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Equations are established for the deformation of a viscoelastic porous solid containing a viscous fluid 
under the most general assumptions of anisotropy. The particular cases of transverse and complete isotropy 
are discussed. General solutions are also developed for the equations in the isotropic case. As an example the 
problem of the settlement of a loaded column is treated. The second-order effect of the change of permeability 
with deformation is also discussed. 

1. INTRODUCTION 

T HE theory of deformation of porous materials 
containing a viscous fluid was developed some 

years ago by Biot’ for the case of an elastic solid. This 
constituted an extension of Terzaghi’s original one- 
dimensional theory. Several analytical and numerical 
applications were subsequently developed in problems 
of consolidation and the settlement of foundations.2-6 
More recently the theory was extended to the case of an 
anisotropic solid.’ The present paper constitutes a gen- 
eralization to the case where the solid exhibits the most 
general properties of anisotropy and linear viscoelas- 
ticity. The word viscoelastic here must be understood in 
a very broad sense. It includes for instance such pheno- 
mena as the thermoelastic effect, i.e., the heat exchange 
between the various parts of the inhomogeneous mate- 
rial due to the additional local heating and cooling asso- 
ciated with the deformation. It also includes what 
might be called a sponginess effect. This will occur in 
case the walls of the main pores contain small cracks or 
micropores into which the fluid will seep in and out. 

The present theory is applicable to a great variety of 
materials and, of course, contains the case of an elastic’ 
solid as a particular case. To mention only a few prob- 
lems let us cite those of creep at high temperature in 
porous wall cooling, stresses in a dam, flow of oil or 
water in petroleum reservoirs, settlement and consoli- 
dation of clay in foundations. With reference to clay the 
property of viscoelasticity was introduced by Tan 
Tjong-Kie8 who assumed a Maxwell-type solid and an 
experimental confirmation was given Geuze and Tan 
Tjong-Kie.g 
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The problem of seepage through a plastic porous 
medium has been treated by Krylov and Barenblatt.‘O 
They also refer to important work on porous materials 
by Gersevanov and Florin. 

The literature on viscoelasticity of nonporous mate- 
rials is quite extensive. The essentially nonreversible 
nature of the thermodynamics of viscoelastic pheno- 
mena was pointed out by Bridgman.” One-dimensional 
stress-strain relations were treated theoretically by 
many investigators, among others by Leadermanr2J3 
and Gross.14-16 A thermodymanic approach to visco- 
elasticity was initiated by Staverman,“J8 Schwarzl,” 
and developed by Meixner1gm20 and Biot.21,n The latter’s 
theory, which was originated independently, is more 
general in several respects. It introduces a generalized 
form of the free energy which applies to systems with 
nonuniform temperatures, thereby including thermo- 
elastic effects in granular, porous, or multiphase sys- 
tems, as well as couplings of thermochemical nature and 
others. The thermoelastic aspects of the theory were 
given more explicit development in a recent publica- 
tion.23 The general irreversible thermodynamic problem 
was also formulated for the case of arbitrary time- 
dependent perturbations applied to any system de&red 
by its generalized free energy and a dissipation function. 
Variational principles of a very general nature were also 
developed22 which lead to practical methods for the 
treatment of dynamical problems and stress analysis 
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in viscoelastic materials with special reference to rods, 
plates, and shells.24-26 

The present theory is derived along the lines de- 
veloped by the writer.21*22 The thermodynamic prin- 
ciples are outlined in Sec. 2 and used in Sec. 3 to derive 
the basic operational relations between stress, deforma- 
tion, fluid content, and fluid pressure. Section 4 is a 
discussion of the field equations for various cases. 
Particular attention is given to transverse isotropy be- 
cause it is the natural type of symmetry of rock which 
has consolidated under gravity. The physical signifi- 
cance of the operators is also discussed for the isotropic 
case with two decay constants. 

An interesting sideline is considered in Sec. 5 where 
the second-order effect of the variation of permeability 
with deformation is discussed. This leads of course to a 
nonlinear theory. 

General operational solutions of the field equations 
for an isotropic material are introduced in Sec. 6. They 
are a natural extension of the solutions developed in 
reference 2 for the elastic case. As an example the 
problem of settlement of a loaded column is treated in 
Sec. 7. 

2. GENERAL THERMODYNAMIC RELATIONS 
FOR DISSIPATIVE SYSTEMS 

We shall first recall some fundamental results on the 
thermodynamics of systems exhibiting viscosity and 
relaxation as established in references 21 and 22. 

It was shown that the general equations for the time 
history of a thermodynamic system may be written 

aD av 
aa,+ag=Q' 

i 

(2.1) 

where the Qi are the state variables of the system 
describing its thermodynamic deviation from equilib- 
brium. The equilibrium point is defined as qi=O. The 
generalized forces Qi perturbing the system are defined 
as conjugate variables to the coordinates qi. The quad- 
ratic positive definite form 

V=$ C Uijqiqj (2.2) 
is a generalized free energy of the system and D a 
generalized dissipation function which is proportional to 
the rate of entropy production. It may be written as a 
positive definite form in the time derivatives 4; of the 
variables. 

D=+ C b&&, (2.3) 

It was pointed out that in many dissipative systems 
the number of observed variables may be small com- 
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The Midwestern Covzjetmce on Solid Mechanics (Purdue Univer- 
sity, 195.5). 

26 M. A. Biot, Phys. Rev. 98, 1869-1870 (1955). 

pared to the total number of degrees of freedom. An 
element of viscoelastic material, for instance, may 
exhibit only its strain components as observed coordi- 
nates, while a great many hidden internal variables may 
contribute to its properties. In general, a system with n 
total variables may contain n-k hidden degrees of 
freedom, and only k forces Qi may be applied to the 
corresponding observed coordinates. In general, we are 
interested in the relationship between these applied 
forces and observed coordinates. We have shown that 
this relationship can be written in operational form as 

where 

and 

Qi=i Tijqii,j=l***k 

8 P 
T;j=C -Dij’“‘+Dij+pDij 

P-I-r* 

(2.4) 

(2.5) 

p=;. (2.6) 

The tensor Tij may be considered as an impedance 
matrix for the thermodynamic system. It is symmetric 

Tij= Tji. 

This is a consequence of Onsager’s reciprocity relations 
in irreversible thermodynamics. It should be noted that 
Ddj’8’DijDij’ and re are constants which characterize the 
system in the vicinity of a certain equilibrium state. 
The symbol p is the standard notation as used in elec- 
trical impedances. If the ~i)s are harmonic functions of 
time qiei”‘, the forces Qi are also harmonic functions of 
time given by expressions (2.4) where p is replaced by 
iw. If the variable qi is any function of time, Eqs. (2.4) 
may be considered as relating the Laplace transforms of 
qi and Qi. For instance, consider a simplified relation 
reduced to one term 

Q=+q. 
Y 

If q is a unit step function of time 

q= l(t) 

1 
1 for t>O 

l(t)= 
0 for t<O, 

(2.7) 

(2.8) 

then by Laplace transform or operational calculus we 
may write 

(2.9) 

This corresponds to a relaxation of stress for a unit 
deformation. If the variable q is a given function of time, 
the time history of the force is given by Duhamel’s 
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integral 

Q(n=S’e.i’-.)ds(~). (2.10) 
0 

VISCOELASTIC SOLID 

and write relations (2.4) as 

Qi=;. 
z 

For generality this must be interpreted as a Stieltjes 
integral. 

Introducing the seven stress and strain components, we 
write 

3. GENERAL OPERATIONAL STRESS-STRAIN 
RELATIONS 

We follow a procedure similar to that of reference 7 
for the elastic case. 

2~=uozezz+uyyeyy+u~~e~z+uyzeyz 
+uZZeZZ+u,yeZy+ud. (3.8) 

The porosity is defined as 

f = v,/vb, (3.1) 

the ratio of the pore volume V, to the volume vb of the 
bulk material. 

The stress system in the material is defined as 

i 

UZZ+U gxff UZZ 
02/z auv+a UzIS 

1 
(3.2) 

UZZ UZY ua*+u 

with the symmetry property aij=uj+ The components 
aij represent the forces applied to the solid portion of the 
material per unit area of bulk material while u is the 
force applied to the fluid. It is related to the hydrostatic 
pressure p’ by 

u= - fp’. (3.3) 

Strain components for the solid are defined as 

The invariant I is a quadratic form in the strain eij with 
operational coefficients Tij. The stress-strain relations 
are given by 

aI aI 
u,,=-u,,=j-ptc. 

ah YY 
aI 

u=-. 
de 

(3.9 

It is noted that formally all relations are identical 
with the purely elastic case if we replace the elastic 
potential energy by the operational invariant I and all 
elastic constants by the corresponding operational 
expressions. We have here an extension to the case of 
porous materials of a general correspondence rule between 
elastic problems and viscoelasticity as introduced in 
previous work.24p 26 The stress-strain relation may be 
written 

ezz= - “,“: eZy= (z+E)etc., (3.4) 
= Tij 

where (u,, N,, zc,) represent the displacement field of the 
solid. The only significant strain component for the 
fluid is 

where 
e= ezx+ e$,+Ess, 

au, 
e,,=-etc., 

dX 

(3.5) The operators Tdj constitute a symmetric matrix of 
twenty-eight independent elements. Assuming a con- 
tinuous spectrum of relaxation constants r of density 
r(r) the operators may be written 

and (U,,lJ,,U,) represent the displacement field of the 
fluid. 

Assuming the solid to be viscoelastic the stress 
components (3.2) in the solid may be considered as the 
seven generalized forces applied to a thermodynamic 
system in the vicinity of equilibrium with a great num- 
ber of internal degrees of freedom. The seven stress com- 
ponents may therefore be identified with Qi and the 
seven strain components e;j and e with the conjugate 
variables pi. With k= 7 we may apply the thermo- 
dynamic expression (2.4) for the relation between the 
stress and strain components. We note that because of 
the symmetry of the Tij operators it is possible to intro- 
duce the operational invariant 

Tij=p s m Dij(r)Y (r)dr 
+DijfpDi/. (3.11) 

0 P+r 

Because of the particular tensor nature of the elements 
the stress-strain relations (3.10) may be written 

or 
u,,= P~viieij+Q,y~ 

(3.6) U= Qijeij+Rc. 
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The tensor P,,” ii is analogous to the twenty-one elastic 
moduli of an elastic solid, QPy is a second-order symmet- 
ric tensor, and R is an invariant. 

Some discussion is given in the next section of the 
significance of these operators in the simpler case of an 
isotropic material. 

4. FIELD EQUATIONS 

Let us now proceed to find the equations for the 
distribution of stress and deformation. There are six 
uuknowns, namely, the six components of displacement 
of the solid and the fluid. Additional equations are 
obtained by writing the condition of equilibrium of the 
stress field. 

f(u,.+u)+~+~+px=o 

~+;(uu”+u)+~+pY=o (4.1) 

with p the mass density of the bulk material and X, Y, 2 
the body force per unit mass. As in reference 7, we write 
the generalized form of Darcy’s law with a symmetric 
matrix, representing the anisotropic permeability 
properties of the material, 

the velocities are pu,pu,, etc. We put pl=pff where p, 
is the mass density of the fluid. 

As a consequence of the existence of a dissipation 
function, the matrix bii is symmetric (bii= bjJ. We shall 
call it thesow resistance matrix in analogy with the case 
of electrical conductors. The matrix defines a positive 
definite quadratic form in the fluid velocities 0,. 

(4.3) 

Substituting the values of the stress components 
(3.12) into the equilibrium equations (4.1) leads to 
three equations which along with the three equations 
(4.2) for the flow, determine the six components ui and 
Ui of the deformation and flow fields. Various cases can 
be considered as in the elastic case, the operational 
invariant I now playing the role of the elastic potential 
energy. For instance, the case of transverse isotropy 
with the z-axis as axis of symmetry leads to operational 

stress-strain relations with eight distinct operators. 

u z,=2Ne,,+A (ezz+eUy)+Fess+ME 

a,,=2Ne,,+A(e,,+e,,)+Fe,,+M~ 

u II=Ce,,+F(e,,+e,,)+Q~ 

u yz= Le,, 
u z.= Lezz 

u zy = Ne,, 

u = M(ezz+eyy)+Qe8B+Rs. 

The eight operators are: 

(4.4) 

(4.5) 

1. (4.6) 

S 
* N(r) 

N=p -dr+NfN'p 
0 P+r 

S 

* A (4 
A=p ---dr+A+A’p, etc. 

0 p+r 
The flow resistance equations are : 

In this case there are two coefficients b,, and b,, of flow 
resistance. 

Similarly for the isotropic case, there are four distinct 
operators and the stress-strain relations are : 

gii= 2Neii+Ae+Qr 

with 

uij= Neij(i#j) 

a=Qe+Re 

e=e,,+e,,+e,,. 

(4.7) 

Note that the appearance of the same operator Q in the 
expressions for uii and u is a direct consequence of On- 
sager’s principle. 

The flow resistance equations are : 

. (4.8) 

Let us consider the isotropic case in more detail. 
Assume that there are only two relaxation constants, 
r and s, and that the solid is elastic for rapid deforma- 
tions while it contains a viscous term for slow deforma- 
tions. The operators are : 

NI 
N=p----+Nz 

P+s 
Al 

A=p-+A, 
P+r 

Ql 
Q=p-+Qz 

P+r 

R=$+Rz. 
P+-r 

(4.9) 
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On the right-hand side are constants characteristic of the picture. We have 
the material appearing as coefficients Nr, Nz, etc., in the 
operators and the two time constants r and s. 

Consider the case of hydrostatic stress 
gZy= ($+N*)&. (4.15) 

rzz= flgy = fJZZ 

eZZ=eyy=eZZ=e/3. 
(4.10) 

A unit step shearing strain 

eZ2/ = I (t) (4.16) 

Relations (4.7) become produces a shearing stress 

NI Al 
uzr= +--+p- 

p-l-s p-l-r 
+W,+Az]e+(g+Qz)e 

(4.11) 

u=(E+Q2)e+(f$+&)e. ~ ’ 
If the volume of the bulk material is maintained con- 
stant, e= 0 and 

(T= (sR+. (4.12) 

The operator represents the apparent compressibility of 
the fluid in the pores. It should be noted that this opera- 
tor leads to a property of apparent compressional vis- 
cosity. Even if the porous solid is purely elastic, such an 
effect can very well occur owing to thermoelastic heat 
transfer between solid and fluid. It can also occur, for 
purely mechanical reasons, in the following way. 
Assume, for instance, that the solid contains two types 
of pores. One type of a certain size enables the fluid to 
percolate while another type, micropores, of a much 
smaller size, may be considered as some sort of spongi- 
ness of the walls of the main pores. In this case, the 
viscous effect, for hydrostatic pressure, is due to the 
time lag required for the fluid to penetrate into the 
micropores. In this sense, therefore, the term visco- 
elasticity embodies properties of a more general nature 
than those of the solid alone. 

Suppose, for example, that we suddenly force the fluid 
into the main pores by establishing a sudden increase of 
fluid content of the material at t=O. This is expressed 
by putting 

-1 t>o 
,=-1(t)= 

ot<o. 
(4.13) 

By operational rules or Laplace transform we find from 
(4.12) 

--=RRle-‘+Rz. (4.14) 

The pressure in the fluid is relaxed exponentially from 
the instantaneous value at t =0 to a smaller value 
corresponding to the penetration of the fluid in the 
micropores. 

NV‘%+ (N+A+Q) grade+ (Q+R) grade=0 

grad(Qe+Re)=bp(o-a). 
(4.20) 

These equations are formally the same as for the elastic 
case but the coefficients are now functions of the time 
operator p. 

5. NONLINEAR CASE FOR VARIABLE 
PERMEABILITY 

The operator N represents the shear properties of the We shall consider the case of a material which is 
porous solid. For pure shear the fluid does not enter into initially isotropic. In this case the flow resistance matrix 

u zy=Nle-81+NZ. (4.17) 

The decay constant s is related to the viscoelastic 
properties of the porous solid independently of the fluid. 
The case of a solid which is purely viscous is given by 
the limiting case 

N1=s= ~0 N’zP Nz=O 
s 

hence 
aezv 

(4.18) 

uzy= Pj+=~----. 
at 

If we seal a sample of material so that no fluid enters 
or leaves the sample, we may put 

In this case 

e=e. 

a,,+a=C3N+A+2Q+R]e 

g= (Q+R)e. 
(4.19) 

Observation of the total stress uZZ+a and the pore 
pressure -u/j will yield additional information on the 
physical constants appearing in the operators. It is 
noticed that relaxation of the total stress will involve 
both time constants r and s. It should be possible to 
determine experimentally all the physical constants by 
devising experiments corresponding to the above sim- 
plified loading conditions. 

The six equations for the field of deformation contain 
the six unknown components of the displacement vec- 
tors 0 and Q of fluid and solid. They are obtained by 
eliminating the stress component between Eqs. (4.1), 
(4.7), and (4.8). If we assume for simplicity that the 
body force is zero, we find 
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is initially 
b 0 0 

[ 1 
0 b 0. (5.1) 
0 0 b 

A deformation of the material will modify the perme- 
ability and change the flow resistance matrix to 

1 

b+Ab,, Ab,, AL 
Ab,, b+Ab,, AL . Abm Abz, b+Abzz 1 (5.2) 

Because of Onsager’s principle, we have the reciprocity 
relations 

Abij= Abji. (5.3) 

If we consider the first-order perturbation of the 
deformation on the porosity, we may assume that the 
incremental resistance matrix Abij is a linear function of 
the strain components eij. Because of the assumed 
initial isotropy of the material, the relationship between 
the tensors Abij and the components e+ involves two 
coefficients in analogy with the stress-strain relations 
in an isotropic elastic solid. They may be written 

Ab,,= 2ae,,+pe 

Ab,,= 2cue,,+pe 

Ab,,=2a)e,,-i-pe 

Abyl=aeyz 
(5.4) 

The coefficient /3 represents the effect of volume change 
on the permeability, while (Y represents the effect of the 
shearing deformations. It is the latter which introduces 
the anisotropy in the flow resistance tensor. 

We have assumed here that the coefficients a! and /3 
are constants, i.e., that the flow resistance returns to its 
original value when the deformation vanishes. This, 
of course, is not necessarily true. This hysteresis effect 
could be introduced as a refinement by making (Y and p 
functions of the operator P. 

A similar discussion could be made for a material 
which is initially anisotropic. For instance, in the case 
of transverse isotropy, the incremental resistance 
matrix can be written 

(5.5) 

There are six coefficients in these relations in contrast 
to five for the elastic moduli. The reason is that the 
matrix in this case is not in general symmetric. 

These introduce a scalar $0 and a vector $ function of 
the coordinates and the operator p. 

+o=+o(%Y,s,P) (6.5) 

9=$(%Y,s,P). 

The coordinates x, y, z are the components of the 
vector P. It can be verified by substitution in the first 
three equations (6.3) that expression (6.4) for ~1 is a 
solution of these equations if 

~o=V~o=O. (6.6) 

Although the Laplace operator does not contain the 
The field equations (4.8) become nonlinear when the time operator P the functions $0 and $ may be functions 

change of permeability is taken into account. They 
contain products of the field velocity by the strain 
components. In this sense, the effect of the porosity 
change is of the second order. Care must be exercised 
in handling nonlinear expressions containing operators 
by insuring that the latter are applied only to the 
proper quantities. 

6. GENERAL SOLUTION OF THE FIELD EQUATION 

General solutions of Eqs. (4.20) were developed for 
the elastic case.2 We will show here how these solutions 
may be extended to include the most general case of 
isotropic viscoelasticity. Let us perform the following 
substitution in Eqs. (4.20) 

R+Q 
~=f&------- gradQ 

H __ 

P+Q 
(6.1) 

U=l&f- grade 
H 

with the operators 
H=P+R+2Q 

(6.21 \ I 
P=2N+A. 

We find 
NV2&+ (H-N) grad div&=O 

(6.3) 
PR-Q2 

\ I 

(Q+R) div&+ ---V2p= b@. 
H 

This reduces the number of unknowns to four, the vec- 
tor 4 and the scalar Q. 

Moreover Q does not appear in the first three equa- 
tions. These equations are formally identical to the 
Lame equations for elastic deformations, except for the 
replacement of the coefficients by time operators. These 
equations allow general solutions which are operational 
generalizations of the Boussinesq-Papkovitch solutions 
for the theory of elasticity. 

A general expression for til is therefore 

(6.4) 
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of p through the boundary conditions. For instance $0 
may be a function of the type 

#o= [Cl(p)eP*+CZ(p)Sz] sin+ (6.7) 

This satisfies Laplace’s equation, but the customary 
constants Cr and Cs are replaced by operators. The 
example of Sec. 7 will further clarify this point. We still 
have to consider the fourth equation (6.3). We may 
write 

2N 
div&= -- div$. 

H-N 
(6.8) 

A particular solution of the fourth equation (6.3) is 
therefore 

2(Q+R)N _ 
(PC- 

b(H-N)? 
div#, 

and the general solution may be written 

2(Q+JW _ 
‘= - b(H-N)f 

dW+h (6.10) 

where + is a solution of the equation 

PR--Q2 
---0% = b#. 

H 
(6.11) 

Since (PR-Q2)/H is a function of the time operator p, 
it is interesting to note that this equation may be con- 
sidered as a generalization of the diffusion equation. 

Another point worth mentioning is that if we disre- 
gard operationally dependent boundary conditions we 
may solve the eigenvalue problem 

V+kJ+lc%#J=o, (6.12) 

leading to characteristic values. Each characteristic 
value K~ and solution & is then associated with a certain 
number of relaxation constants which are roots of the 
equation in the unknown p 

PR--Q2 
----K,2+bp=o. 

H 
(6.13) 

From a general theorem proved in reference 21 all roots 
of this equation must be negative, say 

p= --x,. (6.14) 

A characteristic solution of (6.11) may thus be written 

I$= & 2 Cse-A-Xst. (6.15) 

The constants C, depend on the past history of the 
system at the instant t=O. The results above lead to a 
complete solution of Eq. (4.20) for 4 and U. We may 

write 

+ 
2N (R+Qj2 R+Q 

bH(H-N)p 
grad div$-- 

H 
grad& (6.16) 

O=grad(#o+?.$)--2&$ 

_2N P+Q)(Q+Rl 
bH(H-N)p 

grad div$ 

P+Q 
f- 

H 
grad+. (6.17) 

These solutions are expressed in terms of harmonic 
functions $0, li;, and solutions $ of the generalized ditIu- 
sion equation (6.11). In many problems we are inter- 
ested in the deformation of the solid and the fluid 
pressure. It may therefore be more convenient to 
consider a different set of variables and operators. We 
introduce a variable l which represents the increment 
of fluid content of the material expressed in volume of 
fluid per unit volume. We write 

{= -j(e-e)=-$t+ae, (6.18) 

with p’= -u/j the fluid pressure, and the operators 

M=R/j2 
(6.19) 

Q+R 
a=- , Rf 

There is a direct relation between { and 

{= -jV$. 

We may also write the stress-strain 
in the form 

a,,,fa=2Ne,,+Se--a$’ 

a,,= Ne,,(+ v) 

with the operators iV and 

S&Z 
R’ 

‘p> 

(6.20) 

relations (4.7) 

(6.21) 

(6.22) 

With these variables, Eqs. (4.20) are replaced by 

NV%+ (N+S+02M) grade-cuM grad<=0 

Kv21 = bp3_ 
(6.23) 

where 
K k(2N+S)M PR-Q2 

b=2N+S+a2M 
=--- 

Hb ’ 
(6.24) 
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The constant k=f2/b is a permeability defined in 
terms of the fluid pressure by 

-k grad$= j$u-ti). 

The second equation (6.23) expresses the remarkable 
property that the fluid content satisfies the generalized 
diffusion equation (6.11). If we assume that we know a 
general solution { of this equation we find the field LG 
by putting 

ti=ti’+grad&, (6.26) 

where $1 is any particular solution of the equation 

(2N+S+a%)VY/I=aM{. 

Note that #r must satisfy 

V*(G*-bp)J/r=O. 

Substituting Q in Eq. (6.23) we find 

NV*fi’+ (N+S+ar*M) grad diva’= 0. 

The general solution of these equations is 

a’= grad(#o+p+$) - 
~(~N+S+CY*M) _ 

N+S+a2-i-m$ 

with 

02&J= v*$=o. 

Hence the final expression for Q 

ti=grad(&+&+i’.$)- 
2 (2N+S+o1*M) _ 

NtS+dM 

This form of the solution is simpler than (6.16). 

(6.27) We note that the boundary condition u= U=O of 
zero displacement at the bottom (z= 0) is satisfied. The 
stress components are : 

(6.28) 

(6.29) 

PR-Q2 
cz= -$(P+Q)Cr H C2X2 cm& 

g= -&(Q+NG+ H PR--Qar2X2 cosxz. 

(6.30) 
Denoting by (~~0 the load at the top (z=h) and satis- 
fying the condition that the fluid pressure is zero 
((~‘0) at the top, we find 

(6.31) H-N 
ct = --ad? 

2NH - 

(6.32) 
C= Q+R 

2 pbH cosXhuzo’ 

7. SETTLEMENT OF A LOADED COLUMN 

As an illustrative example we shall solve the following 
simple problem. Consider a column of height h resting 
on an impervious base and supported laterally by a rigid 
impervious sheath. A load is applied to the top through a 
perfectly pervious slab. We wish to calculate the settle- 
ment as a function of time. There is only one coordinate 
z in this problem. We put the origin z=O at the base, 
and the top at z= h. Solutions are even functions of z. 
The solution is expressed by means of a vector 4 and a 
scalar 4. We put 

The scalar satisfies (6.11). Hence we put 

4 = c* cosxz 

(7.1) 

with 

(7.2) 

Cl and C2 are unknown operators to be determined. 
Applying expressions (6.16) and (6.17), we find for the 
solid and fluid displacements 

2N 
C Z_Q+R u=-- 1 -C2X sink 

H-N H 

P+Q 
(7.3) 

-Cd sir&. 
H 

(7.4) 

The settlement at the top is 

(7.5) 

h 
24=a,o---a,0 (R+Q)2A tanAh 

II bpH2 ’ 
(7.6) 

If a unit load is suddenly applied at t=O we may write 

ozo=l(t) (7.7) 

and expand the operators of expression (7.6) by using 
the identity 

2m X*h* 
X tanXh=- C ~ 

h o tc,,2-X2h2 
(7.8) 

with 

Hence 
K,,= (?Z++)T. 

u=;(i)+f+!+Q)” 5 
1 

o ,vn*(PR--)+PbHh* 
l(t)._ 

(7.9) 
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This is an operational expression operating on the unit 
step function l(t). If the solid is elastic P, Q, R, and H 
are constants. 

In this case putting 

p = V'~-Q2) 2 
n 

bHh2 Kn’ 
we may write 

(7.10) 

u=>(t)+ 2(R+QY m 1 
bH2h F s(l-e-flq (7.11) 

n 
or 

2h (R+Q)” m 1 
z+(t)+- H (pR_Q2) T s(l-e+fi?. (7.12) 

?I 

The first term represents the instantaneous elastic 
deformations upon application of the load and the 
series represents the time history of the settlement. 

Consider now the case when the solid is viscoelastic 
with properties represented by the operators (4.9) 
discussed above. The first term represents the visco- 
elastic settlement without seepage and the second term 
the additional effect of seepage. We may represent the 
time history by means of exponentials. To do this we 
must expand the operators in expression (7.9). We put 

AI = CP(&P+P’)+&(P+r) (~+s)l(#'+W 
- (~Q'+Qd"(f+s) 

Az=p(plp+p')+p,(p+,)(p+~)+(~R'+R2r)(p+s) 

+2($Q'+Qzr)(#+s) (7.13) 
with coefficients 

PI=~NI+AI 

Pz=2Nz+Az 

P’=2Nlr+A1s (7.14) 

Q'=Ql+Qz 
R’= R1+R2. 

Also, we put 

A=K,2Ar+h2bP(P+r)Az. (7.15) 

The operators are then 

;= (p+s)(P+r)lA2 

1 (R+Q12 
H,’ H[Kn”(PR-Q2)+pbHh2] 

(7.16) 

= CPW+Q’)+ (Rz+Qz)r1"(Pfs)'(P+r) 

&A 

The polynomials A2 and A are of second and fourth 
degree in p, respectively. Denote by --Xl, --X2 the roots 
of Az=Q and by -X3,,. . . --Xc,, the four roots of A= 0. 
These roots are real and negative in view of a general 
property derived in reference 21 from thermodynamics. 
We expand the operators in partial fractions and write 

1 r1 r2 
_=- - 

H PdP+X2 

1 
(7.17) 

r17L r2n r 

__=- 

H,' 

_-+&_Y-. 

P+Xl+P+X? ~3_3p+L 

These operators lead to the following expressions for the 
settlement as a function of time 

h n 
u=-(r1+2 c r,,)(i-e-q 

Xl 

+k(r2+2f r2,>(1-t+1 

9 

+2h c e b(l-e-h*nt). (7.18) 
s=3 x,, 

The expansion of l/H may contain a constant term, 
i.e., some J? and the corresponding X may be infinite. In 
that case the deflection takes the general form 

u=Cr+C C2,(1-e-pnt)+C C3n(l-e-Ynt). (7.19) 

The first term is the instantaneous elastic deflection. 
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