity) will be givdnby-tv, where
T = Gqou/dx andv = owot Using Egs. 3.1-3.3 to calcula®g P, P; and substituting in the
power balance expression shows it to be satisfied.

Special casesSuppose media 2 is vacuum, so tpatc, = 0. One obtains
R(jree = -1, Tdfree =2, Rsfree = -1 and -I-Sfree -0

indicating a simple phase reversal of the incident wave. Suppose media 2 is infinitely rigid, so
thatp, cp — «. Then from Egs. 3.5 through 3.8 one obtains

R(j:lamped -1 -I-dclamped =0, Rglamped =1, and Tsclamped =9

There is thus no phase reversal of the incident displacement wave.

The case of shear waves normally incident on a boundary may also be considered.
However, a small subtlety arises. If the two media are bonded together, then conditions at the
interface would be thati+v, =vi, tj + 1 = ©t, and expressions of the form Egs. 3.5 trough
3.8 would be obtained, with all velocities merely being changed to shear wave velocities.
However, the more common cases of a fluid-solid interface or of two solids separated by a thin
film of lubricant would prevent transmission of shear waves across the interface.

The case of waves normally incident on a layer sandwiched between two media is the
next step of complexity and represents a situation frequently arising in ultrasonics. Reflection at
and transmission through an elastic layer exhibit strong frequency dependence associated with
resonances in the layer. One of the simplest approach to describe this problem is applying the
impedance-translation theoretm the layer [See for example, L. M. BrekhovskiWaves in
Layered MedigAcademic, New York, 1980) pp. 23-26]. Timepedance-translation theorem
says that the input impedang,,; of a layer can be calculated from the loading impedance
Znag Presented by the medium behind the layer and the acoustic impedarufehe layer
itself as follows:



Zioad ~ 1Zotan(ked)
Zo ~ 1Zjgaqtan(ked)

Zinput = Zo (3.10)

Although this theorem is well known and widely used in several area, such as electrical
engineering, it is very instructional to derive it from the boundary conditions prevailing at the
two interfaces. Let us write the stress distribution in the layer in the following general form:

T(x) = Arexp(iky x) + A exptiky x) (3.11)

which is the sum of a forward and backward propagating plane wavend A_ are the
complex amplitudes of the two waves and we omitted the commofietp term. The

velocity distribution is given by

vu):—ﬁzsxz - [Aexplik, X) — A expik, X)1 (3.12)

The input impedance of the layer is

1(0) AL+ A

Z. = -7 = Z _, 313
input v(0) A - A ( )

where the ratio of the complex amplitudés and A_ can be determined from the condition

that

Lo ), AdRd 4 p gk .19
load — V(d) - 0 A+ék0d _ A_ e_lkod . .

ﬁ —_ Z'Oﬂd e_ikOd + Z) e_IkOd (3 15)
A ikod ik,d :

Zloade! 0 - Z) é °
Substitution of (3.15) into (3.13) yields
Zinout = Zo Zioad cos(kod).— 1Z, 3fn0<0d) (3.16)
Z,c08(Kod )~ i Zigaq Sin(kod)

which is identical with the previously given form of (3.10).
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The reflection coefficient of the layer can be easily obtained from (3.7) as

Zinput -4
Zinput +4

R = (3.17)

from Zj,aq = Z». Inthe simplest case df, = Z;, the reflection coefficient turns out to be

. itanked)(@ - 2) (3.18)
itank,d)(Z2 + Z) - 22,3

while the transmission coefficient can be calculated from the law of energy conservation as

IT| = Ja-|RP). (3.19)

From Equations 3.18 and 3.19, the moduli of the reflection and transmission coefficients
can be written as follows

R| = —2Sintkod) (3.20)
\/Ezsinz(kod)+1
and
T = 1 , (3.21)
\/Ezsinz(kod)+1

where & = %|Z,/2 - Z 1 Z)| is a measure of the impedance contrast between the layer and

the surrounding host materials.

The general situation is shown in Fig. 3.2a, where repeated reflections occur within the
layer until a steady reflection, transmission state is reached. Not only do the material impedances
enter, the ratio of layer thickness to acoustic wavelerdyth{) strongly influences the result,

too. The particular cases of steel and Plexiglas plates in water are shown in Fig. 3.3b.
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Figure 3.3 (a) Schematic diagram of reflection at and transmission through a layered
medium and (b) specific cases of steel and Plexiglas plates in water.
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Equation 3.20 can be used to answer one of the basic questions of ultrasonic
nondestructive evaluation concerning the reflectivity of thin cracks in solids. As an example,
Figure 3.4 shows the reflectivities of air-filled and water-filled cracks in steel as functions of the
frequency-thickness product [J. Krautkramer and H. Krautkrddiegasonic Testing of
Materials (Springer, Berlin, 1977) p. 29]. For very thin cracks,

I = .
lim |R| =&k d, (3.22)

i. e., the reflectivity is proportional to the product of impedance mismatch, frequency, and layer
thickness.
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Figure 3.4 The reflectivities of air-filled and water-filled cracks in steel as functions
of the frequency-thickness product.
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One of the most important consequence of the impedance-translation theorem of Eq. 3.10
is the impedance matching capability of a single layer. When the layer thickness is an odd
multiple of the quarter-wavelength in the layer material, des, (2n+1)A/ 4, the input and
load impedances are related through

2

- %
Z; = : 3.23
nput = 7 (3.23)

This means that perfect matching (total transmission and zero reflection) can be achieved even
between widely different impedances if a quarter-wavelength matching laygy ef /2 Z,

acoustic impedance is applied at the interface. Let us denote the center frequency where the layer
thickness equals to one quarter-wavelengttf Joyln the vicinity of this center frequency,

mfy— f

sin(k,d) = 1, and cosk,d )= A , whereA = ST (3.24)
[0}
and the reflection coefficient can be approximated as follows
r-1 r -1
R = —, (3.25)
r + 1 - |i \/_

where r = Z,/Z; denotes the impedance ratio between the two media to be matched. The
energy transmission coefficient through the matching layer can be approximated as

N2
~1- A2(r 1)

T, 3.26
energy ar ( )

Figure 3.5 shows the energy transmission coefficient through a quarter-wavelength matching
layer between quartz (typical transducer element) and water.

Of course, good matching is limited to the vicinity of the center frequency. The relative
bandwidth (inverse quality factor) can be approximated as

~f AV (3.27)

1
Q f0 Tn(r-1) r—1
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where f; andf, are the half-power (-6 dB) points. In the previously given example of quartz
coupled to water, the relative bandwidth is reasonably wide at 69 %. In the case of larger
impedance differences, the bandwidth where good transmission occurs is much lower. For
example, Figure 3.6 shows the energy transmission coefficient through a quarter-wavelength
matching layer between steel and water where the relative bandwidth is only 33 %.

It can be also seen from Equation 3.10 that whenever the layer thickness is equal to an
integer multiple of the half-wavelength, i. d.,= nA/2 , the input impedance is equal to the

load impedance and the presence of the layer does not affect the transmission and reflection
coefficients of the interface between the two surrounding media.
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Figure 3.5 Energy transmission coefficient through a quarter-wavelength matching
layer between quartz and water.
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Figure 3.6 Energy transmission coefficient through a quarter-wavelength matching
layer between steel and water.
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3.2  Reflection/transmission - oblique incidence

A more general situation of reflection and transmission of waves at an interface occurs
when the incident wave strikes at an oblique angle. A large number of possibilities exist,
depending on the combinations of solid, fluid and vacuum of the two media and, if the incident
media is a solid, whether the incident wave is pressure or shear wave. There are two somewhat
opposite approaches to handle this complexity. One can start from the simplest case of
longitudinal wave interaction with a fluid-fluid interface and build up build up the complexity
step-by-step by introducing solid on one side then on the other. We shall follow another approach
by giving formal solution for the most general solid-solid interface for an arbitrary incident wave
then simplify the resulting formulas for the simpler cases. This approach was adapted from B. A.
Auld Acoustic Fields and Wavé3ohn Wiley & Sons, New York, 1973) Vol. Il, pp. 21-38.

General case In the most general case, either a longitudinal or a shear incident wave interacts
with a solid-solid interface. This situation is shown in Figure 3.7.

y
IS eSI 951 RS
I Bai Bd1 Ry
solid 1 7
solid 2
O
T
2 d
ed T

Figure 3.7 General acoustic wave interaction with a solid-solid interface.

3-12



From Snell's Law,

sinBgj _ sinBgj _ siByy _ siby _ sig, _  sifls

(3.28)
Ca1 Gs1 Q1 & G2 G2

The particle displacement amplitudes of the incident, reflected, and transmitted longitudinal
waves ard 4, Ry, and Ty, respectively. Similarly, the particle displacement amplitudes of the
incident, reflected, and transmitted shear waves arBg, and T4. Only two stress components

are relevant to the boundary conditions:

ou ou
= N2+ (A +2p) -2 3.29
Tyy 3 ( M) oy (3.29)
and
ou ou
Ty = u(a—zy + a_yz)’ (3.30)

_ 2 _ 2 _ 2 _ 2
wherepy = p1Csy, Ap + 2H3 = P1Cap M2 = P2Csp and Ap + 21y = paCyo -
The boundary conditions require that both normal and transverse velocity and stress components
be continuous at the interface:

_Ug,z)—u(yl)_ 0 __u§/d1)+u()/d2)_l‘§/s])+L§,32)_ 'u(yi)‘
- | _Jof  |-dmedsa- )| s
-+ Jo| | urdea - ep| 7|y |
LR T BRI R

where the incident wave can be either longitudingl=(1,15= 0) or shearl{= 1,14 = 0).
Equation 3.31 can be written by using the displacement amplitudes as follows

d1 2 a3 gl | Ry by ]
%1 8 A3 A | Ta| _ || | (3.32)
331 a3p azz Azl | R bs C3
ag) Ay Axz Ay | Ts by C4
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depending on whether longitudinal or shear wave incidence is considered. The matrix elements
aj, b, andc; can be easily calculated from simple geometrical considerations:

—-coHy; - co¥yo - Sifg sifl o
-sinByy SinBy» cody coB o
a = | -Z4co20y ZgpCoMWy -ZgsSiB g -Zosimd o (3.33)
-Zyg C—Slsinzedl -Zo Ss2 Sinyy ZgcosBy -Zyo COD o
L Ca1 Cd2 ]

For brevity, the commonie factor was omitted in the last two rows. (The sign of all elements
in the third column of matrixa has been changed with respect to Auld's results to account for
the opposite polarization of the reflected shear wave in his book.)

- COS@di

SinBg;
sinBg;
b= 7 como. | and c=| 00 (3.34)
dlc si —Z4Sin20
-7, gj .
_ Zslcdls'nzedu_ ~Z4 oS0

The reflection and transmission coefficients can be determined by applying the well-known
Cramer's rule.

_ det[a(l)]’ - det[a(z)]1 _ det[a(3)]’ T = detfa(?] | (3.35)
detfa] detfa] detfa] detfa]

wherea () is the matrix obtained by replacing tia column ofa by eitherb or ¢ vectors
depending on whether longitudinal or shear incidence is used. It will be possible to give only a
few specific results, with just the general behavior outlined for most cases. Figure 3.8a-d shows
the schematic diagrams of reflection and transmission of waves for various combinations of
materials. In these figures and in the following, the first index of the reflection and transmission
coefficients indicate the type of the incident wave. For examiglg, is the dilatational

reflection coefficient for shear wave incidence ahyg is the dilatational transmission

coefficient for dilatational wave incidence.
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Figure 3.8a-d Reflection and transmission of waves for various combinations of
materials.
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Figure 3.8e-g Reflection and transmission of waves for various combinations of

materials.
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Figure 3.8h-i Reflection and transmission of waves for various combinations of
materials.

The simplest situation of a fluid-vacuum boundary will be considered first.

Fluid-vacuum The case of a pressure wave incident on a fluid-vacuum interface is shown in Fig.
3.8a. This is the simplest reflection case and results in

Rad =1, 6 =6;. (3.36)

Fluid-fluid: Two fluid media in contact result in a reflected and a transmitted (or refracted) wave.
The relationships governing the angles are (Snell's law):

SinBgp _ Sing; (3.37)
Cd2 Cd1

er:ei1

From the second equation, we have

3-17



SinBgy = ‘;Ldi sing; . (3.38)

This leads to the conclusion that if

cd2 < cg1 then 04> < 0 (3.39)
and if

Cd2 > cd1 then 064> > 6. (3.40)

In Figure 3.8b, the dashed line in media 2 is at the incidence angle. When medium 2 is "slower"
than medium 1, the refracted wave is bent or steered toward the normal. When medium 2 is
"faster” than medium 1 (which is the case illustrated), the wave is bent toward the surface.

It may be also seen from (3.31) that for a given rati@gf/ cq1, there will exist an
angle 6;. (critical angle) for whiclsingg, — 1, 842 —» 9C°. Thus, the refracted wave is
parallel to the interface. For any angle beyond the critical atoge reflectionof the incident
wave oCcurs.

Solid-vacuumsSince the incident wave is in a solid medium, it may be either pressure (Fig. 3.8c)
or shear (Fig. 3.8d). The most remarkable feature of this and other cases involving solid media is
the phenomenon ahode conversiarWhat occurs is that a P-wave generates both a P-wave and
an S-wave upon reflection. Similar mode conversion can also occur in the case of an incident
shear wave. The angular relations are as follows:

i sind.

P-wave incident: @, (= 84) = 6;, Sings _ SN, (3.41)
Cs Cd
sin ino;

S-wave incident: 6, (= 65) = 8;, N8y _ sinG; - (3.42)

Cd Cs

For the case of an incident shear wave, it may be seen that there will again exist a critical value
of the incidence angle for which €y - 1, or 84 - 90°. This will inevitably occur since
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cqg > cs always. For an incident angle beyond the critical angle, total reflection occurs for the
shear wave and the reflected P-wave completely disappears.

We shall use this simple case as an example to demonstrate how to obtain the reflection
and transmission coefficients from the previously given general formulas of Egs. 3.31-3.35. In
the case of a free solid surface, the boundary conditions require that both normal and transverse
stress disappear at the surface but do not put any limitation of the particle displacement. At the
same time, there are no transmitted shear or longitudinal waves to take into account at the
boundary. Consequently, the first two rows and the second and fourth columnsaofthgix
given in Eg. 3.33 can be eliminated and we get a 2-by-2 matrix. For longitudinal incidence:

-Z3cos20g -ZgSinM ¢ Ryg Z4C0S204
-Zg C&sinZGd Z5Cc0s20 o { pdj - —ZSE—SsinZBd ' (3.43)
d d

By using Cramer's rule, the longitudinal-to-longitudinal reflection coefficient of the free solid
surface can be obtained as

2
cos’ 204 - C—g Sin284 sind 4
C
Rig = - Cg , (3.44)
coS’ 205 + -5 sirdBg sirh 4
Cd

which depends on the Poisson ratio of the solid only Bgg(0°) = Ryg(9C¢°) = — 1 Naturally,
the longitudinal-to-shear as well as the shear-to-longitudinal and the shear-to-shear wave
reflection coefficients can be calculated in the same way.

Specific mathematical formulas have been obtained for the amplitudes of the reflected
waves, with the results presented in a number of ways. Basically, the reflection behavior is
dependent on incidence angle and material properties (specifically, Poisson's ratio). One
illustration of this is given in Fig. 3.9 for the case of a solid-vacuum interface. In the case of
shear wave incidence (Fig. 3.9b), the critical angle occurs wheiR thebecomes -1. Beyond
the critical angle,R;s = -1 and the reflected dilatational wave is evanescent. Another useful
representation of this type of data is by a polar plot shown in Fig. 3.10 f00.3.
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Figure 3.9 Absolute values of the longitudinal and shear wave reflection coefficients
from a solid-vacuum interface as functions of the angle of incidence for
two different Poisson's ratios (solid lines= 0.3, dashed lines. = 0.35).
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Figure 3.10 Polar diagram of the longitudinal (solid line) and shear (dashed line) wave
reflection coefficients from a solid-vacuum interface in the case of (a)
longitudinal and (b) shear incident waves=< 0.3).
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Displacement, stress, intensity, and power coefficients

The reflection and transmission coefficients determined from Eq. (3.32) denote
displacement ratios (without explicitely indicating it). In many cases, it is necessary to express
the relative strength of the reflected and transmitted waves in terms of stress, intensity, or power.
The stress coefficients can be obtained from the corresponding displacement coefficients by
accounting for the impedance differences as follows:

or simply, F(‘Etress Cop -

I-(stress) _ r(dlsplacemer)t ZBJ |
ap
Za1 " Z

¥ (3.45)

where I' stands for eitheR ( = 1) orT ( = 2), anda and 3 are eitherd or s. For
propagating modes, the intensity coefficients then can be easily calculated as a product of the
corresponding displacement and stress coefficients:

réigtensity) - ré%isplacemer)tréétress) r2 23]1 (3.46)

Finally, for propagating modes the power coefficients can be obtained from the corresponding
intensity coefficients by accounting for the different refraction angles as follows:

I_(power) _ I-(|ntenS|ty cosbg _ r2 Zy cofy (3.47)
af af co£a1 Z(xl Coﬁal

It should be mentioned that the power coefficients are identically zero for evanescent waves,
which do not carry energy away from the interface. The law of energy conservation can be
written as follows:

Rggoweo + Fégower) + -égower) + -éé)ower) =1 (3.48)
The law of reciprocity can be written as follows:

I-(Eower) — ré powe) (3.49)
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Fluid-solid:  This case shown in Fig. 3.8d is of great interest when the fluid is liquid. Figure
3.11 shows the energy reflection and transmission coefficients for two cases of particular
importance, i. e., for aluminum and steel immersed in water. Generally the transmission is much
higher from water into aluminum than into steel, which is caused by the more than eight times
higher density of the latter. Note that there is a wide range of incidence angle above the second
(shear) critical angle for which the water wave is completely reflected. Of course there is no
transmission into the shear component at normal incidence. The longitudinal transmission
disappears above the first critical angle which is approximately 13.5° for aluminum At this
angle, the transmitted longitudinal wave propagates along the surface. At higher angles, the
longitudinal transmitted wave is evanescent and does not carry energy away the interface.

Solid-fluid:  Two cases may arise here, that of an incident P-wave, and an incident S-wave, as
shown in Figs. 3.8f and g. Again, this is of great interest when the fluid is a liquid. The specific
case of an aluminum/water interface is shown in Fig. 3.12. It is very important to realize that,
according to the Reciprocity Theorem, the energy transmission coefficients are the same for the
fluid-solid and the corresponding solid-fluid interfaces. For example, at 18° angle of incidence,
the energy transmission coefficient from water into aluminum is 45.7 %, and the refraction

angle of the shear wave is 39.4°. At the same 39.4° angle of incidence, the energy transmission
coefficient of the aluminum-water interface for an incident shear wave is also 45.7 % and the
compressional wave in the water is refracted at 18°.

Solid-solid This situation is complicated by the fact that the two media may be solidly bonded
together, or there may be a lubricated interface. The nature of distinction between the two
situations is that for a bonded interface, both the normal and shear stresses must match at the
interface. For a lubricated, or so-called slip, interface, it is only the normal stress and normal
displacement that must match. It should be noted that the angles of reflection and transmission
are not changed by the interface condition, only the various wave amplitudes are affected. The
specific case of a Plexiglas/aluminum combination is shown in Fig. 3.12. The behavior in Fig.
3.12 is somewhat complicated because of the four possible secondary waves generated by mode
conversion. The first critical angl, = 25.6°, is the angle at which the transmitted (or refracted)
longitudinal wave disappears. The second critical afgke62.49 corresponds to the angle of

total reflection of the incident wave. Above this angle, all incident energy is reflected either as a
longitudinal wave or as a mode-converted shear wave. Between &%1662.4°, one has a

method of generating (just) shear waves in steel. This technique of assuring a single transmitted
wave by working above the first critical angle is often used in everyday NDE.
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Rayleigh wave

Another interesting application of Eq. (3.43) is to derive the characteristic equation of the

free vibration (as opposed to forced vibrations) of a solid-vacuum interface (free surface). The
free vibration has to satisfy the homogeneous equation of

-Z4c0s20g5 —Z4Sin0 ¢ Ry 0
Cs . = (3.50)
-Zg asmzed Z5Cc0s20 o R, 0

The mathematical condition on the existence of a nontrivial solution (the trivial solution is
Ry = Rs = 0) is that the determinant, i. e., the denominator of¥&g0) be zero:

2
cof 205 + 5 sindy sirBy = O (3.51)
Cd

Later we shall show that this is the characteristic equation of the well-known Rayleigh wave with

sound velocitycg lower than both shear and longitudinal wave velocities in the unbounded
solid:

sinbs _ singy _ 1 (3.52)
Cs G Cr

Relative velocities:

_ G _ [1-2v

§ = y (= 2(1—v)) (3.53)

n= R (3.54)
Cs

Exact Rayleigh equation:

n°-8n%+8(3- 2%)n2- 1§+ &3 = 0 (3.55)
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Approximate expression

g = 087+ 112

3.56
Ty (3.56)

Longitudinal incident wave: Suppose the P-wave is incident at 38§ = 6; = 50°). Then the
reflected P-wave has an amplitude of 0.35% and negative phasé.8). 65 can be readily
calculated from

sinBs = S sing; = 055sin50 = 0.41 which yielddg = 24.2°
Cd

and the shear wave reflection coefficient is -1.08 (since the shear wave impedance is much lower
than the longitudinal one, the displacement amplitude of the reflected shear wave can be higher
than the amplitude of the incident longitudinal wave) It is worthwhile to mention, that the phase

of the reflected shear wave includes an arbitrary 180° component depending on the choice of the
coordinate system.

S wave incidentSupposég = 8; = 20° again. Then the shear-to-shear reflection coefficient is
Rs = 0.69 and 84 can be determined from

SinBy = &d sinBg - B84 = 385.
Cs

The shear-to-longitudinal reflection coefficient &y = —0.53 Note that the critical angle of
incidence of the shear wave is 32.3° and beyond that angle, there is no reflected pressure wave.
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