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Abstract  

There has been recent increasing interest in the acoustic properties of suspensions for applications such as ultrasonic particle 
size and concentration instrumentation. This paper aims to summarize what is known about the acoustic properties of suspensions 
of solids in a liquid and aims to identify the methods that enable useful information to be extracted from sound speed and 
attenuation information such as particle size, concentration, and the mechanical properties of the constituents. The paper 
identifies regimes of sound propagation and present models' for these that can be used for size characterization of slurries. 
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1. Introduction 

The acoustic properties of heterogeneous media with 
a continuous fluid phase have been of interest in 
numerous applications, such as predicting the effec- 
tiveness of fog horns (water droplets in air) and de- 
scribing the acoustics of bubbly and two-phase flows 
that are encountered in the process and the nuclear 
power generation industries. More recently there has 
been an increasing interest in the acoustic properties 
of suspensions for acoustic telemetry through drilling 
fluids, as well as a rising demand for ultrasonic particle 
size and concentration instrumentation. Commercial 
instruments have been developed to characterize the 
properties of suspensions using ultrasound (e.g., O'Brien 
[1]). This paper presents what is known about this 
subject in the specific context of suspensions of solids 
in a liquid and aims to identify the mechanisms that 
enable useful information to be extracted from sound 
speed and attenuation information such as particle size, 
concentration and the mechanical properties of the 
constituents. 

Sound propagation through saturated porous media 
has also been of significant interest for the second half 
of this century in applications such as seismic sounding 
for geological imaging in both the petroleum and mineral 
industries, and more recently in nondestructive eval- 
uation of composites such as ceramics, metal-matrix 

and the more conventional resin/fiber composites. Much 
of the ground-breaking work in the context of fluid- 
filled solids was done by Biot [2], who identified two 
longitudinal waves and a shear wave, each of different 
speed and attenuation. The faster longitudinal wave 
corresponds to in-phase compression of the fluid and 
the solid, and the slower to out-of-phase compression. 
The shear wave arises due to the shear stiffness of the 
skeletal solid medium, and these, as well as the slow 
compressional waves, disappear when the skeletal frame 
loses its shear and compressional stiffness. These three 
modes can only coexist when both the shear and bulk 
moduli of the skeletal frame are finite, and the perme- 
ability of the fluid is finite. In situations where any 
one of these conditions is violated, the number of 
possible modes decreases. For example, solids with 
closed pockets of fluids (zero fluid permeability), or 
fluids with suspended solids (zero skeletal shear and 
bulk moduli) do not exhibit this same complexity. 
Suspensions can only accommodate fast compressional 
waves. 

2. Regimes of sound propagation in a suspension 

Different regimes of compressional wave propagation 
can be identified on the basis of the dominant length 
scales of the process. 
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2.1. The multiple-scattering regime (short wavelength 
regime ka >> 1) 

The most natural length scale for compressional wave 
propagation is the wavelength, A, which is determined 
by the material properties and the frequency of emission. 
The parameter ka, where k is the wavenumber 2~-/A 
and a is the particle radius, represents the ratio of the 
particle dimension to the wavelength. When ka>> 1, 
the particles are large compared to the wavelength, 
and sound scatters geometrically. In an assembly of 
many randomly arranged particles, sound will scatter 
randomly and will penetrate poorly. This is the multiple- 
scattering regime, for which it has been shown that 
the dimensionless attenuation aa, where 1/a is the e- 
folding depth of penetration, scales with frequency to 
the fourth power. For the present purpose of ultrasonic 
diagnostics in suspensions, it is desirable to obtain good 
penetration, and the high attenuation of the multiple- 
scattering regime renders it undesirable; it is more 
effective to ensure that ka is not much greater than 
one. It will later be indicated that it is possible to size 
particles by identifying this transition. 

2.2. The viscous regime 

In the long wavelength regime, another natural length 
scale arises in the context of viscous fluids, namely the 
viscous boundary layer thickness, 6=x/2/z/(p~oJ), sur- 
rounding the particles, also often called the Stokes 
layer thickness. The ratio of particle radius to 6 con- 
stitutes a Reynolds number 

Re=  a =a  ~vr~--~-(2/z ) (1) 

also called the Womersley parameter in the context of 
oscillatory flow in arteries [3]. The square of this 
parameter has the more usual form of a Reynolds 
number based on ato as the characteristic velocity. This 
has also been called the vibration number in the context 
of turbulence/particle interactions [4]. When Re << 1, 
the boundary layer is thick compared to the particle 
radius, the viscous relaxation time is shorter than the 
period of excitation, and the drag is well represented 
by the Stokes law. In this regime the attenuation has 
been shown to scale with a2o)2/[~ [2]. 

2.3. The inertial regime 

When Re-~ 1, inertial effects become significant and 
the Basset history term begins to influence the particle 
drag. At Re >> 1, 6 is very small, and the fluid outside 
the thin boundary layer is governed by inviscid inertial 
effects. Consequently, the drag becomes dominated by 
inertia through the added mass effect. However, the 
added mass force is conservative and does not contribute 

to losses, and the dominant loss term is the in-phase 
component of the Basset force. Therefore it cannot be 
neglected in any model that attempts to capture at- 
tenuation. In this regime, the attenuation has been 
shown to scale with (tzoJ)m/a [2]. 

3. Other effects 

Submerged particles may exhibit resonant charac- 
teristics, and the period of the first mode of resonance 
can be approximated by the time sound takes to travel 
twice the diameter of the particle. Higher modes will 
have periods that are integral fractions of the first. In 
practice, materials such as silica or other minerals tend 
to have sound speeds sufficiently elevated so that the 
multiple-scattering transition will set in first. However, 
most plastics will often exhibit resonant absorption at 
frequencies below the ka = 1 threshold [5,6] which result 
in very large attenuations over a narrow band of fre- 
quencies. 

In situations where either the continuous fluid or 
the dispersed phase is a gas, thermal effects can come 
into play. At sufficiently low frequencies, thermal equi- 
libration will occur on a time scale shorter than the 
period of oscillation, and the systems will behave in 
an isothermal fashion. At sufficiently elevated fre- 
quencies, a thin unsteady thermal boundary layer forms 
in the gas and the bulk of the gas essentially behaves 
adiabatically. Unsteady thermal conduction can be a 
significant source of attenuation [7]. The governing 
dimensionless parameter is the ratio of the particle 
size to the thermal boundary layer thickness a/8,h, which 
is the above Reynolds number multiplied by vrP-~, where 
Pr = v/a and a is the thermal diffusivity. The combination 
Re Pr is also often called the Peclet number. As this 
article addresses liquid-solid systems, these effects are 
small and will not be discussed further. 

4. Regime map 

The Reynolds number therefore separates the viscous 
(low Re) and the inertial (high Re) regimes, while 
ka > 1 identifies the onset of the multiple-scattering 
regime. For a given pair of materials such as silica and 
water, which are representative of numerous mineral 
processes, one can draw a regime map on the basis of 
the material bulk moduli and densities, as shown in 
Fig. 1. With increasing frequency, regime transitions 
for particle sizes greater than 0.1 mm arise in the order 
viscous to inertial to multiple-scattering, while for 
smaller particles, the viscous regime gives way to mul- 
tiple-scattering before inertial effects become important. 
Thus, the pure inertial regime only exists for particles 
bigger than 10 ~m. The two transitions associated with 
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Fig. 1. Map of regimes of sound propagation through a suspension 
of silica in water. In order of increasing frequency, these are the 
viscous, the inertial and the geometric scattering regimes. Note that 
the inertial regime ceases to exist for sufficiently small particles 
(a < 10 /zm). 

the relation between particle size and the relevant 
length scales represent a change in the attenuation 
scaling. Therefore by identifying such a change in the 
scaling, it is possible to determine particle size, as has 
been demonstrated by Riebel and L6ffier [8] and Salin 
and Sch6n [9], for example. For large particles (> 10 
/zm) the two transitions provide double the information; 
this can be beneficial for robust sizing purposes as it 
provides redundancy to the measurement. To the au- 
thor's knowledge, these two transitions have not yet 
been used in combination to improve the quality of 
inferred particle size. 

5. Theoretical prediction of sound speed and 
attenuation 

Most models used to infer solids concentration from 
attenuation tend to assume that these are linearly 
related, which in practice is reasonable only up to 
concentrations of around 10%. At higher concentrations 
particle interactions become significant, as has been 
well documented in the concentration-dependent hind- 
ered motion of particle assemblies in a viscous fluid 
at low Re (e.g. Zick and Homsy [10], Richardson and 
Zaki [11]), or the concentration-dependent added mass 
coefficient that reflects inviscid interactions between 
particles at high Re [12]. In this section, rather than 
develop theories that have been presented elsewhere, 
the present aim is to identify the elements that are 
generally accepted and those that are either still con- 
tested or not known. 

In the long wavelength limit, an effective approach 
has been to describe the fluid and the solids as two 
interacting continua. Both constituents are assumed to 
compress isotropically and their compressibility is de- 

scribed by means of an equation of state for each 
component, the mass of which is conserved using a 
continuity equation. The dynamics of the two com- 
ponents are described through two coupled momentum 
equations. The coupling term describes the force exerted 
by one component on the other, and it appears in both 
equations in an equal but opposite sense. 

Two formulations of different disciplinary origins 
exist. In the porous medium literature, the force in- 
teraction term is represented through the dynamic 
permeability [13-18] while the two-phase flow literature 
uses a dynamic drag originally due to Landau and 
Lifshitz [19]. These are essentially equivalent [20,21], 
and reflect the same viscous and inertial asymptotic 
limits. The suspension formulation is only briefly de- 
scribed as it is presented in detail elsewhere [e.g. 21]. 
For low amplitude harmonic excitation of an assembly 
of spheres in a fluid, we denote the one-dimensional 
relative velocity by U r e  I = V s - V  1 = Uoe i"~, where vs is the 
instantaneous solid velocity and Vl is defined asjl/(1 - v) 
where Jl is the instantaneous superficial liquid velocity, 
also called the liquid volume flux. The resulting force 
per sphere required to sustain this motion is Foe ~" 
where Fn is generally complex. For small amplitude 
oscillations free of boundary layer separation, 

If( a ( a )  2 4 ] Fo=67rvaUo v)+ ~ ( 1 + i ) + i  ~ ~ C(v) (2) 

Fo consists of three terms of increasing order in Reynolds 
number. The first is the hindered Stokes drag, the 
second the history-dependent Basset force and the third 
is the added mass term. As Re is increased from a 
small value, each becomes dominant in turn in the 
order stated. At Re << 1, Stokes drag dominates, f(v) 
is the concentration-dependent viscous drag coefficient, 
which has been extensively studied. For our purposes 
it is sufficient to use the Richardson and Zaki [11] 
model, which satisfactorily captures the full range 
of v: 

1 
f (v)=  ( l_v )n_  2 (3) 

where n=4.65 for a < 1 0  t~m. At R e = l ,  the Basset 
term assumes the same order of magnitude as the 
Stokes drag, and introduces an out-of-phase (conserv- 
ative) component to the force. As Re ~ oo, the added 
mass term becomes dominant, although it is important 
to recognize that this effect is conservative, and the 
leading dissipative mechanism remains viscous through 
the O(a/8) real component of the Basset force. 

Particle-particle interactions are depicted by the 
concentration dependence in the added mass coefficient 
at high Re. Current theory is only able to predict added 
mass to first order in solid fraction: 
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1 
C(v)= ~ ( l + 3 . 3 2 v ) + O ( v  2) (4) 

which is only valid for low concentrations (see for 
example Refs. [12,22-25]). This term remains the subject 
of heated discussion, and careful experiments and nu- 
merical simulations appear most promising as a means 
of determining the form of C(v) at high values of v. 
Furthermore, for transition conditions where R e =  1, 
the concentration dependence of the Basset force is 
unknown, and it can only be presented in the isolated 
particle form. 

With this mathematical framework, we now seek 
traveling wave solutions of the form 

q =qoe i(''+~') (5) 

where k is the complex wavenumber 

k = ~- +ia  (6) 
c 

c is the wave speed in the medium and a is the spatial 
attenuation parameter. Upon lineafization, the de- 
scribed system of equations [21] yields the following 
expression for k: 

k 2  - to 2 [(A +itoB)~+itops~(1 - v)] (7) 
A +itoB + ito(1 - v)p* 

The variables ~ and t~ denote the effective medium 
bulk modulus and density respectively: 

1 v (l-v) 
- = - + ( 8 )  

tq K~ 

and 

:= ups+ (1 - v)o, (9) 

The quantities p*, A and B are defined as 

O* = (1 - v)p,+ vO, (10) 

A =  ~ v)+ (11) 

and 

9 
B=th[C(/ , )+  ~ ~] (12) 

The phase speed c is given by 

tO 
c = - -  (13) 

and the attenuation 

a(to) = J ( k )  (14) 

where 5~'() and J ( )  denote the real and imaginary 
parts of the argument. 

The above equations can directly be used to compute 
the sound speed and attenuations for the full range 
of relevant frequencies. For practical purposes it is 
also useful to evaluate the asymptotic behavior of the 
sound speed and attenuation in the limits of to-+ oo 
and to~0.  

5.1. Sound speed 

The low-frequency limit for the sound speed as 
predicted by the two component model is given by: 

1/2 

. , ,  

where ~7 and ~$ are respectively the effective bulk modulus 
and density of the mixture. In this limit the sound 
speed reduces to that predicted by the phenomenological 
model of Urick [26]. The high-frequency limit for the 
sound speed is given by: 

lim c=\?/  { (16) 

It is noteworthy that the sound speed is entirely in- 
dependent of the fluid viscosity, while the criterion 
which determines the regime, Re, is. 

The sound speed assumes two asymptotic forms which 
correspond to the viscous and the inertial regimes, as 
shown in Fig. 2. Both of these are independent of 
frequency (McClement and Povey [27]) and Fig. 3 
indicates that the transition from one to the other 
occurs at 1 < R e <  10. The viscous curve exhibits a 
minimum, while the inertial one does not. This is of 
practical importance as there is a range of ambiguity 
associated with having two concentrations that can result 
in the same sound speed, if the latter is used to infer 
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Fig. 3. Sound speed for a silica/water suspension at a solid fraction 

v of 0.3, showing the transition from the viscous to the inertial 

regime in the range i < Re < I0. 

v. This difficulty does not arise in the inertial regime 
as shown in Fig. 9. 

5.2. At~nuation 

In the low-frequency limit where viscous effects dom- 
inate, the attenuation is predicted to be: 

and it is found to be proportional to ¢o 2. It is interesting 
to observe that in the viscous regime, attenuation of 
sound scales inversely with viscosity, which suggests 
that at low frequencies, good penetration can readily 
be achieved with pastes and other thick mixtures. 

At high frequencies the attenuation is given by: 

lim a = ~ 

(1  - - o * : )  0 8 )  x + o (1 - + o * ( 1  - 

This leads to the result that the attenuation is pro- 
portional to (~o)  ~n, which is consistent with the Biot 
theory [2]. It should be noted that here attenuation is 
due to the Basset or history terms that dominate drag 
losses at high frequencies of oscillation. 

For small particle sizes ( < 10 ~m) and ka < 1, sound 
will propagate in the viscous regime. 

5.2.1. Effect of frequency 
Unlike the sound speed, the attenuation is dependent 

on the frequency and obeys a different scaling for each 
regime: ¢02, oY z, w 4 for the viscous, the inertial and 
the geometric scattering regimes respectively. The first 
two are depicted in Fig. 4 and confirmed experimentally 
in Fig. 8. For particles greater than 10 /zm, the two 
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Fig. 4. Attenuation, a, shown as a function of frequency for different 

silica particle sizes suspended in water at v= 0.3. At the high frequency 
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regime transitions can be used effectively to help in 
particle sizing. For smaller particles, the viscous regime 
gives way to the geometric scattering regime before 
inertial effects become important. 

5.2.2. Effect of concentration 
The sensitivity of attenuation to concentration is 

grossly nonlinear, as is depicted in Fig. 5. For a given 
frequency and size, it assumes a maximum at approx- 
imately 30%, and falls off at higher concentrations. As 
doubling the concentration does not double the atten- 
uation, linear models that superimpose the contributions 
of different particle size groups fail at v>0.1. Using 
guidance from the model presented here or other 
nonphysical means (e.g. [28,29]) such as neural nets 
and other sophisticated empirical correlation ap- 
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proaches, it is readily possible to construct the necessary 
nonlinear algorithms to determine size distribution. 
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Fig. 9. Sound speed within the  suspension of nominally 24 Izm radius 
lead glass spheres  in water. These  measurements  were conducted 
within the inertial regime at 450 kHz, as confirmed by Fig. 8. The  
monotonic  rise is consistent with Fig. 2 and McClement  and Povey 
[27]. The  solid line is the  corresponding theoretical prediction with 
C ( o )  = t (1  - v)  2. 

5.2.3. Effect of  particle size 
Eqs. (17) and (18) indicate that the attenuation is 

proportional to a:  and a-1  in the viscous and inertial 
regimes respectively. It is shown in Fig. 6 (for ~,= 0.3) 
to assume a maximum around transition. In practice 
this implies that at a fixed v particles whose size 
corresponds to R e = l  will contribute more to the 
attenuation than others, with the exception of those 
particles that are sufficiently large to satisfy ka > 1, for 
which aota s. 

To determine the particle size distribution of a sus- 
pension, it is useful to understand how different size 
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groups contribute to the attenuation as a function of 
the solid content in each group. Fig. 7(a) shows a map 
of equal spatial attenuation contours at f =  1000 Hz as 
a function of both size and concentration. The same 
data are also shown in Fig. 7(b) as an attenuation 
surface. It is clear from these plots that there is an 
infinity of (v, a) ordered pairs associated with each 
value of attenuation at a given frequency, unless it 
happens to correspond to the maximum of the shown 
surface. Therefore any reasonable attempt at sizing 
that is based on attenuation measurements must rely 
on a spectroscopic approach in which the medium is 
interrogated with numerous frequencies. 

6. Conclusions 

The greatest modeling challenges previously arose 
in the transitional regimes in which sound propagation 
characteristics could not be modeled well. The present 
theory can smoothly capture the viscous to inertial 
transition in the frequency domain and it has been 
shown to agree well with data due to Urick [26] and 
Hampton [30] which straddle the viscous and inertial 
regimes. Similarly, the present model is not limited to 
infinitesimal solid fractions, and can readily describe 
suspensions up to maximum packing concentrations. 

The behavior of sound speed and attenuation in the 
long wavelength regimes can be summarized in the 
following terms: 

Sound speed depends on material bulk stiffness, 
density and v, and, in the asymptotic regimes, is in- 
dependent of frequency, fluid viscosity and particle size. 
In the viscous regime, sound speed assumes a minimum 
with respect to v, while it rises continually in the inertial 
regime. Unlike the sound speed, the attenuation strongly 
depends on frequency, fluid viscosity and particle size. 
In the viscous regime attenuation assumes the form: 

a2to2p l / _\  1/2 

l ima= I p) g(v, Ps/l~) 
~ 0  

where g is a known function. In the inertial regime 
the corresponding form is: 

lim a =  h(v, Os/~) 

where h is also known. 
While the present theory provides the scaling laws, 

an empirical calibration that covers the three regimes 
is necessary to arrive at relationships that can be used 
for size characterization. 

The present overview clearly indicates that speed 
and attenuation each contain complementary infor- 

tuition. Measurements that can make use of both are 
likely to be more robust. 
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