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General Solutions of the Equations of 

Elasticity and Consolidation 

for a Porous Material’ 
BY M. A. BIOT.2 NEW YORK, N. Y. 

Equations of elasticity and consolidation for a porous 
elastic material containing a fluid have been previously 
established (1, 5).3 General solutions of these equations 
for the isotropic case are developed, giving directly the dis- 
placement field or the stress field in analogy with the 
Boussinesq-Papkovitch solution and the stress functions of 
the theory of elasticity. General properties of the solu- 
tions also are examined and the viewpoint of eigenfunc- 
tions in consolidation problems is introduced. 

1 INTRODUCTION 

T HE theory of deformation of an elastic porous material 
containing a compressible fluid has been established by the 
author in previous publications. Reference (1) deals with 

the case of an isotropic material. In reference (5) the theory has 
been generalized to anisotropic materials. The model of a porous 

elastic body was suggested by Tersaghi (8) to represent, the con- 
solidation and settlement of fluid saturated soils. Hence the 
theory also has been referred to as a consolidation theory. 
Another category of problems covered by this theory is that of the 
flow of a compressible fluid in a porous material from the stand- 
point of determining the flow pattern of the fluid or the stresses 
set, up by the fluid seepage through the elastic solid. Such a 
theory is applicable, for instance, to the problem associated with 
the loading process of a dam and in certain fundamental problems 
of petroleum geology. 

Several problems of two-dimensional consolidation have been 
treated by the author (2, 3, 4). These papers make extensive 
use of the operational calculus and develop certain numerical 
methods appropriate to the problem. 

The object of the present paper is to furnish general solutions of 
the equations for the isotropic case by means of functions satisfy- 
ing the Laplace and the heat-conduction equation. The solutions 
developed in Section 3 are analogous to the Roussinesq-Papko- 
vitch functions of the theory of elasticity (9, 10, 1 I). They yield 
directly the displacement field. Stress functions introduced in 
Section 4 express directly the stress field. In Section 5 general 
properties of the solutions are examined. 

The concept of “consolidation mode” is introduced in Section 6, 
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and it is pointed out that solutions expressed in this form are a 
consequence of a general property of relaxation phenomena (7). 

2 THE ELASTICITY ANU CONSOLIDATJON THEORY FOR A POROUS 

SOLID 

In references (1) and (5) we have established a theory for the 
deformation of a porous elastic material containing a fluid. The 
equations obtained in the case of isotropy are reviewed briefly in 
the present section. The stress field of the porous material is de- 
noted by 

i 
nzz + 0. BZY fizz 

=uz UYY +0 

I 
‘TVS 

~a uw g.s + rJ I 
. . . . PI 

The ~zz~zlll etc., components represent the forces acting on the 
solid part of the faces of a unit cube of bulk material while u 
represents the force applied to the fluid part. Introducing the 
porosity f, the pressure p in the fluid is related to u by 

u = --fp.. . . . . . . . . . . . . . [2] 

The average displacement vector of the solid has components 
u,uIu, and that of the fluid V,V,V,. We introduce the following 
strain components for the solid 

ezz = - ezy ax 
=$ +$.. etc.. . . . . [3] 

The only relevant strain component of the fluid is the dilation 

NJ 
E = $ + bs f -$. . . . . . [4] 

bY 

We also introduce the dilation of the solid 

e = ezz + euy + e,,. . . . . . . [5] 

The stress-strain relations are 

fizz = 2Ne,, + Ae + Qe 

UYY = 2Ne,, + Ae + QE 

u zz = 2Ne,, + Ae + Qe 1 

=w = NeYl . . . . . . . . . . . . P31 
ffm = Ne,, 

~zv = Ne,, 
u = Qe + RE 1 

There are in this case four elastic constants, A, N, Q, and R. 
If we neglect the body force, which is irrelevant to our problem, 

the stress field must satisfy the following equilibrium relations 
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The equations of flow for the fluid in the porous solid are written V*& = Vz$ = 0.. . :. . . . . . . . . . [16] 

ou 
- = b 1 (U, - u,) 

We may then write for a complete solution of the first Equation 

aX [ 141 t,he expression 

du 
- = b ; (U, - ply) 
bY 

. . . . . . [s] a, = -grad ($0 + t$, + HTN $. . . . . . . [171 

da 
- = b$(U,-uU,) 1 where 

bz 5 = (2, Yt 2) 

Substituting Equations [6] into the equilibrium Equations [7] Because of the property which is derived from the first Equa- 

and the flow Equations [S] yields the six equat,ions tion [14] that 

NV% + (P -N + Q) grad e + (Q + R) grad E = 0 V2el = 0.. . . [18] 

grad(Qc +RE) = b$(U-zi)......[S] 
the solut,ion of the second Equation [14] is 

We have put 
_Q+R ’ 

S b 0 
eldt + 4. . . . [19] 

P = A + 2N. . . . . . . . . . . (lo] where 4 now satisfies the heat-conduction equation 

The vectors zi and u are the displacement of solid and fluid, re- 

spectively KV*4 = b $ . . . . . . . . . . . . . [20] 

B = (u,, Thy, %) \ We may write el, in terms of the functions $ a = (U,, U,, U,) j [ill 

Also, by definition we have el = div u1 = sNdiv $ . . . . . . . . . . [21] 

E = div zz 
e = div u Pl4 

We shall now formulate general solutions of Equations [9]. 

3 SOLUTIONS BY MEANS OF DISPLACEMENT F&NCTION~ 

Since the relative displacement n - ti of the fluid is initially 

zero, the second Equation [9] shows that it must be irrotational; 

h?nce we put 

U---a = grad(a.. . ,........... .[12] 

Then we introduce the new unknowns ~1 and cp in the differential 
E;quations [9] by the substitution 

R “grad cp a=,&--- 
H 

. . . . . . . . . . [I31 
f’+Q 

v=7I~+- 
H grad cp 

with H = P + R + 2Q we find 

NV% + (H - N) grad e, = 0 

(Q +R)e, + KV$o = b * 
I- 

.““.’ 
[I41 

at 

with 

e, = div ti, 

PR-Qz 
K = 7’. . . . .[15] 

We note t,hat ~1, at the instant of loading, is equal to the dis- 

placement of the solid. Hence we may assume that cp = 0 at 

t = 0. The advantage of Equations [14] is that the first equation 
is the same its for the displacement vector in the theory of elas- 
ticity. They are solved by the introduction of the Boussinesq- 
Papkovitch functions (9, 10); namely, a scalar $0 and a vector $ 
satisfying Laplace’s equation in Cartesian co-ordinat,es 

Then using Equations [ 131, [ 191, and [21], the solid displacement 

ti is given by the expression 

B = -grad (#o + FO$) + sN $ 

2N(Q + R)2 

S 

’ - 
bH(H-N) o 

grad div $dt - ‘G grad 4. . [22] 

A simtlar expression may be written for g. 

Completeness of the solution, Equation [17], was established 
by Mindlin (11). Hence Equation [22] is also a complete solution 
of Equation [9] in terms of a scalar $0 and a vector $ satisfy- 
ing Laplace’s Equat.ion [IS] and a scalar 4 satisfying the heat- 
conduction Equation [20] .4 Since the Boussinesq-Papkovitch 
solution is the same as that used in the t.heory of elasticity it ap- 
pears therefore that. from a mathematical standpoint what dis- 
tinguishes the consolidation problem from an elasticity problem 
is the addition of the function 4 satisfying a heat-conduction- 
type equation. 

The settlement is found by subtracting from ZI the value of Q at 
the instant immediately after loading found by putting t = 0 and 
$J = 0 in Expression [22]. 

Substitution of the values of ti and g in Expression [S] yields 
the stresses in the solid and the pressure in the fluid. 

Particular problems may be solved conveniently by the opera- 
tional methods as exemplified in references (2, 3, 4). The fore- 
going solutions have the advantage of mathematical symmetry. 
However, in some problems it may be advantageoub to introduce a 
different set of variables. We write the stress-strain relations as 

with 

upp + u = 2Ne,,, + Se - cup 
QPU = Ne,, (P ts v) 

. , . . . : , . [23] 

4 It will be noted that the grad operator which was dropped in the 
second Equation [14] is re-established in Expression 1221. 
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The coefficients N and S are Lame constants in the absence of In addition 
fluid pressure p. We also introduce a constant 

a** = Ae + &E. . . . . . . . . . . . . . . . . . [331 
M = R/p.. . . . . . . .[241 

All quantities are independent of z. 
and a variable The equations of equilibrium, Equations [7], may be satisfied 

[=--f(e--e)= -&p+ole . . . . . . . . . . 

by introducing a stress function F 

1251 

The variable { is the change of fluid content in volume per unit 
volume. It is interesting to note the relation between { and (o. 
We find 

(T,, + u = $ 

uyy + u = $$ 

i 
. . . . . . . . . . . . . . [34] 

{ = --fv*(~. , [26] 

Also, we introduce a permeability 

k = f/b . . . . . . . . . . . . . . . . . . . . [27] 

such that 

--k grad p = f $ (U - a). . [28] 

These variables were used originally in reference (1). 
Introducing the variable r instead of u, Equations [9] may be 

written 

NV% + (N + S + a*M) grad e - CYM grad [ = 0 

@F ” 
uzy = - __ 

dxdy 1 

This represente the total st.ress field in the bulk material. 
eliminate E between Equations [32] we find 

us,, = Ne,, I 

with 

K = (2N +S)M PR-Q&2 K 
1 =~=_ 

2N + S + a2M W f” 

The second equation is independent of the deformation field and 
expresses the remarkable property that the fluid content 1 satis- 
fies the diffusion equation. This property is also expressed below 
by Equation [53]. Proceeding as for Equations [14] it is seen 
that the general solution for Q is 

with $ satisfying 

VqJ = 0.. [31] 

and 

(2N + S + ctW)v2~u + aM{ = 0.. [:sla] 

Actually, the last equation contains a grad operator. However, it 
can be dropped since it adds to Ic/O a quadratic fun&on of the co- 
ordinates which may be included in the Solution [30] by adding a 
linear functio? of the co-ordinates in the value of $. 

4 SOLUTION BY MEANS OF STRESS FU;\'CTIONS 

In some problems the emphasis ie on the calculation of the stress 
rather than the displacement. It is therefore useful to investi- 
gate the possibility of expressing solutions by means of stress 
functions rather than displacement functions. We consider the 
problem of two-dimensional strain where the strain components 
e,,e,, and e,, all vanish and the displacement vectors zz and 0 have 
only (2, u) components independent of z. The stress-strain rela- 
tions are 

Qz, = 2Ne,, + Ae + Qe 1 
uYY = 2Ne,, + Ae + Qe 

= Ne,, uw 
u = Qe + Re 

.[32] 

with 

S = A-$ . . . . . . . . . . . . . . . . [361 

Introducing Equations [34] this becomes 

b2F 
- =2Ne,.+SefQ+u 1 
bY” 

62F 
---- = 2Ne,, + Se + y u ) . . . 
dX2 

b ZF - =--Ne 
b;cDy xy I 

. [37] 

If we 

. [351 

Adding tire two firfit, Equations [37] and taking into account that 

e = ez* + eyu.. , . . . . . (381 

we find 

(Q + R) -i ~21;’ = (N + S)e + 7 u . . . [391 

We now introduce the well-known compatibility relation of the 
strain tensor. This relation is the following identity 

b2ezz d%,, a2e,, - 
+ xx2 - = 0. . . . . . 

3,lp bxby 

It may be used t,o eliminate the strain componenta from Equa- 
tions 1371 if we add these three equations after applying to each 
the proper differential operator. This gives 

V4F = SV2e + y V%. . . . . . . . . . . 

Finally, eliminating ti between Equations [39] and [41] gives a 
relation between F and u 

(PR - Q2)V4F = 2N(Q + R)V%. _. . . . [42] . 
In order to solve the problem we need another equation with F 
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and (T. This may be obtained from the second Equation [9] 
which expresses Darcy’s law. By forming the divergence we have 

V”(Qe + Rr) = 6 -$- (e-e). . . . . . . . [43] 

The quantities e and e may be expressed in terms of F and u from 
the last Equation [32] and Equation [39]. Introducing these 
values in Equation [43] it becomes. 

(PR - Q2 - NR)V=a = b(H - N) $ 

- + (Q + R) $ VF.. [44] 

This last equation may be given a more convenient form by com- 
bining with Equation [42]. If we multiply Equation [42] by Q + 
R and Equation [44] by -H, then add these equations, we obtain 
after dividing by H 

( 
KV* - b $ 

> 
[(Q + R)V2F - 2(H - N)a] = 0.. [45] 

Equations,[42] and [45] constitute a system of two simultaneous 
equations for the stress funct,ion and the fluid pressure. 

A primary inconvenience in using the stress function is that 
boundary conditions involving displacements require evaluation 
of these displacements from the stress. Also, it is well known 
that if the body contains cavities, single-valued stress functions 
may lead to multivalued displacements or dislocations. The 
condition that displacements be single-valued requires the use of 
an additional condition (6). In such cases it will generally be 
simpler to solve the problem by means of displacement functions. 
However, when the boundary conditions are given in terms of 
stresses and if the field contains no cavities, the problem should 
be conveniently solved by the use of stress functions. 

It is inter&sting to note that elimination of F between Equa- 
tions 1421 and 1451 leads to 

KV4a = b $ V%. . . . . . [46] 

The fluid pressure is therefore the sum of t,wo functions satisfy- 
ing, respectively, the two equations 

KV=o = b ;; 

1 

. . . . . . . . . . . . . . . [471 

V% = 0 

.4lso, elimination of u between the same Equations [42] and (451 
yields 

b 
KVGF = b - V*F.. . . . . . . . . [48] 

bt 

Similarly, F is the sum of two functions satisfying, respec- 
tively, the two equations 

II;VsF = b E 
d.! 

i 

. . . . . . . . . . . . . . [491 

V”F = 0 

5 GENERAL PROPERTIES OF SOLUTIONS 

It is possible to derive certain general properties of the solu- 
tions. Starting from Expression [13] for Q and 0 we find by 
applying the divergence operator 

e=el-- !!+!i! VBq 1 

I . . . . . . . . . . . . 1501 

e=el+ p+ vzp 

I 

Elimination of V+ or el gives, respectively 

(P + Q)e + (R i- Qk = He, 1 
P+R_ (‘.‘.... 

i 

1511 
e---e = 

-4pplying the Laplace operator to the first equation and taking 
Equation [ 181 into account 

V2[(P + Q)e + (R + Q)E] = 0.. . . . [52] 

Applying the operator 

KVz-b$- 

to the second Equation [51] and taking Equations [14] and/IS] 
into account 

KV9 - b $ (e-e) = 0.. . . . . . . . [53] 

Similar relations exist for the stresses in the solid. To show this 
let us introduce the hydrostatic stress c,, in the solid 

1 
fJh = -y (uz2 + uyy + CT,,). . . . . . . . . . [541 

From the stress-strain Relation [6] we derive 

u,, = Be + Qe 
~ =I Qe + Re 

1 
. . . . . . [55] 

with 

B=P-$ni . . . . . . . . . . . . . . . . . . [561 

Solving Equation [55] for e and t and substituting in Relations 
[52] and [53] yields 

PR-Qr--$N(Q+R) . . [571 

(w”-, ;) Iad& + RI - VW + &)I = 0 
I 

Finally, by applying the operator 

V= KVz-- b $ 
> 

to Expression [50] and taking into account Equations 1141 and 
[lS], we find 

V2 KV2- b $ 

. . . . . . . . . . [58] 

Va KV2 - 6 $ 

Also, from Equations [55] and [58] 
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V= 
( 

KV”-b; 
) 

uh =O 

V= XV+ 
( ) I 

. . . . . . [59] 

a=0 

It is interesting to note that Equation [45] may be derived 
from the second Equation [57]. 

We write 

X = (B -I- &)a - (R + Q)u,,. . . . . . . [60] 

and substitute the value of u,, in terms of V*F and u by the rela- 
tion 

with 
t 

. . [61] 

D =BR-Q= = f+Q+NR 

We find 

2X - D[2u(H - N) - (R + Q)VpFl.. . . ]621 

Applying the operator 

KV2 - b ; 

to the equat.ion and taking into account that, from Equation [57] 

KVS-b$ 
) 

X=0 . . . . . . . . . . . . . 

we find Equation [45]. 
One interesting particular case of the general solution is when 

the displacement vector in the solid is the gradient of a scalar, 
i.e., when the rotation vanishes. Such a case occurs if we put 

$ = 0.. . . . . . . . . . . . . . . . . [64] 
I 

in Equation [22]. The solid and fluid displacements are 

a = -grad +o + 
[ 

D = -grad $0 - 

. . . . . . . . ]651 

with 

We have 

The fluid pressure is given by the last Equation [6] 

u = Qe fRe . . . . . . . . . . 

Substituting Equation [67] 

. . . . . . . [67] 

. . . . . . . . . [681 

u = KVac$....................]69] 

Because of Equation [66] we may write 

KV=-b $ 
) 

u = 0. . . . . ]701 

The pore pressure in this case satisfies the heat-conduction equa- 
tion. 

By substituting Equations [65J and [69] into Expression 161 for 
the stress we find 

u22 = -2N ss &+ R+ lp] - [2;;_+;‘- 11 u 

‘TZY R+Q 91, etc.. . . 1711 

The function do may be determined from u by taking into ac- 
count Equations [66] and [69], i.e. 

u=b* bt . . . . . . . . . . . . . . . . . . ]721 

Since 4 = 0 at the instant of loading we have 

Q=+Jkif . . . . . . . . . . . . . . . . . [731 
0 

These expressions are particularly useful in solving problems 
with spherical symmetry or cylindrical problems with circular 
symmetry. 

For instance, the problem of loading of a spherical cavity in an 
infinite porous material is easily solved by putting 

$0 = + . . . . . . . . . . . . . . . . . . . . . [74, 

with 

T = 4x2 + y2 + 22 

while u is given by the well-known expression for heat conduction 
with spherical symmetry. Similarly, for a cylindrical cavity we 

Put 

$0 = c log r. . . . . . . . .]75] 

with T = 1/- x2 + y2 and the corresponding heat-conduction ex- 
pressions for u. 

More general irrotational solutions are obtained by adding to 
the foregoing the trivial case of uniform hydrostatic pressure in 
the pores along with a state of uniform isotropic stress in the 
solid. This amounts to putting $ equal to the gradient of a 
scalar. With these additional solutions we can solve the case of 
the sphere or cylinder with finite thickness. 

6 EIGENFUNCTIONS AND MODES OF CONSOLIDATION 

Another procedure in the solution of consolidation problems is 
to introduce eigenfunctions and the concept of consolidation 
modes. This is best illustrated by an example: 

Consider the one-dimensional consolidation problem when a 
column of height h is under a vertical load y per unit area. The 
load is applied through a porous slab so that the fluid pressure at 
the top boundary is aero. The z-co-ordinate is along the vertical 
direction, the bottom of the column being at z = 0 and the top 
at2 = h. 

Equation [9] becomes in this case 
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(P+Q)'$+(Q+R)$$=O 

Q’$+R’$$’ = 5 &K--u,) 
i 

. . . . . [76] 

These equations are solved by Expressions [13] which in the 
present case take the form 

u =ul_R+Q ap -_ * 
H bz 1 

P+Q $o 

i 

. . . . . . . . . .[77] 

u, = u1 + --@- z 

Substituting in Equations 1761 leads to 

WA -_=o 
a9 

a%, a2v av 
(Q+R)G+KG=bx. . . . . . . . . [78] 

In order to introduce the boundary condition let us express the 
stress 

u,= (P -t Q) z-K% 

m=(Q+R)'z+K$ 

. . . . . . . . [79] 

We separate the solution into a part independent of time and a 
variable one. We consider ui independent of time and we put 

Ca=cp1++ . . . . . . . . . . . . . . . . . . . 1801 

where 4 is the time-dependent part of (p. 
Because of Equation [78] and the boundary condition u = 0 at 

3 = h we find 

a% --c, 
a2 

$=c* . . . . . . . . . 
with 

Hence 

(Q + RN + KC, = 0 
(P + Q)C,- KC2 = --y .... 

c2 = riQ + RI . . . . . . . 
PR-Q= 

The time-dependent part 4 satisfies the equation 

a24 1 w -= -_ 
a22 

a at . . . . . . . . . . . 

with a = b/K. Solutions of this equat,ion are 

4 
- 

c$ = co.9 z 
a 

- eeQf.. . . . . 
a 

. 

. 

. . 

. . 

. . [a] 

. . . WI 

. . . [83] 

. . . . [84] 

. . . . V351 

The boundary condition that u, = U, = 0 at 2 = 0 is not dis- 
turbed since bqj/b = 0 at that point. The stresses at the upper 
boundary are not disturbed if we have a%$/&’ = 0 at z = h; 
hence 

4 
- 

h “2, 37r 57r 2n + 1 
?r...... P36J 

a 3 T’.. 2 
( > 

These lead to the eigenfunctions 

4 
- 

4, = cos 2 : ema*‘. . . . . . . . . . . u371 

with the characteristic values for cr 

2n + I 2 7r2a 
CY, = ( > __ 

2 
p . . . . . . . . [881 

The consolidation problem is then solved by a series of eigen- 
functions 

+#I = ; A&,.. . . . . . . . . . . . . . . [89] 

when A, are Fourier coefficients determined by the initial condi- 
tion 

cp=Oforl=O 

or 

3 69, -- = _~ 
a22 a22 

=-c, . . . . . . . . . . . . . 

The time-dependent part of the deformation is then expressed 
as the sum of an infinite number of “modes of consolidation,” 
such that for each of theee functions the displacements are pro- 
portional to the same decreasing exponential.e-““‘. This proce- 
dure may be generalized to the three-dimensional case. The ex- 
istence of consolidation modes is a consequence of a general prop- 
erty of relaxation phenomena as shown by the author in reference 
(7). 
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