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[1] We study the vertical miscible displacements of two fluids of different densities and/
or viscosities in two model porous media, constructed using different arrangements of
blocks of packed glass beads with different sizes. The two configurations have the same
permeability distributions but different spatial arrangements and structural features. Time
variations of the mean fluid concentration in different sections along the samples are
monitored by an acoustic technique. For stable viscosity or density contrasts, the spreading
of the displacement front is predominantly macrodispersive. For fluids of the same
viscosity but different densities, the macrodispersivities approach at large velocities, where
the displacement is stable, the passive tracer limit, ld1, which is controlled only by the
heterogeneity of the medium. This is true, regardless of the density contrast. At lower
velocities, where gravity instabilities can exist, the normalized dispersivities ld/ld1 vary
exponentially with the normalized flow rate, with opposite exponents in the stable and
unstable configurations. These results are compared to existing theoretical works based on
stochastic approaches and linear stability analyses. INDEX TERMS: 1829 Hydrology:

Groundwater hydrology; 1832 Hydrology: Groundwater transport; 1869 Hydrology: Stochastic processes;
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1. Introduction

[2] Porous media heterogeneity is a key factor for the
spreading and displacement of fluids in the subsurface. Its
understanding is of practical interest to such fields as
hydrology, petroleum and environmental engineering. Het-
erogeneities create preferential flow channels, which greatly
enhance pollutant spreading. Conversely, low permeability
zones are often bypassed and act as traps for pollutants.
Studies based on stochastic continuum approaches [Dagan,
1982, 1984, 1987, 1989; Gelhar and Axness, 1983; Rubin,
1990] have significantly improved our understanding of the
effect of heterogeneity on the macrodispersion of passive
tracers (namely of tracers of constant density or viscosity
and which do no get adsorbed on the pore walls): these
studies allow one to relate macrodispersion to the statistics
of the permeability field. State-of-the-art reviews of these
works are given by Hsu [1999, 2000]. A related important
issue (although not as thoroughly investigated) is the
influence of density and/or viscosity contrasts on the
macrodispersion of a non-passive tracer. A number of
authors [Hickernell and Yortsos, 1986; Homsy, 1987; Bacri
et al., 1992; Manickam and Homsy, 1995; Loggia et al.,
1995] have used linear stability analyses to obtain criteria

on viscosity and/or density contrasts that lead to the
development of viscous and/or gravitational fingering insta-
bilities. Except for Liu and Dane [1996] and de Wit and
Homsy [1997], most of these studies have focused on
homogeneous media. A great deal of work has also been
done in relation to problems in the unsaturated zone in the
immiscible case [see, e.g., Bauters et al., 1998; Nieber et
al., 2000].
[3] The interplay between heterogeneity, viscous and

density contrasts, and macrodispersion was studied rela-
tively recently. Using a spectral stochastic continuum
approach, Welty and Gelhar [1991] estimated the macro-
dispersivity for stable (and unstable) displacements and
predicted its spatial dependence by analyzing the transient
regime. Liu and Dane [1996] analyzed experimentally the
influence of gravitational instabilities and grain scale heter-
ogeneity on fluid displacements in a vertical sand column.
The results were compared successfully to numerical pre-
dictions of 1D and 3D models using the stochastic ap-
proaches of Gelhar and Axness [1983] and Welty and
Gelhar [1991]. Experiments by Tchelepi et al. [1993]
examined the influence of the interaction of heterogeneities
with local dispersion and viscosity gradients on miscible
fluid displacements. In higher permeability zones, where
fluids flow faster, a favorable viscosity contrast reduces the
velocity variations, while an unfavorable one enhances
them. This effect has been studied quantitatively by Loggia
et al. [1996] in the simple case of stratified media with
layers parallel to the mean flow.
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[4] In the present paper, the experimental study of Loggia
et al. [1996] is extended to heterogeneous media of more
complex geometries. For this purpose, patchworks of paral-
lelepiped porous blocks of different permeabilities have
been used. Each block consists of an unconsolidated pack-
ing of monodisperse glass beads. Two samples, with 56
blocks and the same permeability distribution, but with
different spatial arrangements were constructed (Figure 1).
The miscible displacement of one fluid by another in the
two samples was analyzed with an acoustic technique and
the time and spatial variations of the concentration profiles
were investigated. The objective is to determine experimen-
tally the interaction between heterogeneity and density or
viscosity contrasts, for both stable and unstable configura-
tions, and to assess their effects on macrodispersion. In the
following, experiments with fluids of same viscosity and
with a stabilizing density contrast will be first discussed: in
this case, spreading may be considered as dispersive at the
macroscopic scale. Then, experiments will be reported for
the case of destabilizing density contrasts and of fluids of
the same densities but different viscosities. The dependence
of the corresponding macrodispersivity on the flow velocity
and the density contrast will then be compared to the
theoretical models of Welty and Gelhar [1991] and Hick-
ernell and Yortsos [1986].

2. Experimental Setup and Procedure

2.1. Experimental Samples

[5] Patchwork-like porous media consisting of parallele-
piped cells of dimensions 300 � 45 � 45 mm3, and

bounded by transparent walls were constructed as described
below. This technique was already successfully applied by
Loggia et al. [1996] to create layered porous media, with
layers parallel to the flow extending along the full sample
length. The permeability of each layer deduced from the
experiments corresponded well to the expected value and no
permeability anomaly occurred at the interface between
blocks (layers).
[6] The porous medium was first partitioned into 4

parallel compartments of identical width using thin vertical
spacer plates parallel to the y-z plane (Figure 1). The
compartments were then slowly filled with successive layers
of glass beads, of diameters which may vary from one layer
to the next and from one compartment to the other (Figure 1).
The spacers were progressively raised during the filling
process so that they will induce only small local rearrange-
ments, upon their ultimate removal. Horizontal interfaces
between layers of different permeabilities were shifted
vertically between successive compartments in a brick
wall-like geometry.
[7] The 56 elementary blocks are all parallelepipeds of

dimensions 12.5 � 45 � 11 mm3. Each elementary block
has a given mean grain size (and therefore permeability),
with a porosity which is the same for all blocks (n 9 40%).
We used 4 sizes of glass beads, whose diameter ranges were
125–150, 150–200, 200–250 and 250–300 mm, respec-
tively, giving rise to permeability values of 20 ± 2, 30 ± 5,
55 ± 7 and 80 ± 8 Darcy (10�12 m2), respectively. The
blocks span the thickness of the sample along the y
direction, hence the global permeability distribution is
effectively two–dimensional. Two different block arrange-
ments, with identical statistical probability distributions,
were used to study the influence of the spatial permeability
distribution. The layout of the blocks in the two samples
(referred to as samples 1 and 2) is shown in Figure 1.

2.2. Fluids and Flow Experiments

[8] Miscible displacement experiments were performed
in the two samples at several constant flow rates, using
water-glycerine and water-sugar mixtures. Adjusting the
volume fraction (f) of the solute in each mixture provides
fluids with the required density and viscosity. Four partic-
ular solutions with the physical properties listed in Table 1
were used.
[9] The properties of the mixtures were measured with an

accuracy of 0.2 kg m�3 in density and 10�4 Pa s in
viscosity. The values in Table 1 are consistent with the
ones reported in the work ofWeast and Astle [1980]. For the
displacement experiments with pairs of fluids of the same
viscosity but different densities, we used fluids 1 and 3. For
displacements of fluids of the same density and different

Figure 1. Permeability maps of the two porous media: (a)
Medium 1 and (b) medium 2. The permeability is invariant in
the y direction, perpendicular to the figure plane. Numbers
indicated on some of the blocks are used below for the
description of some flow paths.

Table 1. Physical Properties of Solutions Used in the Experi-

mentsa

Reference Solute f m, Pa s r, kg m�3 V, m s�1

Fluid 1 sugar 38 5.3 � 10�3 1166 2030
Fluid 2 sugar 32 3.75 � 10�3 1137 1995
Fluid 3 glycerine 48 5.4 � 10�3 1120 2140
Fluid 4 glycerine 54 7.5 � 10�3 1136 2180

aHere f is concentration of solute in water, m is viscosity, r is density, and
V is sound velocity of the solution-saturated packed beads.
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viscosities we used fluids 2 and 4. For further use, we note
that the various models need expressions for the concen-
tration dependence of viscosity and density. Fitting the
variations of viscosity with an exponential led to b = d ln
(1/m)/dC = 0.7 for the mixtures of fluids 2 and 4. Density
variations with concentration were found to be almost
linear, leading to first-order to a = d ln (r)/dC 9 dr/r0dC
= 0.040 for the mixtures of fluids 1 and 3. The mean flow
velocity ranged over two orders of magnitude (between v =
6 mm/h (=0.144 m/d) and v = 500 mm/h (=12 m/d)). In the
above, v is the interstitial velocity (or mean pore velocity),
whereas q = v n is the Darcy (or superficial) velocity. Two
experiments were performed for each fluid pair (1, 3 and 2,
4) at each flow rate. A vertical flow configuration was used
to avoid gravity override problems. Injections were per-
formed in the upwards direction. Under these conditions,
one of the displacements is stable, whereas the other is
unstable.

2.3. Concentration Measurements Using Acoustics

[10] The concentration C is determined from measure-
ments of the sound velocity in the sample. The sound
velocity depends solely on the effective compressibility
and density of the fluid-saturated porous media, whereas
sound attenuation depends on viscous dissipation
[Geertsma and Smit, 1961; Salin and Schon, 1981; Bacri
et al., 1991; Berest et al., 1999; Hulin and Salin, 1999]. For
fluid mixtures such as those used in our experiments, the
sound velocity depends on the relative concentration of the
fluids saturating the porous medium. Sound velocities of
the saturated bead pack are listed in Table 1. The acoustic
technique is implemented by means of an acoustic scanner
measuring, at a fixed height z, the transit time of sound
along 10 propagation paths parallel to the x direction and
spaced by 4 mm along the y direction, and along 10
propagation paths parallel to the y direction; 20 pairs of
transducers inserted on a ring-shaped assembly were used
for that purpose. The typical transit time variation for the
pairs of fluids used is less than 1 ms; the accuracy of the
measured transit time is better than 10 ns [Hulin and Salin,
1999]. Within experimental error, the relation between the
relative concentration C of the two fluids averaged along
the propagation path and the measured sound velocity is
linear, which allows to determine C with an accuracy of
better than 0.01. The spatial resolution is of the order of the
size of the transducers, i.e., 2 mm along x or y and 10 mm
along the z axis.
[11] The transducer assembly can be displaced vertically

along the z axis. Measurements were performed in 17 cross
sections spaced vertically in intervals of 15 mm and located
at distances from the injection plane ranging from 22.5 to
262.5 mm. As noted, at a given height, the mean sound
velocity is measured along 10 paths parallel to the x
direction and along 10 paths parallel to the y direction.
The full cycle of measurements requires 30 s and is repeated
at regular time intervals, providing a total of 340 time
variation curves for each experiment. After an experiment
is completed, the corresponding variations of the relative
concentrations are obtained by normalizing these curves
between values obtained at the same coordinates (x, z)
before and long after the displacement. Since the perme-
ability distribution of the sample is invariant along y, the

relative concentration of the two fluids should likewise be
invariant, at least for stable displacements. This is checked
by comparing sound velocity values obtained at a given
height with the 10 transducers, which measure sound
propagation along x, thus averaging out the effect of the
heterogeneities. As in the previous experiments of [Berest et
al., 1999], the relative concentration values measured along
the various paths parallel to x are the same, except in very
unstable displacements: these common values correspond to
the mean concentration C(z, t) at z and t. Transducer pairs
measuring sound propagation along the y axis map the fluid
distribution in the different blocks. This allows one to
obtain at a given time a 17 � 10-pixel ‘‘image’’ of the
normalized relative concentrations of the two fluids in the
sample. Such images are shown in Figure 2; the relative
concentration C(x, z, t) is coded into 256 grey levels with
black corresponding to the displaced fluid and white to the
injected one.

2.4. Acoustic Images of Fluid Displacements in Various
Flow Configurations

[12] Figures 2a–2d display examples of the maps of the
concentration distributions obtained in both samples. By
comparing Figures 2a and 2b and Figures 2c and 2d,
respectively, one observes that, for both samples, the dis-

Figure 2. Snapshots of fluid displacements in the two
porous media (v = 60 mm/h,�r = ±46 kg m�3): (a) medium
1, stable flow, (b) medium 1, unstable flow, (c) medium 2,
stable flow, and (d) medium 2, unstable flow. Shading levels
characterize the mean relative concentration C of the
injected fluid in the corresponding pixel (see gray scale at
the top left). The field of view (45 � 210 mm) corresponds
to the brick wall part of the sample (scales are different
along x and z for better legibility).
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placement front is broader in the direction parallel to the
mean flow in the unstable flow configuration, compared to
the stable one. While their amplitude is very different in the
two cases, indentations of the front appear at the same
places, implying that they are closely related to the under-
lying permeability field.
[13] In particular, a large finger-like structure is observed

for sample 2 (Figures 2c and 2d). It is associated to a
sequence of regions of high permeability (numbered 4, 5,
and 6 in Figure 1) which provides a higher velocity channel
in the sample. Front deformations are smaller in sample 1:
in this case, a set of low permeability blocks (numbered 1, 2
and 3 in Figure 1) extending across the sample acts as a
barrier, thus distributing the flow more evenly.
[14] Acoustic images provide useful qualitative pieces of

information on preferential flow paths and dead zones. The
measurements of the average concentration, C (z, t), so
obtained will be used next for a quantitative analysis.
Before describing the experiments and their analysis, it is
necessary to provide a brief theoretical background.

3. Theoretical Background

3.1. Dispersion of a Passive Tracer

[15] Gelhar and Axness [1983] used a stochastic approach
to study the dispersion of a passive tracer (same densities and
viscosities) in the limit of small perturbations and with some
restrictive conditions on the heterogeneities of the permeabil-
ity field. They found that asymptotically, the mean concen-
tration C(z, t) satisfies the classical 1D advection-dispersion
equation:

@C z; tð Þ
@t

þ v
@C z; tð Þ

@z
¼ D

@2C z; tð Þ
@z2

ð1Þ

in which D is the longitudinal dispersion coefficient. For a
step-like variation of the mean tracer concentration C(0, t) at
the sample inlet, the concentration profile is:

C z; tð Þ ¼ 1

2
erfc

z� vt

2
ffiffiffiffiffi
Dt

p
� �

ð2Þ

Thus, thewidth of the transit time distribution through a given
section of the sample increases with the mean transit time, t,
from the beginning of the injection, as

ffiffi
t

p
. Moreover, the

dispersion coefficientD is related to t and to the variance�t2

of the transit time by:

�t2 ¼ 2Dt

v2
¼ 2ldt

v
ð3Þ

in which the length ld = D/v is the dispersivity (ld = A11
0 in the

work ofGelhar andAxness [1983]).When the system reaches
dispersive behavior, the dispersivity was shown by Gelhar
and Axness [1983] to be proportional to the correlation length
of the system and the variance of the log permeability.
[16] The method for passive tracer dispersion was sub-

sequently extended by Welty and Gelhar [1991] to fluids of
different densities and/or viscosities. They obtained the
following expression for the effective dispersivity

A11 ¼ A0
11e

�2a1 ð4Þ

where

a1 ¼ bG1z
1

g
þ drl
dml

klg

q

� �
ð5Þ

Here, G1 is the macroscopic concentration gradient @C/@z
of the two fluids,q is the mean superficial velocity, b =
@(lnm)/@ C, kl, rl and ml represent respectively the geometric
means of the permeability, density and the inverse of the
viscosity and g is a flow factor, taken equal to 1 at the
leading order for which this theory is valid [Chin, 1997;
Hsu, 1999, 2000; L. Talon et al., Lattice BGK simulations
of macrodispersion in heterogeneous porous media, sub-
mitted to Water Resources Research, 2002]. We note the
following: (1) equation (5) predicts a length-dependent
dispersivity. (2) The permeability heterogeneity influences
only the prefactor of the exponential, while viscosity and
density contrasts enter only in the argument of the exponent.
In fact, the prefactor should reduce to the dispersivity for the
passive tracer case. (3) The product of the dispersivities of
two displacements, one stable and one unstable (with equal
in magnitude arguments but different signs in the exponent)
should be a constant. These theoretical findings will be
tested below in the experiments.
[17] Equation (5) can be simplified by assuming an

exponential dependence of viscosity on the relative concen-
tration C, so that ln m varies linearly with C, in which case ln
M = @ lnm/@C = b. Here M is the ratio of the viscosities of
the displaced and injected fluids (with M < 1 in the stable
configuration). Assuming also a linear variation of the
density with C, @r/@z can be replaced by �r@C/@z where
�r is the density difference between the displaced and
injected fluids. Then (5) takes the approximate form:

a1 ¼ G1z
�rklg
qml

� ln M

� �
ð6Þ

Due to the assumed respective exponential and linear
dependencies of viscosity and density on concentration,
only their mean values or their values appear in the formula.
The influence of the detailed structure of the mixing zone is
implicit in the @C/@z term.
[18] Note parenthetically, that the first term in the bracket

in (6) is the gravity number Bn, expressing the ratio of
buoyancy to viscous forces:

Bn ¼
�rgkl
mq

ð7Þ

where q is the Darcy velocity, kl the geometric mean of the
permeability and g = 9.81 m s�2. In our experiments, this
number varies between Bn = 0.06 at high flow rates to Bn =
5.3 at low rates. Bn

�1 can also be considered as a normalized
Darcy velocity, Bn

�1 = q/qc, in which:

qc ¼
�rgkl
m

ð8Þ

In our experiments, qc = 12.7 mm/h. Alternatively, one can
consider Bn

�1 as a normalized interstitial velocity, Bn
�1 = v/vc

with vc = qc/n (vc = 31.7 mm/h).
[19] The exponential growth (or decay) in (4) does not

necessarily require dispersive behavior, but only that per-
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turbations are small, so that a linearized theory can be used.
In such cases, a linear stability analysis should lead to
similar predictions for an exponential rate of growth (or
decay). Hickernell and Yortsos [1986] applied a linear
stability analysis to homogeneous porous media in the
absence of small-scale dispersion. In a moving frame of
reference, the temporal growth of small perturbations is
assumed to be of the form exp(st), which in the present
context can be replaced by exp(sz/v). This expression is
similar to (4). In fact, the maximum growth rate in the short-
wave limit was predicted to be

smax ¼ max v
dlnm
dz

� k

mq
dr
dz

� �� �
ð9Þ

[20] Using the same assumptions as above, density and
viscosity variations with distance can be written as a
function of the concentration gradient and of �r and ln
M, respectively, leading to:

smax
z

v
¼ max z

@C

@z

�rgk
qm

� lnM

� �� �
ð10Þ

For our problem, the maximum value corresponds to C =
0.5 with m(C = 0.5) =

ffiffiffiffiffiffiffiffiffiffiffiffiffimdisminj
p ¼ ml so that the final

expression of smaxz/v is, within a factor of two, identical to
that of a1 in (6). The difference of a factor of 2 is simply due
to the fact that the macrodispersion in the stochastic
approach of Welty and Gelhar [1991] is obtained as the
ensemble average of the product of two perturbations, the
exponential parts of which are the same, hence leading to
the additional factor of 2.

3.2. Predictions to be Compared Against
Experimental Data

[21] In the case of a stabilizing density contrast and of
fluids of equal viscosities (M = 1), (4)–(6) become:

A11 ¼ A0
11 exp �2G1zBnð Þ ð11Þ

implying an exponential variation of dispersivity with Bn
(and therefore with 1/q). Thus the experimental dispersivity
ld should verify:

ld Bnð Þ
ld1

¼ exp �2G1zBnð Þ ð12Þ

where ld1 is the dispersivity in the high velocity limit. If
this is to be verified, it would also be in agreement with the
fact that a1 should be independent of the spatial perme-
ability distribution, which should only influence the
prefactor A11

0 .
[22] Equations (4)– (6) predict very simple relations

between dispersivity values obtained in stable and unstable
flow configurations. Compare, for instance, dispersivity
values obtained at a given velocity and for a pair of fluids
of same viscosity but different densities; when the injected
and displaced fluid are exchanged, the corresponding val-
ues of a1 become opposite. Therefore the product of the
dispersivities in the two configurations at a same Pe value
should be independent of Pe and equal to l2d1. Similar
relations are also expected for pairs of fluids of the same

density but different viscosities. To verify these theoretical
predictions we need to conduct experiments with unstable
density or viscosity contrasts. These are reported and
analyzed below. The following present first, experiments
with density contrasts, then experiments with viscosity
contrasts.

4. Experiments With Density Contrasts

[23] We studied fluid displacements with density con-
trasts both gravitationally stable and unstable. In the stable
configurations, the heavier fluid 1 is injected upwards to
displace the lighter fluid 3, initially saturating the medium.
The two fluids have the same viscosity, but different
density: �r = rinj�rdis = r1�r3 = 46 kg m�3 > 0 (where
rinj and rdis are the densities of injected and displaced fluids,
respectively). For the flow rates involved in these experi-
ments, the Péclet number Pe = vd/Dm varied between Pe =
0.8 and Pe = 70 (where d is a typical micro-scale taken
equal to the average bead size d = 250 mm, and Dm = 5.
10�10 m2 s�1 is the molecular diffusion coefficient [Weast
and Astle, 1980]). Under these conditions, convective or
mechanical mixing overcomes molecular diffusion [Hulin
and Salin, 1999]. In this regime, the main forces are
buoyancy and viscosity.

4.1. Stabilizing Density Contrast

[24] Figure 3 shows relative variations of the mean
concentration C(z, t), measured in five sample sections, as
a function of time. The acoustic images of Figures 2a and 2c
also correspond to experiments of this type. We observe that
curves obtained in this stable case are quite smooth. In this
finite-length medium, all show an overall S-like shape with
the maximum slope (near C = 0.5) decreasing slowly with
distance. These features are similar to those of dispersion
curves in homogeneous porous media [Hulin and Salin,
1999], where the mean concentration C(z, t) satisfies (2).
The experimental curves for both samples were well fitted
by solutions of (1) (dashed lines in Figure 3). This suggests

Figure 3. Variation of the mean concentration versus time
for porous medium 1 and for stable flow (lighter fluid on
top of heavier one) (v = 60 mm/h, �r = 46 kg m�3). The
curves correspond to sample cross sections at distances
from the inlet equal to 37.5, 82.5, 127.5, 172.5 and 217.5
mm, respectively. The dashed lines are experimental fits to
the data using (2).

KRETZ ET AL.: MACRODISPERSION IN HETEROGENEOUS POROUS MEDIA SBH 6 - 5



that the spreading of the displacement front is also
dispersive in this case, despite the fact that the medium is
of a finite length: this was confirmed by the variations with
the distance z of the mean value, t, and of the variance,
�t2, of the transit time distribution. These quantities were
computed analytically from the parameters of the fitted
functions of (2). (From such a fit, we also find that t
increases linearly (within 2%) with z: the inverse of this
slope, which is equal to the mean transit velocity v, is in
good agreement with the value computed from the flow
rate, the cross section and the porosity.) Figure 4 displays
variations of �t2 as a function of t for the same set of
curves as in Figure 3. The data points correspond to sound
propagation in a direction parallel to y at 17 different
distances along z and at 10 different distances along x. The
linear regression corresponds to dispersive spreading of the
front �t2 / t and the parabolic to a convective process for
which the front width increases linearly with distance
(namely,

ffiffiffiffiffiffiffiffi
�t2

p
/ t). Clearly, the straight line provides a

much better fit to the data points, confirming the dispersive
spreading: this allows us to determine through (3) an
effective dispersion coefficient D and a dispersivity ld = D/v
(using the slope of the regression line and the experimental
value of v).

4.2. Velocity Dependence of the Dispersivity in the
Stable Case

[25] Figure 5 displays the dependence of the dispersiv-
ities ld1 and ld2, respectively, for porous media 1 and 2, as a
function of the reduced flow rate, namely of Bn

�1 = v/vc. In
both cases, ld increases with Bn

�1, up to a constant limit ld1,
at which point the influence of gravity becomes negligible.
At high rates, viscous effects overcome gravity and at this
limit, the problem should correspond to ‘‘passive tracer’’
dispersion. The values obtained for samples 1 and 2 are ld11
9 2.5 mm and ld21 9 7 mm, respectively. This difference
mirrors the larger amplitude of the front distortions
observed in Figure 2 for sample 2. At low Bn

�1, gravity
becomes dominant and ld decreases significantly.
[26] While the asymptotic dispersivities for the two

different permeability arrangements are different, we did

not further attempt to extract from them a correlation length
and a log permeability variance, as predicted by the passive-
tracer theory. While sample 2 does suggest a longer corre-
lation length, which is consistent with the fact that it has
more channel-like features, the number of blocks in the
system is simply too small, for a statistical theory to be
applicable. The so-obtained dispersivities do mirror, how-
ever, important permeability heterogeneity features. A more
robust analysis, however, is possible for the effect of density
and viscous contrasts.
[27] It was noted in (12) that the overall variation of ld/

ld1 with Bn should be an exponential, assuming the validity
of the linear theory. This relation was well verified by the
experimental data (dotted lines in Figure 5) and, for both
samples, the best fit is obtained for the same value of G1z =
1.1. This is in agreement with the fact that a1 should be
independent of the spatial permeability distribution, which
should only influence the prefactor A11

0 . It is difficult to
determine accurately G1z since the concentration gradient is
not constant over the front and G1z varies during the front
propagation. Taking z = 250 mm and �z =50 – 100 mm
gives G1z 9 2.5 to 5. The agreement may be considered as
reasonable, in view of the crudeness of these approxima-
tions. Also, the two theoretical approaches [Hickernell and
Yortsos, 1986; Welty and Gelhar, 1991] are first-order
results, while significant density variations do occur in the
present experiments.

4.3. Unstable Density Contrast

[28] Unstable density experiments were performed with
the same pair of fluids as previously and at the same Bond
numbers, but with the injected and displaced fluids inter-
changed, resulting in a gravitationally unstable configura-
tion. In the unstable case, the nature of the instability shows
up through local distortions of the curves, as shown in
Figure 6. The experimental curves were analyzed in the
same way as previously (although the precision on the
determination of ld was poorer due to stronger deviations
from (2)).

Figure 4. Variance �t2 of the transit time through the
sample versus the mean value t in the stable displacement
configuration. Solid line shows linear regression. Dashed
line shows parabolic regression.

Figure 5. Variation of the dispersivity, ld, versus the
reduced velocity (or the inverse gravity number Bn

�1 = mq/�
rgkl) for buoyancy-stable displacement (�m = 0,�r = 46 kg
m�3) for medium 1 (solid circles) and medium 2 (solid
triangles). Dashed lines show fit of the data with (12) using
the corresponding ld1 of each medium.
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[29] To test the validity of the theoretical predictions, we
show in Figure 7 a log linear plot of the dispersivities of
each medium normalized by their own asymptotics ldi1(i =
1, 2) versus the reduced flow velocity.
[30] One observes that data points corresponding to the

two porous media 1 and 2 follow the same variation when
normalized in this way. Moreover, for both samples 1 and 2,
data points obtained in the stable and unstable configura-
tions at the same Péclet number are symmetrical and vary
exponentially with 1/Bn with opposite arguments (solid
lines). The same fit is valid for data points corresponding to
both samples, so that the coefficient of Bn in (12) is the
same. Last, the geometric mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ld�stable Bnð Þld�unstable Bnð Þ

p
(squares in Figure 7) is constant and equal to the
corresponding value, ldi1, as expected from the small-
fluctuation theory.
[31] These results confirm that the parameter a1 is the

same for both samples and that only its sign changes when
injected and displaced fluids are interchanged. As expected
from the theory, dispersivity values in the unstable case are
markedly higher than in the stable configuration at low flow
velocities. The difference between the two values decreases
as the reduced flow rate increases, both converging towards
the same value ldi1 above Bn

�1 9 20, where viscous forces
dominate.

5. Experiments With Viscosity Contrasts

[32] The next series of experiments was carried out
with fluids 2 and 4, which have identical densities but a
ratio of 2 between their viscosities. The data acquisition
and analysis procedure is the same as in the previous
experiments and provides dispersivity values ldi (i = 1 or
2) for the two samples studied, for various combinations of
flow rates and for stable (M = 0.5) or unstable (M = 2)
viscosity contrasts. As above, assuming a linear variation of
the variance �t2 of the residence time t with the mean
value t provides a better fit with data points than a quad-
ratic variation (particularly in the stable case). From

(4)–(6), then the dispersivity should satisfy the following
expression:

ld

ld1
¼ exp 2G1z lnM½ � ð13Þ

The variations of the normalized dispersivities ld�unstable/
ld1 and ld�stable/ld1 in medium 1 are plotted in Figure 8 as a
function of the Péclet number for M = 0.5 and M = 2 (the
Péclet number is used for the horizontal scale since no
parameter equivalent to vc in (8) is available to normalize

Figure 6. Variation of the mean concentration in different
sample cross sections versus time for porous medium 1 and
for unstable flow (heavier on top of lighter) (v = 60 mm/h,
�r = 46 kg m�3). The curves correspond to the same
distances from the inlet as in Figure 3. The dashed lines are
experimental fits to the data using (2).

Figure 7. Log linear plot of the dispersivities normalized
by their respective asymptotic value ldi1 (at large Bn

�1, see
Figure 5) for porous medium 1 (open inverted triangles,
stable flow; open triangles, unstable flow; open squares,
geometrical average) and porous medium 2 (solid inverted
triangles, stable flow; solid triangles, unstable flow; solid
squares, geometrical average). Solid lines correspond to fits
with (12) for both configurations and to the geometrical
average of the fits (horizontal).

Figure 8. Log linear plots of the variation of the
normalized dispersivities versus Pe for stabilizing and
destabilizing viscosity contrasts (M = 2 and M = 0.5) in
medium 1. Inverted triangles, stable flow, triangles, unstable
flow; squares, geometrical average. The horizontal solid
lines denote values from (13). Dashed lines show average of
the values for Pe > 30.
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the velocity). Except at the two smallest flow rates (Pe = 2.8
and Pe = 5.6), ld�unstable/ld1 and ld�stable/ld1 do not depend
on Pe. This indicates a mechanical dispersion regime [Hulin
and Salin, 1999] only associated with the distribution of the
flow paths in the medium and independent of the flow rate
in the Darcy limit. Such a behavior was also observed in
layered porous media [Loggia et al., 1996]. The reference
value ld11 is that determined in the high velocity limit in the
previous series of experiments, assuming that the value of
A11
0 remains the same.
[33] Equation (13) predicts values of the ratio ld/ld1

independent of the flow rate but with opposite signs in the
argument of the exponential for M = 2 and M = 0.5. As
above, this can be verified by plotting the dispersivities in
logarithmic coordinates: the data points for M = 2 and
M = 0.5 are symmetrical with respect to the horizontal line
ld/ld1 = 1 and well predicted by (13) for Pe > 6. The
geometric means of the dispersivities measured at the same
velocity are also plotted on Figure 8 (squares) and are close
to the horizontal line, as expected.
[34] The decrease of the contrast between values in the

stable and unstable configurations for Pe < 6 is not
predicted by the theory: it is likely due to lateral dispersion
enhancing the exchange between channels with different
flow velocities and/or to residual density contrast effects.
[35] Qualitatively similar results were obtained for sam-

ple 2 but the geometric mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ld�stableld�unstableð Þ=l2d21

q
is of the

order of 0.85 instead of the theoretical value 1, while the
high velocity limit of ld2 in the stable configuration is lower
by 40% than the predictions. This may be an indication of
the fact that the large preferential flow channel observed in
this sample introduces a bias with respect to the model we
have used.
[36] We should note that the relation between macro-

dispersivities obtained in the two series of experiments
(equal-viscosity and equal-density) may be explained from
the respective expressions of the terms containing respec-
tively viscosities and densities in (4)–(6) or (10). Viscosity
variations appear in these equations through the ln M term,
whereas density variations appear through a linear term (in
both cases in the argument of the exponential). Thus, the
deviation of the dispersivity from the passive tracer value
should be the same if both terms have the same value
(independent of the uncertainty in evaluating G1z). Thus, for
M = 2, the value of Bn

�1 for which buoyancy effects are of
the same order of magnitude as the viscous ones should be
equal, from (6), to lnM = ± ln 2 = ±.7. For this value of Bn

�1,
the normalized dispersivity ld/ld1, (Bn

�1 = 0.7) in the curves
of Figure 7 should be equal to the high velocity limits of the
curves of Figure 8 in the stable and unstable cases,
respectively. In Figure 7 one can see that this condition
is approximately verified.

6. Conclusions

[37] The experimental findings of the present work sug-
gest several important features regarding the influence of
viscosity or density contrasts on miscible displacements in
porous media. Two controlled heterogeneous samples of
same statistical permeability distribution but with different
spatial arrangements have been used. Although demonstra-
ted on such model porous media, many of our conclusions

should also apply to systems of larger size and different
heterogeneity.
[38] A first conclusion is that, in our experimental con-

figuration of a finite system size, the spreading dynamics
are dominantly dispersive, certainly for stabilizing viscosity
or density contrasts. This allows us to characterize the
spreading of the displacement front by a single macro-
dispersivity parameter.
[39] A second conclusion is the important role played by

the passive tracer dispersivity. The measured dispersivity
value ld1 is markedly higher (7 mm) for one sample than
for the other (2.5 mm). The limited size of the samples and
the small number of blocks does not allow for quantitative
comparisons with stochastic theories, as it is doubtful that
the asymptotic dispersion limit has been reached. At the
same time, the experiments reported here indicate that the
spatial structure of the permeability field only influences
dispersivity through the high-velocity limit ld1. For
example, the velocity dependence of the normalized
dispersivities ld/ld1 is the same for both samples ( particu-
larly when the viscosities are the same and the densities
differ). This implies that at least in the limit considered in
our experiments, heterogeneity and density/viscosity con-
trasts enter as a product of two different terms, one
involving the permeability structure and another involving
an exponential growth (or decay). In addition, the geometric
mean of the two dispersivities measured in a given sample
at a same Pe value and with stable and unstable density
contrasts is equal to or close to ld1.
[40] The experimental dependence of ld/ld1 on the

gravity number can be represented by a simple exponential
law (exp ± 2G1zBn) for fluids of same viscosities and
density difference �r. This law is compatible with
expressions inferred from the stochastic model of [Welty
and Gelhar, 1991] and the stability model of [Hickernell
and Yortsos, 1986], even though not all conditions required
for the application of these models are fulfilled. In the case
of equal-density fluids with different viscosities (M = 2 and
M = 0.5), the normalized dispersivities differ in the stable
and unstable configurations and are constant for Pe > 6. In
this case, too, the predictions of the above models are
compatible with these results.
[41] Even though full quantitative comparisons between

models and experiments cannot be realized due to the
limited size of the samples, the present results provide
helpful guidelines for analyzing such processes: a good
example is the simple relations between dispersivities
measured in the stable and unstable configurations and in
the passive tracer limit. Future work should evaluate the
generality of these results by applying the same experimen-
tal approach to systems with a larger number of blocks and
different permeability distributions. New theoretical models
should also take into account diffusion and transverse
dispersivity effects.
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