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measurement (such as a, study of the oscillation
of a cylindrical cavity containing SPH), the b

state will show a much smaller effective super-
fluid density and will produce a lot more damping
than the a state.
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The representation (= exp(- i0v J)( 0 also implies
that v„= (nA/M)y& V; p& for all j, m& 0, where y&
+ iy &

= R( i, (9) (x+ iy). The linearized hydrodynamics
of the S = 2 Bose fluid is discussed by B. I. Halperin,
Phys. Rev. B ll, 178 (1975). The present definition
of v, reduces to the one therein when l becomes uni-
form.

~In 3He-g, gcontains terms proportional to 7' x l.
These terms are absent here because of the rotation
symmetry in spin space.

Away from the Qinzburg-Landau region, symmetry
requires that, when n =Z

+G'. 2 ps vs + 2 K(7&l j) + CZx l ~ (v, 9')l,

but places no constraints on the coefficients. The last
term will produce a stronger (linear) instability.

The family g+(r, t) =( simrt/2, exp(-iMu r /0)cos('zt/
2)) reduces the energy Ps+I"o monotonically as
(2Ã(4'~ u + ME)cos (mt/2) —ME, as t varies from 0
to l.

' N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
For general j, m &0, the order parameter

spaces'

of
is SU(2)/Z&, and II&(R) =Z& . The isotropy

subgroup of &""' is exp(igJ ), which contains 2m
elements when lifted to SU(2) (0&g &47(. in steps of
2x/m),

"The expression of V(/r) indicates that only the sum
v, + w is relevant. The current g does not depend on

v, and w separately. Since f is static, all the dynamics
can be absorbed in v, , with w treated as a static back-
ground.

' For the ideal gas (II&g2 with p = 0) it can be shown
that C=0 at T=0.
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The experimental measurements of tortuosity of porous structures using either the
acoustic index of refraction of superfluid 4IIe or the electrical conductivity are shown
to agree with each other. This and other measured parameters are used to calculate
directly the acoustic speeds of water-saturated, fused-glass-bead samples; there are
no adjustable parameters and agreement with experiment is excellent. The dependence
of tortuosity on pore volume fraction, q, is discussed.
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In this Letter we consider the acoustic and elec-
trical properties of porous, fluid-saturated,
fused-glass-bead samples (Ridgefield Sandstone)
which have the unusual property that they support

two distinct longitudinal acoustic modes. ' The
class of porous materials being considered is
characterized by the unique topological property
that the fluid and solid components each forms its
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own percolating, infinite cluster. The theoretical
development which describes this longitudinal
double-mode behavior, whil. e preserving the
unique topology of the system, is due to Biot.'
The Biot theory has been successfully applied to
various problems including fourth sound in a
superfluid/superleak system, ' pressure diffusion
through porous media, ' slow waves and the con-
solidation transition, ' and the el.astodynamics of
gels. e In addition, there have been attempts to
describe the acoustic properties of other porous
media, typical. ly sediments and sedimentary
rocks, ' but in these cases the most crucial aspect
of the theory, the existence of a second "slow"
compressional. mode, w as not observed experi-
mentally. We demonstrate in this Letter, for the
first time, that it is possible to independently
measure all necessary input parameters of the
theory at l.east in the high-frequency limit of the
theory. We can thus make a successful compari-
son between theory and experiment which is mean-
ingful only because all the modes predicted by the
theory are measured experimentally. In previous
articles' Berryman and Dutta obtained good agree-
ment on similar samples by invoking additional
theories to calculate those parameters; in this
Letter we wish to demonstrate that this is not
necessary.

We experimentally demonstrate, for the first
time, the rigorous theoretical result that inde-
pendent measurements of the tortuosity of the
pore space (n) from the acoustic index of refrac-
tion of superfluid 'He (n) and from the electrical
conductivity of the pore space (v) agree with each
other. With the measured values of n and of the
acoustic speeds of the dry samples, we calcul. ate,
with no adjustabl. e parameters, the speeds of the
fast longitudinal, slow longitudinal. , and trans-
verse waves in the water-saturated samples.
These calculated speeds are in excellent agree-
ment with our measured values.

The parameters of the Biot theory are a (the
tortuosity), y (the pore volume fraction), pz and

p, (fluid and solid densities), Kz and K, (f uid
and solid bulk moduli), K, and N (bulk and shear
moduli of the dry sample). That is, the speeds of
the compressional and shear waves in the dry
sample are U~ = [(K„+;N)/(1 —p)p, ]' ' and Vr
= [N/(1 —y)p, ]' ', respectively.

The way in which the wet speeds (speeds of the
fluid-saturated samples) depend on the various
parameters is discussed in detail in Ref. 5. In
particular, if the porous frame is much stiffer
than the fluid ( KN»K )tfhe phase velocity of

the slow compressional mode is simply U&/v'n,
where V~ = (Kz/p~)' ' is the speed of sound in the
fluid. Moreover, if the viscous skin depth, (2„/
pz co)' ', is much smaller than a characteristic
pore size, then the tortuosity, n, is real valued,
greater than 1, and dependent only on the pore
geometry; in this limit the slow wave is a wave
predominantly in the fluid but with a speed re-
normalized down by the twisting, tortuous pore
space. This mode was first reported by one of
us on water-saturated fused glass beads. '

However, as was shown in Ref. 3, fourth sound
in a superfluid/superleak system is the paradigm
of the slow wave. The viscous skin depth of the
superfluid is identically zero at al.l frequencies
(the shear viscosity of the superfluid component
is identically zero), and most solids are so stiff
that the approximation U, ~, = Vz/Kn is accurate
to 1 part in 10', typically. Thus the tortuosity is
related to the index of refraction of fourth sound
(n) by a=n'. Because the mode is essentially un-
attenuated, a fourth-sound measurement is seen
to be a very sensitive way of measuring n on a
given sample. The tortuosity is also rel.ated to
the hydrodynamic drag parameter ~ or X by A. =X
=1 —o, ' (see Ref. 9 for a discussion).

In addition, o. can be measured by purely el.ec-
trical means. If the solid is insulating and the
fluid has a conductivity af, then the porous fluid
sample has a conductivity a' which is proportional
to of, i.e. , 0 =F 'oz. Brown" showed that n =Fp.
(Actually, for a rigid, nonconducting solid the re-
lationship n'=Fp is a rigorous theorem, known
to Lord Rayleigh'~a simple derivation is given
in Ref. 0-- and is now generalized to the cases
when the solid is compressible. )

The Ridgefiel. d Sandstone samples are made of
glass beads, whose diameters are in the range
177-210 p. m, and are fused in an oven above the
softening temperature. " The length of time in
the oven determines the degree to which the
porosity (p) decreases from its initial value of
38/o corresponding to dense random packing of
hard spheres. A 4-in. -diam disk (typical. ly 2 to
1 in. thick) with plane and parallel faces is pre-
pared. The dry acoustic speeds are measured,
from which K, and N are deduced. The sample
is vacuum impregnated with water and the three
wet speeds are measured by using a broadband
pulse technique (described previously" ) centered
at 0.5 MHz. At this frequency, the viscous skin
depth is about 1 p. m, small. enough to put us in
the high-frequency l.imit of the theory.

A cylindrical plug, 0.250 in. in diameter by

l841



&9y NUMBER 2 $ PHYSICAL REVIEW LETTERS 20 DECEMBER 1982

1.225 in. long, is taken from the center region.
The index of refraction (n) is measured on the
He-saturated plugs inserted into a cylindrical

cavity by using an acoustic resonance technique
described previously. " At each temperature the
'He is at its vapor pressure. Our criteria for
identifying the slow wave are that we observe at
least four equal. ly spaced plane-wave resonances
which have the correct temperature dependence.
In point of fact, the pore sizes are so large that
the normal. component is essentially unlocked and

the modes follow a first-sound temperature de-
pendence (the viscous skin depth of the normal
component is about 1-5 p, m over the range of tem-
perature and frequency considered here); as long
as the temperature dependence is known, this
does not affect our results because first sound
and fourth sound tend to the same l.imiting speed
as T-O (in practice, for T ~ 1.2 K).

The porosities of the cylindrical plugs were
measured by using the standard three-weight
(wet, dry, and buoyant) method. The sample vol-
umes, calculated from these three weights, agree
with the geometrically measured volumes. More-
over, the cal.cul. ated grain densities are all. in the
range p, = 2.495+ 0.005; this is the value we use
in the theory, below. Thus we conclude that the
fusing process has created little occluded poros-
ity.

Final. ly, the el.ectrical conductivity was meas-
ured on the identical cylindrical plug on which
the 'He measurement was made by saturating the
sample with saline solutions. The actual meas-
urements were done with a two-electrode cel.l
using an ac bridge technique"; the electrodes
were reversible Ag-AgCl plates and the conduc-
tivities were seen to be frequency independent
over the range 100 Hz to 100 kHz. The conduc-
tivity was measured with four different solutions
covering a range in conductivity from 0.0559 (0
m) ' to 9.823 (0 m) '. A straight-line fit to the
data (o vs of ) was made with R' values typically
greater than 0.9998. In all cases this straight
line extrapolated very nearly through v = v&

——0;
the worst-case intercept was v(v& —-0) =0.021 (0
m) '. The slope of this line is 1/F.

We have plotted the values of n (acoustical and

electrical) against the porosities of these samples
in Fig. 1. We see that there is excellent agree-
ment between these two measurements of this one
parameter. This experimental verification of the
rigorous theorem has apparently never been done
before. The power of this equivalence is that one
now has two complementary techniques for meas-
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uring the same microgeometric parameter: Ob-

viously, electrical measurements a.re usel. ess if
the solid i.s itself a conductor.

Previously, Sen, Scala, and Cohen" developed
a "self-similar" model which predicts a=y
where P is a constant whose value depends on

grain shape. Basically, the idea is that the por-
osity forms a kind of correl. ated percolation prob-
lem with the percolation threshold, P, (i.e. , p, ),
equal to zero, and P is essentially the conductivity
exponent. A random array of needles gives P =';
and this was in substantial agreement with the
existing data, on packed-powder superleaks. ' A

random array of spheres gives P = —, and this pre-
diction, I" = p ' ', was in perfect agreement with

the measured el.ectrical. conductivity of similarly
prepared samples" over a range of porosity y
= 0.03 to 0.38. We are still. trying to resolve the

small but measurabl. e differences between the
two sets of seemingly identically prepared sam-
ples. Note that al. l values are substantially larger
than predicted by the empirical rule, ' Q~' = 2 —p,
but it is still ambiguous how a behaves in the lim-
it @-0.

We now calculate the water-saturated wet speeds
and compare against the experimental data; this
is the main result of the paper. For the sake of

(5 (%j
FIQ. 1. Values of the tortuosity of fused-glass-bead

samples deduced acoustically with superfluid 4He and
deduced electrically by using saline water. The dashed
line is the prediction of Sen, Scala, and Cohen (Ref.
12). The arrows indicate those samples used in the
analysis of water-saturated speeds (Table I). There
are two different samples of 30%%u~ porosity.
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definiteness we choose a equal to its value given
by the superfluid data. We use K, = 4.99&&10"
dyn/cm' (Ref. 4). We assume p&

= 1.0 g/cm' and

K& = 2.25X10" dyn/cm' appropriate to water. In

Fig. 1 we have indicated those samples for which
we have acoustic data on the water-saturated
large disks. The comparison of theory versus
experiment is presented in Table I; the agree-
ment is seen to be excellent thus giving the first
direct experimental evidence for the validity of
the Biot theory.

However, we hasten to point out that al. l our
samples are very nearly in the stiff-frame limit
(K»»&Kf). The speeds of the shear and of the
fast compressional waves are not very sensitive
to water saturation (the dry speeds are included
in the J.ast bvo columns of Table I, in parenthe-
ses). A more stringent test of the theory, then, is
to compare differences in wet and dry speeds for
the shear and the fast compressional waves.
Here, there is good, general. agreement although
the differences in velocities are comparable to
(or less than) our errors (+ 3%~). Similarly, the
speed of the slow wave in the stiff-frame limit,
Vz/v'a, is included in Table I in square brackets;
although this l.ast expression gives a reasonable
approximation to the slow wave speed, it is clear
that the ful. l. theory gives a much better descrip-
tion of the acoustic properties, particularly for
the higher-porosity samples. It is also clear that
the tortuosity (a) is the key parameter governing
these fluid-based slow waves. As a point of ref-
erence, the speeds in water, Vz = 1.5 km/sec,

and in superftuid at T = 0, Uz = 0.24 km/sec, dif-
fer by an order of magnitude, but the slow waves
have the same &; we could have predicted the
superfluid speeds from the water-saturated data
had we wished.

There is an appreciable, and apparently sys-
tematic, disagreement between theory and ex-
periment for the mater-saturated slow wave
speeds of the samples with low porosity. This is
probably due to the collapsing of the pore sizes
such that viscous interactions become important.
Indeed, these pulses are severely attenuated and
broadened and the "arrival time of the pulse" is
ambiguous. There are means of incorporating
viscous damping' but they involve (a) additional
and unjustified assumptions about the frequency
dependence of the viscous drag force between
fluid and solid, and (b) additional adjustable pa-
rameters. We feel that there is little to be gained
from forcing an uncertain theory of the correc-
tions into agreement with experiment by adjusting
the parameters therein.

To summarize, (1) we have experimentally dem-
onstrated the equivalence of acoustic and electri-
cal means of measuring the tortuosity of a porous
solid, thus making them complimentary tech-
niques. Bulk superfluid 'He is so well understood
that it can now be used as a probe of the physics
of disorder. (2) For the fused-glass-bead sam-
ples considered here, e appears to depart some-
what from the p ' ' behavior reported earlier.
(3) Measurements of the dry speeds and of the
tortuosity have enabled us to accurately predict

TABLE E. Compar ison of theoretically calculated speeds of sound for
water-saturated, fused-glass-bead samples with the experimentally
measured values. The input data are the dry speeds, listed in parenthe-
ses, and the tortuosity o., deduced from the superQuid He saturated data.
For comparison, the theoretical result for an infinitely rigid frame, p&,
= V&/&e, is given in square brackets. All speeds are in kilometers per
second.

Porosity Tortuosity
y (%)

Slow Fast Shear
theory expt. theory expt. theory expt.

26.6

21.9

16.2

10.5

1.75

2.00

2.40

3.02

3.84

1.01 0.99
[1.13]

0.97 0.94
[1.06]

0.89 0.88
[0.97]

0.81 0.70
[0.S6]

0.71 0.58
[0.77]

3.23 3.19
(3.10)

3.89 3.98
(3.83)

4.35 4.60
(4.32)

4.82 4.83
(4.84)

5.17 5.15
(5.16)

1.75 1.68
(1.82)

2.20 2.21
(2.28)

2.57 2.57
(2.65)

2.74 2.68
(2.81)

3.04 2.97
(3.09)
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the mater-saturated speeds with no adjustable pa-
rameters. (4) The Biot theory is seen to effec-
tively cut in half the problem of understanding
acoustic propagation in porous media. It now be-
comes possible to focus on theories of the in-
dividual parameters, as has already been done,
here, for the tortuosity, a.

We are grateful for useful conversations with
I. Rudnick in the initial stages of this work.
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For a prescribed adsorption-desorption equilibrium maintained locally through a
permeable solid, the concentration of a chemica1 substance is governed by the diffusion-
convection equation Bc/Bt = (DV'~-v ~ V')I c/'(1+ K 'c)] in which c/(1+ K 'c) is the free
concentration of the substance. Solutions of this nonlinear equation are shown to be
related analytically to solutions of the elementary linear diffusion equation. This re-
markable correspondence is utilized to obtain exact solutions to the nonlinear diffusion-
convection equation.

PACS numbers: 66.10.Cb, 03.40.Gc

Consider a homogeneous permeable solid filled
with a fluid which contains a chemical substance
of concentration c =c(x,t). Suppose that the solid
microsurfaces adsorb a fraction of the chemical
substance and leave a local free concentration
c/(1+% 'c) in the fluid at adsorption-desorption
equilibrium, ' vrhere R is a prescribed constant.
With the adsorption-desorption processes rela-
tively rapid and their equilibrium maintained lo-
cally, the total concentration & may change as a
result of diffusion and convection of the free con-
centration, and one obtains the governing equa-
tion

0c/st =(DV' —v V)fc/(1+% 'c)],
where D (= const) is the diffusivity of the chemi-

cal substance and v is the local convective flow
velocity of the fluid. Equation (1) is the diffusion-
convection analog of the Langmuir-Hinshelwood
(Michaelis-Menten) rate expression featured in
catalytic' and enzymatic' kinetics.

By introduction of the dimensionless dependent
variable 6 —= (1+& 'c) ', (1) takes the form

0B/0t =0~(OV 0 —v ~ V9).

For the special case v-=0, (2) becomes the equa-
tion for nonlinear heat conduction in solid hydro-
gen, ' where & (also positive and less than or
equal to unity) is a, dimensionless thermal varia-
ble. The author has shown that one-dimensional
solutions to the latter nonlinear heat-conduction
equation are related analytically to solutions of
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