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Measurements are reported of the attenuation, CI, and the velocity, c, of l-5 MHz 
compressional wave ultrasound in suspensions of glass ballotini in Newtonian and 
non-Newtonian base fluids. For the Newtonian fluids, good agreement is found between 
the measured a and c, and the c( and c obtained from the Urick and the Ament expressions, 
using the same value for the base fluid’s viscosity. For the non-Newtonian base fluids, this 
agreement was absent. The existence of shear elasticity G in these fluids is suggested to 
explain the results. By incorporating elasticity into the Urick and the Ament theories the 
disagreement is resolved, and values of G are found which are in order-of-magnitude 
agreement with those found at the same frequency by another method. A test is proposed 
of a recent assertion that simple molecular fluids possess a shear elasticity. 
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The use of ultrasound to characterize suspensions is a 
large and growing application, as recently reviewed by 
McClements’. Despite this, there have been relatively 
few basic and quantitative investigations, where the 
ultrasonic propagation parameters such as velocity (c) 
and attenuation (a) have been measured for well- 
characterized suspensions, and the results compared with 
theoretical expressions. One of our aims was to use 
ultrasonics to probe the rheology of fluids. This required 
a granular rather than colloidal particle size, i.e. particles 
of about lo-100 pm in diameter. Here, the thermal 
scattering contribution to the attenuation was negligible, 
leaving the visco-inertial scattering term dominant such 
that c( and c were sensitive to the local rheology of the 
fluid surrounding the particles. To ensure dominance of 
the visco-inertial contribution, a significant density 
difference between the particles and the surrounding fluid 
was necessary. This constraint, and that of the large 
diameters required relative to the commonly available 
polymer latices, disallowed the use of accurately 
monodisperse particles. Hence, glass ballotini, sieved into 
narrow particle size fractions and sized by light scattering 
and optical microscopy, were used. 

Work similar to ours, and using the same ballotini, 
was reported by Rahalkar et al.‘, who studied the effects 
of adding ballotini to aqueous solutions of a xanthan 
polymer. Their results agreed only qualitatively with 
existing theories for suspensions. They attributed this to 
the viscoelasticity of the polymer gel network. 

Drilling muds are a suspension of mineral grains in a 
non-Newtonian base fluid, typically a polymer or clay 
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gel. The network’s yield stress is designed to prevent 
sedimentation of granular particles such as barite (added 
to increase the mud density) or rock particles (which 
originate from the drill bit). The ultrasonic properties of 
drilling mud have applications in the interpretation of 
signals from downhole ultrasonic tools3 and in the 
monitoring of mud flows4. The ultrasonic velocity and 
attenuation have been shown’ to be sensitive to the 
spontaneous gelation of drilling mud clays. Here we 
investigate the effects of adding granular particles to these 
fluids, simulating the particles of barite and rock in real 
drilling muds. 

Theoretical details 

Viscous base fluid 
We assume non-interacting spherical particles, of diameter 
2a, small compared with the ultrasonic wavelength 1, i.e. 
2a < ;C/ 10. The Urick expression6 for the excess amplitude 
attenuation per unit volume fraction of particles 4 is 

r” -k4a3 I ks(r - 1)’ 

4 6 2s’ + 2(r + T)2 
(1) 

where k = 2r~/i and r = p’/p is the ratio of particle to 
base fluid densities. The base fluid rheology is effective 
through the hydrodynamic skin depth 6. For a Newtonian 
fluid of viscosity ‘1, 

(2) 

at a pulsatance w. The terms T and s in Equation (1) are 
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then defined by 

and 

,y- I+! 96 

( ) 4a a 
= i(2T - 1)(4T + 7) (4) 

For the material properties and particle diameters 
considered here 6/a < 1, 0.2 being typical. Expanding 
Equation (1) in powers of 6/a to the second order gives 

Thus, terms in (6/a)’ vanish when 1 = 18r/(2r + 1 )2, 
giving Y = (7 +_ J45)/4, i.e. for r = 0.0729 or 3.427. For 
the ballotini (p’ - 2900 kg md3) in our base fluids 
(p - 1000 kg m-3) r is sufficiently close to 3.427 so that 
the term in (6/a)2 contributes only a few percent to 
(x/d; less than the experimental uncertainty. Thus, 
Equation ( 1) simplifies to 

k4a3 

;= 6 
’ 

(6) 

Although obtained originally by Urick using a non- 
scattering argument, Equation (6) is identical, up to 
(6/a)‘, to the expression of Hay and Mercer7, derived 
on the basis of scattering theory for a solid, elastic sphere. 

For the phase velocity c we use the expression of 
Aments9. The phase slowness is 

‘=m 
C 

The volume average compressibility 

R = K’c#l+ K(l - 4) 

(7) 

R is 

(8) 

where K’ and K refer to the compressibility of the ballotini 
and the base fluid, respectively. The effective density is 

p*=p+z (9) 
where the volume average density is 

P = P’4 + PC1 - 4) (10) 

The base fluid rheology enters c through 

2(P’ - PI”& 1 - 4)A z= - 
A2 + C2 

(11) 

where 

A=2(p’-p)(l-4)+2p(l +T) (12) 

and 

c = 2ps (13) 
T and s being defined in Equations (3) and (4). Using 
Equations (8)-( 13) and taking only terms linear in 4, 
Equation (7) gives 

where c0 is the velocity in the base fluid. 

Viscoelastic base fluid 
For a viscoelastic base fluid, the viscosity rl in the previous 
expressions for x and c become complex. Thus, q is 
replaced by rl + iG/w, where i2 = - 1 and G is the shear 
modulus of the base fluid. Hence, the skin depth 6 in 
Equation (6) and Equation (7) also becomes complex, 
and is written 6’ + id”, where 6’ and 6’ are real. The 
complex wavevector may be written 

k=E+ia 

We replace 6 in Equation (6) and Equation ( 14) by 
6’ + id” and use these complex versions of l/c and CI in 
Equation (15). Now w/c = Rek and CI = -i Im k, thus 

2 
(6’+6”) 

and 

1 co 
-(-- ) 

I=--- - K’-K+2r-1 
4 c 2K 22r+ 1 

9 r-1 2(6’+q +- ___ 
2a ( 2r + 1 1 

(16) 

Comparing Equation (16) and Equation (17) with 
Equation (6) and Equation (14) shows that if the base 
fluid acquires elasticity, the effect is to increase both u 
and c. It will be convenient to write 

6’ = L([l + Qy + l)liZ 
4 

and 

6” = +[l + Q2]112 - 1)1/z 

G 

(18) 

(19) 

where Q = G/oq and 6 is defined in Equation (2). 

Polydispersity 
It was found that the particle radii (a) of the seived 
ballotini fitted closely a Gaussian log-normal probability 
function 

f(x) = f(i) exp - 
2 - x’ 2 

( ) ____ 
2a 

where x = In a, X is the mean logarithmic radius, and c 
is the standard deviation of x about X. The volume- 
average of functions such as an, where n is an integer, is 
then given by 

?‘= [I,aflf(x)dx/[“, f(x) dx = (2)” exp(no)2 (21) 

This result is readily applied to theoretical expressions 
where powers of the particle radius exist in linear 
combinations. Thus, using Equation (21) shows that the 
polydisperse version of Equation (6) becomes 

(22) 

where a, is defined by In a, = In a. Similarly, Equation 
(14) becomes 

’ 
(14) 

-(-- ) 

I c,, 1 =K’-K+Jr-1 +z 

4 c 2K 22r+ 1 2a 
(23) 
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It is, however, not possible to write down a polydisperse 
version of Equation (7) with the same ease, owing to the 
complicated way that a enters this equation, through z. 
Facing the same problem, McClements’O used the Sauter 
mean radius. On the basis of the above, we see no 
justification for this approach. We appreciate however, 
that McClements’ main interest was the variation of 
ultrasonic parameters with frequency, rather than particle 
radius, so that a satisfactory empirical correction for 
polydispersity may have been possible. We compared our 
velocity data with Equation (7), using the mean radius 
a, rather than attempting a complicated correction for 
polydispersity. Fair agreement between the ultrasonic 
and the rheologically-measured viscosities is obtained. 

Apparatus 

Ultrasonic measurements 
Accurate measurements of c1 and c were required. Various 
methods of measuring these have been compared5, where 
it was concluded that the best methods for c and CI were 
the pulse-echo overlap (PEO), and tone burst, respectively. 
These were essentially single frequency methods, and 
changes in the operating frequency were feasible within 
the range l-5 MHz. A full description of the apparatus 
and method is given by Champion et al.’ The same 
equipment was used for the measurements described here. 

Fluids and particles 
The Newtonian fluids were glycerol, and a polypropylene 
glycol (PPG) of molecular weight 2025. Densities were 
measured to within N 1% using a weighing bottle. 
Viscosities were measured using a Haake rheometer 
over a temperature range of 17-23°C. The viscosities 
were sufficiently large (-Pa s) to be able to disregard 
ballotini sedimentation over the measurement time. 

The non-Newtonian fluids were both suspensions of 
bentonite clays. The water-based suspension was made 
by adding Bentopharm B20 (a pharmaceutical grade 
sodium montmorillonite: Bromhead and Denison, UK), 
to deionized water. A volume fraction range 0.01-0.03 
gave a gelatinous suspension of yield stress sufficient to 
prevent sedimentation of the more dense ballotini. A 
rheological description of Bentopharm B20 suspensions 
has been given by Heath and Tadros’l. It was important 
that no air bubbles were trapped in these suspensions by 
the yield stress, and suspensions were de-aired for about 
1 hour in a bell jar held at a pressure close to - 1 bar. 

The oil-based bentonite suspension was prepared by 
mixing Carbogel clay with Milclean oil and the 
appropriate surfactants. (Carbogel and Milclean are 
products of Milchem, USA.) This produced another 
gelatinous fluid which was, through its yield stress, 
capable of suspending ballotini particles without 
sedimentation. 

Particles 
The particles were lead glass ballotini (Jencons No. 18), 
of nominal diameter 40-75 pm. Inspection by optical 
microscope showed excellent sphericity, and also the 
presence of particles in the diameter ranges 30-100 pm. 
The glass density was measured on a de-aired sample, 
using a liquid displacement method, giving p’ = 2900 ) 20 

kg m - 3. This compares with 2950 kg m -3 given by 
Jencons. 

Over the 30-100 pm diameter size range, taking for 
example 5 MHz with glycerol as the base fluid, the 
dominant attenuation mechanism changes from scattering 
to viscous loss. For a 30 pm diameter sphere Cl,,,/~,is - 
0.03, whereas for a 100 pm sphere, CI,,,/C(,~, - 4. This shift 
from one to another mechanism was ideal for the purpose 
of checking the ultrasonic theories of a and c. Sieving 
and particle size measurement was undertaken to produce 
batches of well-characterized ballotini in sufficient 
amount for the ultrasonic measurements. A nest of 
Endecotts sieves was used, with sieve mesh apertures of 
38,45,53,63,75,90 and 125 pm. The ballotini were dried 
at 35°C for 30 min to reduce dampness and sticking, 
and poured into the coarsest sieve at the top of the nest, 
which was tapped and shaken. Before removal from a 
sieve the ballotini were gently brushed across it to ensure 
that small particles passed through to the next sieve. 
Batches of 2-3 g were seived in this way to produce size 
fractions of smaller polydispersity than the as-received 
sample. 

Size distribution measurements were made using a 
Leeds and Northrup Microtrac particle size analyser. 
This uses light scattering from a very dilute (4 - 10-4) 
dispersion in water. The Microtrac gave mean diameter, 
standard deviation, and a diameter distribution consisting 
of the relative volume of ballotini in fixed diameter ranges. 
The reliability of the Microtrac data was tested by 
comparing with data from a Seescan image analysis 
system. Photomicrographs of the ballotini were digitized 
in terms of optical density, and the data interpreted in 
terms of diameter distribution by the image analyser. The 
data points of Figure 1 compare the Microtrac with the 
Seescan results for the as-received ballotini. The curves 
of Figure I are fits of the log-normal distribution to the 
two data sets. The close agreement between the methods 
suggested reliability of both, and the Microtrac method 
was used routinely to obtain a, and (r. Table I shows 
these parameters for the as-received and the sieved 
ballotini, where ( ) indicates image analyser data. 

3.5 4.0 4.5 
ln(diameter/pm) 

Figure 1 Percentage by volume versus In(diameter [pm]) for 
Jencons number 18 ballotini. Upright crosses; image analysis. 
Diagonal crosses; light scattering 
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Table 1 ac and r~ for the as-received and sieved ballotini 

Sieve range (pm) a0 (pm) 0 

<19 15.8 0.3 
19-22.5 19.9 0.25 
22.5-26.5 25.0 0.24 
26.5-31.5 28.1 0.24 
31.5-37.5 31.3 0.27 
37.5-45.0 40.4 0.29 
45.0-62.5 44.3 0.33 

as-received 31.5 (30.5) 0.41 (0.35) 

Results 

Newtonian fluids 
Attenuation. Preliminary measurements were made to 
establish the range of validity of the theory, i.e. where 
a cc 4. Figure 2 shows that 0 < $J < 0.03 allows both 
linearity, and also an c1 large enough to obtain good data. 
Measurements of a/c$ were then made for the various 
sieved fractions of Table 1. Figure 3 shows data at 5 MHz, 
together with a line described by Equation (22). As the 
least well-defined quantity of Equation (22) was (T, the 
data points and the theoretical line in Figure 3 were fitted 
by assuming CJ to be constant throughout the sieved 
fractions, and allowing it to vary to obtain the best fit. 
The resulting d = 0.21 f 0.04 was in good agreement with 
the Microtrac particle size analysis of Table 1. In the 
above comparison the largest value of L/a,, was about 
0.1, for which the dipole scattering (Rayleigh region) 
approximation incorporated into Equation (6) and 
Equation (22) should be good. Trespass into the 
above-Rayleigh region is shown by the divergence of data 
from theory (Equation 22) in Figure 4. Here, a poor fit 
between data and the prediction of Equation (22) is seen 
to occur at a, > 30, corresponding to a,/,? - 0.1. Below 
this, the fit between data and Equation (22) is seen to 
be good. The limit found above agrees well with the 
estimate of u,/il = 0.1 of Allegra and Hawley”, found 
by calculating the scattering terms of a for Rayleigh 
spheres and above. Data and theory (Equation 22) are 
further compared in Figure 5. At a frequency of 2.25 MHz 
and using PPG 2025 as the base fluid, u,/A < 0.07 for 
all ballotini, and the fit is seen to be good. 

Velocity. Figure 6 shows the measured velocity (c) data 
at 1 MHz versus volume fraction 4 for the smallest sieved 
ballotini fraction, a, = 15.8 pm. The broken curve shows 
the prediction of Equation (7) if q = 1.33 f 0.1 Pa s 
is used for the fit, i.e. that of glycerol at the temperature 
(20°C) of measurement. If q in Equation (7) is assumed 
to be the macroscopic viscosity of the suspension it can 
be described by 

vl = %I(1 + K24 + K3P) (24) 

where the classical Einstein result is K, = 5/2, and the 
magnitude of K, depends on the nature and the state of 
the suspension. We may neglect Brownian motion for 
even the smallest diameter ballotini, and ultrasonic 
fields imply a high frequency, low shear, oscillatory flow. 
For these conditions K, = 5.2 has been derived13*14. 
Using Equation (24) with K, = 5.2 for q in Equation (7) 
gave the solid line in Figure 6 where Q, = 2.1 + 0.1 Pa s. 
Thus, the fit to data is much improved compared 
with taking a &independent base fluid viscosity, and a 
fair agreement is found between ‘lo and the viscosity q 
of the base fluid. 
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0.00 0.01 0.02 0.03 
Glass Volume Fraction 

Figure 2 Attenuation versus ballotini volume fraction for unsieved 
ballotini at 20°C. Solid curve (left ordinate); glycerol at 5 MHz. 
Broken curve (right ordinate); PPG 2025 at 2.25 MHz 

I 

20 30 40 50 
Mean Radius / pm 

Figure 3 Excess attenuation versus mean radius a, for ballotini 
of r#~ = 0.0124 in 95% by volume glycerol aqueous solution at 20°C 
and5MHz 

3.5 

-  . L  

10 20 30 40 50 
Mean Radius /pm 

Figure 4 Excess attenuation versus mean radius a, for ballotini 
of 4 = 0.01 in PPG2025 at 20°C and 5 MHz 
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Mean Radius /pm 

Figure 5 Excess attenuation versus mean radius a0 for ballotini 
of 4 = 0.01 in PPG 2025 at 20°C and 2.25 MHz 

1840L-A 0.0 0.1 0.2 0.3 
Glass Volume Fraction 

Figure 6 Velocity versus ballotini volume fraction for a, = 15.8pm 
ballotini in glycerol at 20°C and 1 MHz 

Measurements were made of c for the same ballotini 
fraction at 5 MHz, the data being shown in Figure 7. 
The solid curve shows an excellent fit to the data if q 
was allowed to vary with 4 according to Equation (24) 
with K, = 5.2; a base fluid viscosity of 1.30 Pa s was 
obtained for ylO, compared with 1.33 Pa s measured 
rheometrically. The broken line shows the inferior fit to 
data if v = 1.33 Pa s is assumed, constant with 4. 

At 2.25 MHz the data for c(d) are shown in Figure 8. 
The solid curve shows the fit to the data allowing q to 
vary according to Equation (24) with K, = 5.2, giving 
q0 = 1.0 f 0.1 Pa s. The broken curve fits Equation 
(7) to the data assuming a +-independent q = 1.33 Pa s. 
Again the fit is much improved by the procedure of 
allowing y to vary with 4. 

Shear rheology 
We have shown, above, the validity of Equation (22) for 
LX at low volume fractions (4 < 0.03), and also that of 
Equation (7) for c at high volume fractions if the base 
fluid viscosity is assumed to vary with 4 according 
to well-founded expectations of the effect of particle 
concentration on the bulk fluid rheology. In this section 
we use measurements of c1 and c to obtain the shear 
viscosity, and elasticity, of fluids surrounding the 
ballotini. 

Newtonian base fluids. Using as-received, unsieved, 
ballotini, measurements were made of c1 at 2.25 MHz 
over the range 0 < 4 < 0.03, using PPG 2025 as 
the base fluid, and obtaining q using Equation (22). 
Similar measurements and analyses were made for sieved 
and unsieved ballotini surrounded by glycerol. Table 2 
shows the data, yla obtained from CI, and v] as measured 
using a Haake rheometer. The average discrepancy 
between q, and q is about 10%; this is within expectation 
allowing for possible sources of uncertainty. 

Non-Newtonian base fluids. The technique described 
above for the Newtonian base fluids was applied to 
ballotini supported by the non-Newtonian base fluids. 
These were a water-based clay gel made from Bentopharm, 
and the oil-based clay gel made from Carbogel. Figure 9 
compares q,, with a high shear rate viscosity qoo. This 

I I ,.. 1 
0.0 0.1 0.2 0.3 

Glass Volume Fraction 

Figure 7 Velocity versus ballotini volume fraction for a0 = 15.8 pm 
ballotini in glycerol at 20°C and 5 MHz 

t I ,..,I,,,, 1 
0.0 0.1 0.2 0.3 

Glass Volume Fraction 

Figure8 Velocity versus ballotini volume fraction fora, = 15.8 pm 
ballotini in glycerol at 20°C and 2.25 MHz 

Ultrasonics 1993 Vol 31 No 3 197 



Velocity and attenuation of ballotini in fluids: G.H. Meeten and N.E. Sherman 

Table 2 Comparison of ultrasonic and rheological base fluid viscosities 

Base fluid a0 (w) 0 (a/4) (m-l) 

PPG2025 (20°C) 31.5 0.40 122Ok25 
PPG2025 (20°C) 30.5 0.35 122Ok25 
glycerol (22°C) 20.5 0.21 1510*70 
glycerol (22°C) 31.5 0.40 875 + 80 
glycerol (22°C) 30.5 0.35 875 k 80 

v. (mpa s) 

360 k 25 
450 + 25 

1230 k 130 
1200 * 200 
1300 * 200 

v (mpa s) 

415*10 
415*10 

1210~10 
1210+10 
1210~10 

Clay Volume Fraction 
0.0 0.1 0.2 

Glass Volume Fraction 

Figure 9 Viscosity versus clay volume fraction. Diagonal crosses; Figure 10 Velocity versus ballotini volume fraction for ballotini 
q. for Carbogel. Upright crosses; 4. for Bentopharm. Triangles; rfn; of a0 = 19.9 pm in 2.5% by volume Bentopharm suspension at 22°C 
for Carbogel. Squares: rym for Bentopharm and 5 MHz. Markers show data; line shows theory 

latter quantity was obtained by measuring the shear stress 
z as a function of the shear rate j using a Carrimed 
rheometer. The z(9) data were then fitted to the Casson 
relation 
t1/2 = 21/2 o + $312 (25) 
to obtain r,; z0 is the yield stress. Although a fair 
agreement exists between qIx and qGo for the oil-based 
Carbog r,lu, - 3 for the water-based Bentopharm. 

This discrepancy was further investigated by measuring 
c for the two non-Newtonian suspensions, and applying 
the analysis described earlier, using Equation (24) with 
K, = 5.2 to account for particle concentration, to obtain 
a viscosity g,. Figures 10 and 11 show the fit of data to 
theory, giving q, = 188 mPa s for the Bentopharm and 
qc = 125 mPa s for the Carbogel, at clay volume fractions 
of 0.025 and 0.037, respectively. At this clay volume 
fraction, qa was approximately 4 mPa s and 10 mPa s. 
The large discrepancy between qa and qc, for both 
non-Newtonian fluids, is resolved if these fluids are 
allowed some shear elasticity G. This quantity is usually 
associated with fluids which have a yield stress z,,. It 
represents the Hookean response to small stresses of the 
structure originating from weak attractive bonds between 
clay particles. It is this structure which is destroyed at 
shear stresses exceeding tO. Ultrasonic stresses in our 
experiments were negligible compared with rO. 

Assuming this interpretation, the theory presented in 
the section on the viscoelastic base fluid shows that the 
skin depth 6 has to be replaced by 6’ - 8” in the equations 
for c, and by 6’ + a” in those for CL Hence, if qa and qc 
are obtained from experimental data by interpretation 

Glass Volume Fraction 

Figure 11 Velocity versus ballotini volume fraction for ballotini 
of a0 = 19.9 pm in 3.7% by volume Carbogel suspension at 22°C 
and 5 MHz. Markers show data; line shows theory 

through a purely viscous model, as done above, then 

;rlc (1 + Q2)1’2 + Q -= 
va (1 + Q’)“’ -2 C-26) 

A useful simplification of Equation (26) is that ?J,/v~ = 
4Q2 + 2 to within a 3% accuracy for Q > 1. As Q > 0 
for a viscoelastic fluid then Equation (26) explains the 
experimentally-found result that qc > qa for the Bentopharm 
and the Carbogel clay fluids. Using the previous results 
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of 47 and 12.3 for v,/q, for these fluids then Equation 
(26) gives Q = 3.4 and 1.6 for the Bentopharm and 
Carbogel fluids, respectively. If, pro tern, q,, from Figure 
9 is taken to approximate the fluid viscosity, an elasticity 
of G = 2 MPa and 0.5 MPa is obtainable for the 
Bentopharm and Carbogel fluids, respectively. These are 
not dissimilar to G = 18 +_ 5 MPa found at 5 MHz for 
a waterbase clay by a previous method5. The closer 
agreement shown in Figure 9 of qa with rrn for Carbogel, 
compared with the discrepancy between them for 
Bentopharm, may hence be related to the greater elasticity 
of the Bentopharm gel. 

Discussion 

For glass ballotini supported by Newtonian fluids, where 
the scattering is in the Rayleigh region, and where the 
viscous skin depth is small compared with the particle 
radius, our measured values of velocity and attenuation 
are in close agreement with the expressions for these 
quantities given by Ament ’ and Urick6, respectively. For 
ballotini suspended in non-Newtonian fluids, the measured 
velocity and attenuation can be understood if allowance 
is made for the elasticity of the suspending fluids. It 
follows that care should be taken when using acoustic 
waves to investigate complex fluids where the continuous 
phase may be not purely viscous, e.g. by polymer gels in 
foods or by clay gels in drilling muds. 

Recently, Derjaguin et ~1.‘~ have given experimental 
evidence that several molecular fluids possess an elasticity, 
typically in the 104-lo5 Pa range. For our molecular 
fluids, e.g. glycerol, such elasticity would give Q - 0.1 at 
1 MHz, and hence would be undetectable as a difference 
between qa and qc in measurements where the fluid 
supports ballotini, and this is concordant with our results 
for these fluids. However, for water or similar low- 
viscosity fluids, Q - 10 would be expected, and differences 
between rln and qc would be similar to that found by us 
for ballotini suspended in the viscoelastic clay fluids. Such 
experiments would form a test of the assertion of 
Derjaguin et ~1.‘~ 
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