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Ultrasonic Separation of Suspended Particles - Part I: Fundamentals

Martin Gréschl
Institut fiir Allgemeine Physik, Technische Universitit Wien, A-1040 Wien, Austria

Summary

Separation of suspended particles by means of acoustic forces is a promising alternative to conventional technologies.
This paper concerns some of the latest developments of separation devices based on piezoelectric resonators. The
acoustic forces on particles suspended in a liquid are reviewed. A mathematical model for the description of layered
piezoelectric resonators is extended and applied to the calculation of the electrical properties and the acoustic field
quantities of the resonator. A resonator for particle separation is analyzed and the optimum operating frequency range
with respect to resonator efficiency (performance number) is determined. It is found that efficiency depends strongly
on the frequency and the properties of the suspension. Results are in good agreement with experimental data and with

a different approach based on perturbation theory.

PACS no. 43.35.Z¢, 43.35.Bf

1. Introduction

Conventional processes for removing small suspended par-
ticles from a liquid are filtration, sedimentation, flocculation
and centrifugation. The potential of separation techniques
utilizing acoustic radiation pressure on suspended particles
is known but has been relatively less developed. Neverthe-
less, there is a considerable body of literature on this topic
and comprehensive review works have recently been pub-
lished [1, 2, 3]. More recently, acoustic filters based on high-
efficiency piezoelectric resonators have been developed pri-
marily intended for mammalian cell separations in biotech-
nology applications [4, 5]. The main advantages of this novel
type of acoustic separator are the absence of filter fouling,
no need for moving parts, high separation efficiency and re-
liability. However, manufacturing cost are relatively high at
this early stage and ultrasonic separation technology is still
not used at a large scale. Possible applications in other fields,
such as removing solid particles from liquids or splitting of
emulsions, are currently being investigated.

The scope of this paper is to present the physical fun-
damentals of ultrasonic separation technology for utilizing
piezoelectric resonators, with special emphasis on resonator
analysis and optimization. In section 2, the acoustic forces on
suspended spherical particles in liquids are reviewed. Section
3 is dedicated to the calculation of electrical properties and
acoustic field quantities of the resonator, with the main ob-
jective being to obtain an expression for resonator efficiency
(performance number). In section 4 the results are applied to
the analysis of a resonator for particle separation.

This paper is the first in a series of three. In part II the de-
sign and operation of acoustic separation devices is treated
with emphasis on electric power supply and resonance con-
trol. Part III describes in detail the first acoustic cell retention
device, which has been introduced to the market recently.
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2. Acoustic forces on spherical particles in liquids

2.1. Primary radiation force in an ideal fluid

When a suspension is exposed to a sound field, the sur-
rounding fluid exerts hydrodynamic forces on the suspended
particles. In the linear approximation, these forces are pro-
portional to the acoustic displacement velocity of the fluid
[6] and, on the average, do not lead to a displacement of
the particles. However, time-averaged forces that are related
to the radiation pressure arise as a result of second order
effects. King [7] derived the radiation pressure on a rigid
sphere freely suspended in a non-viscous fluid by integrating
the total sound pressure field (which is the sum of incident
and scattered fields) over the surface of the object. Yosioka
and Kawasima [8] extended the work of King to compress-
ible spheres. Good agreement between theory and experi-
ment was found. They obtained the following expressions
for the mean radiation force in a plane progressive and a
plane standing sound wave, respectively:

<F,,> = 27p®? (ka)° K,p(\, o)
= 47rk4a6<Ep>Kp()\,a), (1)
<Fs(w)> = 47p8%(ka)* K, (), o) sin(2kz)
= drkd® <E3>Ks()\, o)sin(2kz), (2)
where a is the particle radius, k = w / v is the wave number,
and p is the density of the host fluid. ¢ denotes the amplitude
of the velocity potential ® of the incident sound wave, which
is given by:
&, = Bellwi-ke) 3)

(i)s - & {ej(wtfka:) +ej(wt+kz)} . (4)
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It should be noted that in the original work [8] the term & in
equations (1) to (4) has been omitted. The acoustic contrast
factors K, and K take the form:

sqa-07
Ko =3[0 2. ©

<E’p> and (Es> are the time-averaged energy densities of the
progressive and the standing wave, respectively:

<E,,> - —;—pk‘2‘i>2, <E> — pk2$2. (7)

Equations (1) and (2) hold in the limiting case: ka < 1,
koa < 1, A = O(1). That is, the particle radius must be
small compared to the sound wavelength, and the particle and
fluid densities have to be in the same order of magnitude. The
authors [8] also present a general solution for arbitrary ka,
koa, and an expression for the radiation force on bubbles
suspended in a liquid (A < 1). For 0 — o0, the acoustic
contrast factors K, and K, reduce to the corresponding den-
sity factors for rigid spheres derived by King. As can be seen
from equations (1-2), the radiation force in the progressive
wave is of the order of (ka)® and herewith much smaller than
the force in a standing wave, which is proportional to (ka)3.
This fact can be attributed to the different phase relations
between the primary and scattered fields in a progressive and
a standing wave, respectively [9]. While (F},) is constant in
space, (Fy) shows spatial dependence according to the fac-
tor sin{2kx). In a standing wave, particles collect at bands
perpendicular to the direction of sound propagation, either at
the velocity nodes or antinodes of the sound field, depending
on the sign of the acoustic contrast factor. Because of this
effect, which can be exploited in a number of ways, and due
to the larger force amplitude, most practical concepts of par-
ticle separation rely on standing waves or moving “standing”
waves, as will be discussed in part II of this work.

Gor’kov [10] used a different approach, based on princi-
ples of fluid dynamics, to express the radiation force F¢ as
the gradient of a radiation force potential ¢<

<¢G(7')> = -V {§2£:\\‘_|—__1)<E_kin("')>
- (1- 5 (Boat))] (80

(Fé(r)) = -v{4¢(n), (8b)

where r = (z, y, z) denotes the location of the particle and V'
is the particle volume. { Ey;y, (1)) and (Epo¢ (1)) are the time-
averaged kinetic and potential energy densities, respectively,
of the incident sound field at the point where the particle is
located. Equations (8) are valid as long as the conditions

2
ka < 1, a>d= —'u, a > 1, (9)
V pw

hold. Here p is the shear viscosity of the fluid and % is the dis-
placement amplitude of the fluid particles in the sound wave.
Equations (8) allow the radiation force to be calculated for an
arbitrary sound field, except fields similar to a plane progres-
sive wave (i.e. fields with low gradients of kinetic and poten-
tial energy densities). It can easily be verified that in case of a
plane standing wave with (Ey;, (z)) = (E,)sin®(kz) and
(Epot(z)) = (E,) cos®(kz) the expressions (8) and (2) lead
to identical results. Based on the method developed by King,
Nyborg [11] derived an expression for the radiation force (on
rigid spheres) that corresponds to Gor’kov’s (for 0 — 00),
but shows an additional additive term A, which dominates if
the kinetic and potential energy densities of the sound field
are essentially uniform (like in a plane traveling wave). For
a standing wave, A is negligible. Equation (8a) can be used
to calculate the radiation force potential in a resonator for
particle separation, as will be shown in section 3.

Crum [12] investigated the acoustic radiation force in a
standing wave on liquid droplets in theory and experiments.
He showed that the total force can be expressed as the sum
of the force that is obtained if the droplet is treated as a rigid
sphere plus the force contribution due to its compressibility
alone. His results agree with equation (2).

2.2. Secondary forces

So far, only the interaction (scattering) between a single par-
ticle and the incident (primary) sound field has been consid-
ered. When two objects are present in the sound field, the
total incident field on one object includes the primary field
and the scattered field of the other object. An acoustic inter-
action between the two objects results. This interaction effect
was first investigated by Konig [13] who derived, based on
Bernoulli’s hydrodynamic principles, an expression for the
force between two closely spaced spheres in an acoustic
field. Later Bjerknes [14] calculated the attractive and repul-
sive forces between oscillating spheres, without considering
the primary sound field. Thus, the acoustic interaction force
is often called Bjerknes force but sometimes referred to as
Konig force. Many other researchers also investigated the
interaction of particles in a sound field [15, 16, 17]. Most
of the studies, however, have been restricted to cases when
the wavelength is much greater than the radii a and spacing
d of the objects. In a recent work [18], Zheng and Apfel
calculated the interaction force between two fluid spheres in
a plane acoustic wave field without restriction on the par-
ticle spacing. Following in principle the method developed
by Yosioka and Kawasima [8], the authors [18] expressed
the total radiation force as the sum of the force due to the
incident wave (equal to the primary radiation force) and the
force due to the interaction effect. The latter reduces to the
Bjerknes force in the case of kd < 1. In the approxima-
tion ka < 1, kd < 1, the interaction force between two
identical compressible spheres in a plane standing wave was
also calculated by Weiser [19]. Using the general result of
Crum [12] allowing the superposition of rigid-sphere and
compressibility contributions, he obtained for the interaction
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force {F;(z)):
— )2 2p —
<Fi(-’l')> = 47ra6{ (Po = p) Ei(/fj;fs 9 1)vz(z)

w? -8)?
- p(§;2 ﬂ) pQ(I)}, (10)

where d is the center-to-center distance of the spheres, 3y and

(3 are the compressibilities of the particles and the host fluid,
respectively. 8 is the angle between the centerline of the parti-
cles and the propagation direction of the incident sound wave;
v(z) and p(x) are the velocity and pressure, respectively, of
the unperturbed incident field at the position of the particles.
In this approximation, it is assumed that v(z) ~ v(z + d)
and p(x) =~ p(x+d). The first term on the right-hand side of
equation (10) depends on the orientation of the particles with
respect to the incident sound field. If the particles are lined
up in the direction of sound propagation (f = 0), the first
term represents a repulsive force contribution. If the center-
line of the particles is oriented perpendicular to the traveling
direction of the sound wave, the force contribution is attrac-
tive. The second term of equation (10) is independent of the
particle orientation and represents an attractive force. The
first term vanishes at the velocity nodes of the standing wave
and does not act on particles that have been driven to the
velocity nodes by the primary radiation force (like bubbles).
Conversely, the second term vanishes at the pressure nodes
(velocity antinodes) and therefore does not affect particles
such as cells and solid particles, after they have been driven
to the velocity antinodes by the primary radiation force. In
general, the interaction force becomes significant only when
the particles are very close to each other. In a plane standing
wave, the interaction force will cause the particles to form
clusters within the nodal or anti-nodal planes of the sound
field. In special cases, the repulsive term may lead to a fine
structure splitting of the bands, as has been observed for red
blood cells by Weiser [19].

2.3. The effect of viscosity

The influence of fluid viscosity on the acoustic radiation pres-
sure was first investigated by Westervelt [20]. He found that
the radiation force exerted by a plane progressive wave on
a rigid immobile sphere was vastly greater than that given
by King’s theory. The fluid viscosity effect arises due to
losses within the boundary layer of the object and is partic-
ularly significant for small spheres and at low frequencies.
An analysis carried out by Danilov [9] led to similar re-
sults for freely suspended particles in a progressive wave.
Both works were restricted to small particles (ka < 1) and
did not consider acoustic streaming. The most general treat-
ment was presented in recent works by Doinikov {21, 22],
who took the effect of acoustic streaming [23] into account.
By solving the viscous equations of motion (Navier-Stokes
equations) with a second order approximation, he obtained
general solutions for the radiation force in a progressive and
a standing wave, respectively, without restriction on particle
size. Moreover, he distinguished between the influence of

the viscosities p of the host medium and pg of the particle.
Because of the complexity of the general solutions only the
limiting case

ka1l ka<l p<gp’fw, (11)

which is of interest for ultrasonic separation processes, will
be discussed here. The last condition means that the sound
wavelength is large compared to the penetration depth of
the viscous wave (kd < 1) and therefore damping due to
the viscosity of the host liquid is negligible. (Damping is
considered in the derivation of the general solutions by the
introduction of complex wave numbers.) Furthermore, one
has to distinguish between two limiting cases:

a) u < a®pw, o < a’pow:
In this low-viscosity approximation, the radiation force in
a plane progressive wave is [22]:

vis\ _ 21,3 2 ()‘_1)2
(ie) = brpd"k% BT )

2
with (5:“—”, ﬂ:,/ﬂ.
pw Polto

Equation (12) is valid under the conditions A = O(1), i =
O(1) (which is the interesting case here), or A < 1, i < 1.
A comparison to equation (1) under consideration of ka < 1,
shows that the radiation force in the viscous case can be
several orders of magnitude higher than in the non- viscous
case. On the other hand, this effect decreases rapidly with
increasing frequency and particle size.

In a plane standing wave no significant change due to vis-
cosity in this limiting case is found. Thus, the ratio between
the radiation forces in standing and progressive waves, which
is of the order of (ka)~2 in the non-viscous case, decreases
with increasing viscosity. However, a quantitative analysis
shows that in most situations of practical interest the radia-
tion force in a standing wave will remain much larger than
the force in a progressive wave of comparable energy density.
The results in the low-viscosity approximation discussed here
are in good quantitative agreement with calculations carried
out by Hager [24]. The second limiting case considered by
Doinikov is:

(12)

b) 13> a®pw, po > a® pow:

whereby the relations (11) still hold. In this high-viscosity
approximation, the radiation force in a plane standing wave
can be expressed as [22]:

(Fr*(@)) = ampd®(ka)® (13)
) G(p’ Po, YV, Vo, i, Ho, aQ, w) Sln(2k$)

This result is very similar to equation (2), only the former
acoustic contrast factor K is replaced here by a more com-
plex expression (&, whichis a function of the fluid and particle
properties as well as of frequency. For an explicit expression
of G the reader is referred to [22]. The ratio G/ K 5 increases
with increasing viscosity, but drops rapidly with increas-
ing frequency and particle size. At high frequencies (in the
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MHz-range) and for larger particles (¢ > 1pum), G/K,
may become negative, i.e. the direction of the radiation force
changes. (Particles that are driven to the velocity antinodes in
the non-viscous case are then driven to the velocity nodes and
vice versa.) Moreover, under certain conditions the radiation
force can become very small or even vanish. The ratio of the
force amplitude in a standing wave and the force in a plane
progressive wave may also drop below 1 under conditions of
high viscosity. The expression for the latter is given in [22].

Many applications of ultrasonic separation (e.g., removing
suspended particles from water, applications in biotechnol-
ogy) may be well described by the low-viscosity limiting
case (a) but in some situations (e.g., treatment of emulsions)
conditions of high viscosity might have to be considered
according to case (b). One reason for the increase of the
radiation force due to viscosity is the development of acous-
tic streaming that leads to an additional drag force which
contributes significantly to the radiation force, particularly
in a progressive wave in the high- viscous case. Accord-
ing to Danilov [9] the influence of viscosity can be further
explained as a change in the phase and amplitude relations
between the primary and the scattered fields. In a progressive
wave a significant change of the phase leads to an increase
in the radiation force. This effect is particularly great at low
frequencies and for heavy particles. In contrast, in a standing
wave the viscosity causes an increase in the amplitude of the
scattered field affecting the radiation force only to a much
smaller extent. Danilov also showed that the secondary in-
teraction force between particles is influenced by viscosity
in a qualitatively similar way as the primary force.

2.4. Sound attenuation

In principle one has to distinguish between absorption in the
particle and the host medium (host liquid). However, as long
as the dimensions of the particles are small compared to the
acoustic wavelength (ka < 1) and the volume fraction of
particles is small, the sound absorption in the particles can
be neglected. Hasegawa [25] investigated the influence of
absorption of solid elastic spheres on the radiation force and
showed that the effect becomes considerable in case of ka >
1. According to [26] the amplitude absorption coefficient «
of liquids is given by:

2

w , 4
= - . 14
a= oo (' +30) (14)

Hence, absorption can be primarily attributed to viscous ef-
fects. Heat conduction is negligible in most cases. For wa-
ter at room temperature (p = 10°kg/m®, v = 1500 m/s,
i = 1073 kg/ms, p = 2.4 p) the absorption coefficient ac-
cording to equation (14) is 9 - 107 2m™" at a frequency
of 2MHz. Assuming a typical propagation length of the
sound wave in a resonator chamber for particle separation
of £ < 0.1m, the quantity e~%¢ is close to unity. Even for
liquids of higher viscosity, neglecting absorption due to vis-
cosity is justified, provided the sound frequency is not too
high.

On the other hand, measurements of the electrical admit-
tance spectra of piezoelectric resonators used for ultrasonic
particle separation show clearly that in practice absorption
due to other losses is significant. Measured resonance qual-
ity factors are typically in the range below 10%. According to
Auld [27], sound absorption can be described by an acoustic
material quality factor (), which is related to the absorption
coefficient:

_k f 1 15

Q=45  (fr@>1) (15)
From the measured electrical admittance and resonance qual-
ity factors, an effective material quality factor () . of the lig-
uid (suspension) can be determined, as will be discussed in
more detail in section 5. The effective quality factor provides
an easy method to take into account additional losses like
absorption of the sound wave due to gas bubbles in the lig-
uid, divergence of the wave, absorption in the side walls, etc.
The experimentally determined values of (). for water at
2 MHz are typically in the range of 5000 to 10000 (depending
on the resonator set-up), while the quality factor calculated
from equations (14) and (15) is about 47000. The effective
absorption (attenuation) coefficient a5 of the liquid in the
resonator can be regarded as the sum of the absorption coef-
ficient « of the liquid alone and a second term & representing
additional losses:

= Qe =+ a. (16)

A more detailed analysis of viscous damping [27] shows a
second order decrease of the wave number k and, conse-
quently, a slight increase of the sound velocity ¥ compared
to the undamped case. This effect is not considered here.

Due to attenuation, the sound wave in the resonator is
a quasi-standing wave rather than a pure standing wave. A
quasi-standing wave can be regarded as a superposition of
two progressive waves with exponentially decreasing am-
plitudes traveling in opposite directions. Consider a one-
dimensional attenuated plane wave originating at x = 0 and
propagating in a medium 1 in z-direction. At position zz = £
reflection at the boundary to a second medium with higher
acoustic impedance is assumed. The superposition of inci-
dent and reflected waves can be expressed by the complex
displacement function

17,(:1,‘, t) — ,a{efazej(wt—kz) —R. e—a(2[—z)ej(wt+kz)}
= d(z) - eI’ (17a)
with

w(x) = ﬁ{e_‘”e‘j’” -R- e*a(ﬂ‘“)ej’”}, (17b)

where @ denotes the amplitude of the positive-traveling wave
at z = 0 and R is the reflection coefficient (0 < R < 1).
For clarity, the subscript "eff " of the absorption coefficient
a has been omitted. Equation (17) is valid for k¢ = n - 27
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Figure 1. Plot of the normalized displacement amplitude of a quasi-
standing wave according to equation (17), with af = 0.2, k¢ =
207, and R = 0.7.

(n=1,2,3...). Absorption within the medium is described
by the condition a > 0, as discussed before, while the con-
dition R < 1 accounts for absorption in the reflective wall
at x = ¢. In Figure 1 the spatial progress of the (normalized)
displacement amplitude of an attenuated quasi-standing wave
according to equation (17) is shown.

To calculate the radiation force in the quasi-standing wave
by use of equations (8) one has to insert the corresponding
expressions for the gradients of the kinetic and potential
energy densities. With the general expressions

_ _ 1 2
(Brin(@)) = 50 (+*()), (18a)
_ _ 1 9
(Bpor(e)) = 505 (P(@)), (18b)
and the linear equation of motion
_Op(z,t) _ u(z,t)  Ov(z,t)
oz T arr "ot (19)

one obtains with equation (17) and u(z,t) = R{a(z,¢)},
the energy density gradients as:

i A — 3&& —20f o2
e <Ekm(m)> = pk”®d'e sin(2kxz), (20a)

di<Epot(x)> = —pk*®d'e~2*! sin(2kz), (20b)
Xz

where & = aw/k, P = @ Rw/k. Equations (20) are valid
as long as

k 1 @ 1
_ R s ke 2251 @
Q=g >kt a<g, —=>o5. (@1

With equations (8) and (20) the radiation force in the atten-
uated quasi-standing wave turns out to be:

<Fqs(x)> = 47 pdd' (ka)?e~22¢ (22)
1] 85A-2 1 .
'3 [-—.—_(2/\ i W] sin(2kzx).

Equation (22) indicates that the amplitude of the radia-
tion force in a quasi-standing wave in cases of low damp-
ing remains constant in space but is reduced by the fac-
tor (&' /®)e 2, compared with equation (2) for the ideal
standing wave. Hasegawa [28] calculated the primary radi-
ation force (Fys(z)) for an undamped guasi-standing plane
wave in an ideal fluid. Considering a velocity potential of the
form

B,y = Peilwt=ke) 4 lellwtthe) (23)

with & < $, and using the same approach as for derivation
of equations (1) and (2) he obtained:/

<Fqs(w)> - |1- (%) <F,,> + %<Fs(g;)>, (24)

whereby (F},) and (F,(z)) are given by equations (1) and
(2), respectively. Since in most practical cases {F,) is several
orders of magnitude smaller than the amplitude of (F}(z)),
the radiation force in the quasi-standing wave is dominated
by the contribution of the standing wave, even in case of
low standing wave ratio (' < ), and may therefore be
approximated by:

<Fqs(x)> ~ 47pdd' (ka)® K, (), 0)sin(2kz).  (25)

Taking attenuation into account by substituting space-
dependent amplitudes

d o de P o dlem-) (26)
into equation (25), leads to the same result as given by equa-
tion (22). This procedure is justified since the amplitudes
can be regarded to be constant for integration over the par-
ticle surface. It should be noted, that the velocity potential
according to equation (23) modified by equation (26) rep-
resents correctly the displacement function (17) only if the
condition @ € k is satisfied. Neglecting the contribution
of the progressive part of the quasi-standing wave by use of
equation (22) or (25), does not lead to significant errors in
cases of sufficiently high standing wave ratio and low damp-
ing.

2.5. Consideration of real field geometry

Only plane waves have been considered in the above discus-
sion of acoustic forces. In a real resonator the sound field will
have amplitude variations not only in the direction of wave
propagation but also in lateral directions. This can be caused
by non-uniform amplitude distribution of the source, diver-
gence of the wave, influence of the boundaries, etc. In acous-
tic fields with lateral energy gradients additional forces on
suspended particles arise, as can be seen from equations (8).
Let us consider a standing wave propagating in z-direction,
having a lateral amplitude distribution function u,(y):

u(x,y,t) = us(y) sin(kx) sin(wt). (27)
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According to equations (8), this leads to a lateral force acting
in the positive y-direction, given by:

(R = Zpwrabunp 2 (29)
3A-1) ., 1Y\
. [m sin®(kzx) — (1 - F) cos (ka:)] .

Assuming a constant amplitude gradient in the vicinity of
a small spherical particle with radius a, the function u(y)
may be written as:

N u
usly) = o + 2, (29)

where g denotes the displacement amplitude of the sound
wave at the center of the particle (which is assumed to be
at position y = 0) and %o + Uy, is the amplitude at the
surface of the particle at y = a. For dense particles (A > 1),
the lateral force at the velocity antinodes, i.e. at positions
kz=02n+ 1)m/2 (n = 0,1,2...), can be approximated
by:

<Fy> = mputaigin. (30)

Equation (30) corresponds to a result presented by Benes
[29], obtained by a different approach. The lateral force is
sometimes referred to as Bernoulli force. Particles, which
form bands at the velocity antinodes of the sound field due
to the primary radiation force {Fy), are further driven to re-
gions of relative amplitude maxima within these bands due
to the lateral force (Fy ). Hence, the particles form "striated”
columns in the direction of sound propagation. Most types
of suspended particles will be driven to regions of amplitude
maxima (e.g., to the center of a cylindrical wave guide with a
Gaussian-shaped amplitude distribution). But in certain situ-
ations (e.g., particles that are less dense and less compressible
than the host liquid) the lateral forces will drive the particles
towards locations of amplitude minima (e.g., to the walls
of a wave guide). This effect has been studied in detail by
Whitworth [30]. For particle separation, the preferred lateral
amplitude distribution may be uniform, Gaussian-shaped, or
periodically varying, depending on whether lateral forces
are utilized in the separation process, or not. Various types of
separation systems will be discussed in part II of this work.

3. One-dimensional mathematical model for layered
piezoelectric resonators

In this section, a resonator for the generation of a standing
ultrasonic field in a liquid suspension is investigated. Such a
resonator typically consists of 4 layers, a piezoceramic trans-
ducer, a glass carrier isolating the piezoceramic from the lig-
uid, the suspension, and a reflector (Figure 2). Mathematical
models for the description of piezoelectric structures have
been based on electro-acoustic equivalent circuits [31, 32],
a transmission line model [33, 34], or a transfer matrix ap-
proach [35, 36, 37]. The analysis in this work follows the

n=1 2 3 4
Surface 1 | F ‘c ‘L ‘r Surface 2
[ \ T
P
B S
N N
N N .
- N
¢ 1
| -
Xg X X X' X3 X4 = Xpay X

Figure 2. Piezoelectric resonator comprising one active (piezoce-
ramic) and three passive layers; sound propagates in z-direction. P:
piezoceramic, E: electrodes, C': carrier (glass), L: liquid (suspen-
sion), R: reflector (glass).

u(0) u(?)

T(0) T(%)

9(0) o(f)

D(0) D(%)
0 ¢ x

Figure 3. Piezoelectric layer of thickness £; boundary values of u,
T, ¢,and D, atz = £, are calculated from the corresponding values
atx = 0.

one-dimensional transfer matrix model of Nowotny [38]. All
considered quantities are assumed to show space-dependence
in only one direction, that is the direction of sound propa-
gation (thickness direction of the layers). Furthermore, the
displacement of the sound wave is restricted to this direction.
This treatment is justified, because the considered piezoce-
ramic disc transducers allow electrical excitation in only the
thickness direction.

3.1. Calculation of electrical admittance

In the linear theory of piezoelectricity, for the quasi-static
electric approximation, the coupled electromagnetic and
acoustic fields in a lossless piezoelectric medium can be de-
scribed by displacement u, stress T', electric potential ¢, and
dielectric displacement D. These field quantities are related
by the fundamental equations [27]:

_du dy
T = C% +6E7 (31)
du dy
D =e— —g-*
e 5d$, (32)

where ¢, €, €, are the elastic stiffness constant, piezoelectric
constant, and dielectric constant, respectively, of the medium.
As a consequence of the restriction to a single displacement
direction, all material constants, which are tensor quantities
in the general case, are reduced to the scalar quantities that
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apply to the direction of sound propagation. For a single
homogeneous piezoelectric layer of thickness £ (Figure 3),
in case of harmonic time-dependence, the boundary values
u(€), T(€), o(£), D(£), can be calculated from the corre-
sponding values at z = 0 using a matrix notation:

U u

T - M T ’

¥ 4

D rz=£ D =0

with
M MuT Muv MuD
MTu MTT MTcp MTD
M = Mev  MeT  pMee  MeD (33)

MDu MDT MDcp MDD

The elements of the transfer matrix M depend only on the
material constants p, c, e, €, the layer thickness ¢, and the
angular frequency w. The explicit expressions for the matrix
elements M* were given by Nowotny [38]. For multiple
layers, the total transfer matrix M ;,; of the layered structure
can be obtained by multiplication of the transfer matrices of
each single layer. This follows from the continuity condition
that applies to u, T, and ¢ at the interfacing surfaces. The
dielectric displacement D shows continuity only if there is
no electrode between the considered layers. Each electrode
is treated as a separate layer and represented by a transfer
matrix M g. For the structure shown in Figure 2, the total
transfer matrix is given by:

My =Mg-Mp-Mg-Mc-M; Mp. (34)

M g relates the dielectric displacement D with the electric
current [ in the electrode and is a function of the electrical
admittance Y between the two electrodes and of the electrode
area A. Since in the structure of Figure 2 there is no electric
field in the non-piezoelectric layers C, L, and R, the transfer
matrices M ¢, M [,, M g, depend only on p, ¢, and £ of the
corresponding layers, and on w.

On the outer free surfaces 1 and 2 of the total sandwich
arrangement, stress and dielectric displacement are zero:
0 (35)

Tmazx

T=0, D=0, for:c:{

The relation between the boundary values on these surfaces
can therefore be written in the form:

Ug Uy
0 0

-M : 36
2 tot 01 ( )
0 T=Zmaz 0 T=T0

where values at surface 1 have been indicated with subscript
"1" and values at surface 2 with subscript "2". With the
general form of M given in equation (33) it follows from
(36) that

0= MTuy + MTep,, (37)
0 = MPuy, + MP¥y,. (38)

From equation (37) one obtains a relation between the dis-
placement and the electric potential on the outer surface 1
(outer electrode) of the layered structure:

uy = — (M) MTeg,. (39)

Furthermore, an expression for the electrical admittance Y
of the resonator as a function of the angular frequency w can
be derived from equations (37) and (38). This result, which is
explicitely given in [38], and equations (33) and (39) are the
basis for further resonator analysis in sections 3.3 and 3.4.

As discussed in section 2.5, a real acoustic transducer
has a non-uniform lateral amplitude distribution. This fact
can be taken into account globally in the one-dimensional
model either by use of an equivalent area (smaller than the
cross-sectional area A of the resonator) [39], or by a re-
duced (effective) coupling factor of the piezoelectric disc.
The first approach is especially suitable for Gaussian-type
transducers. The electromechanical coupling factor is de-
fined as the square root of the ratio of available mechanical
(acoustic) energy and supplied electric energy. For an ideal
(one-dimensional) thickness vibration, the electromechani-
cal coupling factor k is given by

(40)

with the piezoelectrically stiffened elastic constant ¢ =
c+é? /€ [40], elastic stiffness constant ¢, piezoelectric con-
stant e, and dielectric constant &, effective in direction of
sound propagation. A reduced coupling factor of the piezo-
electric disc accounts for energy loss due to parasitic oscil-
lations (e.g., radial modes) that can occur in a transducer
with finite lateral dimensions. As will be shown in section 4,
good agreement between measured and calculated electrical
admittance spectra is achieved by use of the one-dimensional
description presented here. The mathematical model is also
applicable to layered structures with an arbitrary number of
electrodes [41].

3.2. Consideration of losses

The discussion in the previous section did not consider losses.
However, losses can be accounted for in an elegant way, as
will be shown in this section. In the absence of an electric
field equation (31) corresponds to Hooke’s law, which relates
stress T and strain S

T =cS. (41)

Following Auld [27], equation (41) can be modified to in-
clude viscoelastic damping by adding a term that contains
the time derivative of the strain:

T:cS+u%—f. (42)

For a harmonic time dependence edwt of the acoustic field,
equation (42) can be written in complex notation as

T = ¢S + jwpS = &8, (43)
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where the complex elastic stiffness constant
¢=c+jwp (44)

has been introduced. As already discussed in section 2.4,
damping by a medium can be characterized by the acoustic
material quality factor @) defined as:

Q=—. (45)

The definition (45) is compatible with equation (15), as
shown in [27]. For a liquid, g has to be replaced by the
total viscosity coefficient: u — p + p'. With (45), equation
(44) takes the form:

é:c<1+j%). (46)

According to the relation between sound velocity and the
stiffness constant, v = 1/&/p, complex notation leads 1o a
complex sound velocity, which for ¢ >> 1 is given by:

ﬂ:u(l%—j%). (47)

Damping due to dielectric losses can be accounted for by
adding an imaginary part to the dielectric constant [42, 43]:

F=e+ L (48)

where v is the electric conductivity. For a large plate of
constant thickness, -y can be expressed as v = we tand.
Hence, equation (48) becomes:

E=¢(l—jtand). (49)

The dielectric loss angle 9 is usually specified by the manu-
facturer of piezoelectric transducers. A third loss mechanism,
piezoelectric loss, can be neglected in most practical cases
and is not considered here.

The concept of complex material constants allows all cal-
culations to be carried out in exactly the same way as for
the lossless case, except that complex notation must be used.
Thus, damping can be considered in a straight-forward way.
As already discussed earlier, additional losses (besides vis-
coelastic damping) can be represented by use of effective
quality factors instead of the values given by equations (14)
and (15) or (45). In principle, the imaginary parts of the
material constants are frequency-dependent. However, if the
frequency range considered is limited, they can to close ap-
proximation be treated as constants. While the frequency-
dependence of the viscoelastic damping mechanism is well
defined, it is hard to predict for other losses. Thus, the de-
pendence on frequency of the effective quality factor would
need to be determined experimentally.

3.3. Calculation of acoustic field quantities within the
layers

According to the method outlined in the previous section,
complex material constants will be used in the following
calculations to account for losses. As a consequence, the el-
ements of the transfer matrices and the acoustic and electric
field quantities introduced in section 3.1 become complex,
too. Given the values of @, T, GR D, at one boundary surface
(z = 0) of a layer, the corresponding values at the opposite
boundary surface (x = £) can be calculated from equation
(33). Furthermore, the matrix method allows calculation of
the spatial dependence of the considered quantities within
the layer. This calculation is performed for a selected fre-
quency w. In the first step, the electrical admittance f/(w) of
the multilayer arrangement is computed. (This is needed for
calculation of the transfer matrices M g of the electrodes.)
Subsequently, the acoustic field quantities are calculated at
positions x = z' (with ' running from zg 0 Zyae) by
stepwise evaluation of the transfer matrix M, of the cor-
responding layer, whereby the layer thickness ¢ is replaced
by the variable thickness ¢ = x' — x,,_1 of the sub-layer
(Figure 2):

=M, (' —z,_1) (50)

e M
TG N

z=x' T=Tn-1

Since the (thin) electrode layers can be treated as massless,
they do not influence the progress of displacement @ and
stress T'. The transfer matrices of the piezoelectric layer and
the electrodes can be combined to a total transfer matrix M ;
of the active layer: M1 = M g M p M g. The initial values
at free surface 1 (x = x¢) are:
ala Tl :07 §R{¢l} = U)
D, =0, (51)

where U denotes the amplitude of the driving voltage (2
is chosen to be zero). The initial displacement i, is calcu-
lated from the complex equivalent of equation (39). With
this procedure, one obtains (with chosen resolution) the dis-
crete spatial distributions of @(z), T(x), ¢(x), and D(z).
From these primary quantities, other interesting quantities
can be easily derived. The displacement velocity in complex
notation is calculated from

(x) = jw(x). (52)

According to Poynting’s theorem for piezoelectric media, in
the one-dimensional case the Poynting vector in complex
notation is given by:

fi(z) = % [~ @) T(@) + $(@) (jwD@) ] (53)

The asterisk denotes complex conjugation. Equation (53) can
be derived directly from Maxwell’s equations [27]. The real
part of (53) represents true energy flow density (in W/m?) and
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is therefore a time-averaged quantity. The imaginary part is
peak reactive energy flow density. (The time-average of reac-
tive energy flow is zero.) Positive sign of the Poynting vector
means energy flow in positive z-direction. Furthermore, the
mean total stored energy density (J/m®) can be calculated
from:

(B@) = %lp@(mw(x) (54)

+R {T(z) 5*(z) — j—fb*(x)} ] :

where d¢»/dz can be obtained from equations (31) and (32).
The first term on the right-hand side of equation (54) is the
kinetic energy density. In a piezoelectric material, the sec-
ond and third terms are neither purely mechanical nor purely
electrical, since they represent the piezoelectric coupling de-
scribed by equations (31) and (32).

Following from Poynting’s theorem, the averaged power
loss density (W/m®) can be derived as [27]:

(P (@) = 509 {T(w) §*(2) - (—ifb*(:v)} . (55)

2 dx
If there is no electric field in the passive (non-piezoelectric)
layers, as in the structure considered here, equations (50) and
(53) to (55) can be simplified (for the passive layers), since
p =0, D = 0. Equation (53) then represents pure mechan-
ical energy flow density. The remaining terms of equation
(54) represent mean kinetic and potential energy density, re-
spectively:

<E(£U)> = <Ekm(l’)> + <Epot($)>
_ i [pi(2) (@) + R{T(2) @) }] . (56)

Using equation (56) the acoustic radiation force potential in
the liquid layer of the piezoelectric resonator can be calcu-
lated from equation (8a).

3.4. Calculation of resonator performance numbers

Knowledge of the distribution of stored energy and power
loss among the layers is essential for the development of
practical resonators. This distribution depends strongly on the
frequency as well as on the resonator construction (material
properties, thickness of the layers) and on the properties of the
suspension. To determine the optimum driving frequency for
a given layered resonator, the acoustic performance number
Nac is defined here as:

(B) o)

flac = <E£ofs> - g . Petlrue H
(o)

where (E;) is the stored energy in the liquid layer and
(El89) is the total energy loss in the resonator averaged

over one oscillation period. Since the entire energy is sup-
plied by an electric driving source, {E{%$*) must be equal to
the electric true energy consumption per period, which in turn
is given by the true electrical input power PY*¢ divided by
the oscillation frequency. Further, the effective performance
number 7.4 of the resonator is defined here as:

M = 5 - <;IL—> (58)

™
with PP being the apparent electrical input power sup-
plied by the source. The stored energy in the liquid can be
calculated from the energy density given by equation (56) as:

<EL> -4 ] 3<E(w)> de, (59)

where 2, x3 define the boundaries of the liquid layer as
shown in Figure 2 and A is the active cross-sectional area
of the resonator (electrode area of the piezoceramic). For
computation purposes the integration is approximated by a
summation. PY“¢ and P3P are given by

pree = %U‘zé}e {Y} (60)
and
Y

1.
Py =02 |7, (61)

respectively, where U is the amplitude of the driving voltage
and Y is the admittance of the resonator. It should be noted
that the resonator performance numbers according to equa-
tions (57) and (58) are dimensionless quantities, but are not
normalized to 1, in contrast to common efficiency definitions.
They are functions of the ratio of the averaged stored energy
in the liquid layer and the electrical energy supplied per os-
cillation period. Since both the numerator and denominator
in (57) and (58) are proportional to the square of the voltage
amplitude, the performance numbers are independent of the
driving voltage. The electrical input power must be equal
to the total power flow through the resonator boundary sur-
face at = x¢ (outer surface of the piezoceramic) and can
therefore also be obtained from the Poynting vector:

P = 4w {fi(z0)}, (62)

Py = Alfi(zo)|. (63)
This follows from the fact that there is no mechanical power
supplied by any sources and from the chosen potentials
R{p1} = U, @ = 0. An additional quantity of practi-
cal interest is the total power loss in each layer that can be
calculated from the power loss density given by equation (55)
as:

T=Tn

<P5°SS>:A / <Pl"ss(m)>daﬁ, (64)

T=Tn-1
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where the subscript n denotes the considered layer. The total
power loss within a certain layer must be equal to the dif-
ference of true energy flow at the boundary surfaces of that
layer. Hence, the total power loss within a layer can also be
calculated directly from the values of the Poynting vector at
the layer boundaries:

Q#“>:A{%51@Pg}—m{ﬁ@m}] (65)

This approach requires much less computational effort than
equation (64), since evaluation has to be carried out only for
two z-values. In case of low losses (@, >> 1), the quality
factor (), of layer n establishes the relationship between
stored energy and power loss within that layer:

() )

By combining equations (65) and (66), an expression for the
total stored energy in the liquid layer is obtained directly:

(5) -2

- M{ﬁmg}—m{ﬂ@gﬂ.mn
It was shown by Burger [44] that the acoustic performance
number 7, of a typical resonator for ultrasonic particle sep-
aration has essentially the same frequency-dependence as the
resonance sharpness (resonance quality factor) of the series
resonance frequencies. The acoustic performance number is
a measure of the relationship between energy density in the
liquid (which is pertinent to particle separation) and the total
electric input power consumption of the resonator. In gen-
eral, however, the resonator does not represent a pure ohmic
load (even when driven at one of its resonance frequencies).
Thus, reactive power has to be provided by the source. In
order to minimize the reactive power requirement, one has
to choose the driving frequency with respect to maximum
effective resonator performance number 7).z . The latter con-
dition restricts the practical operating frequency range to a
relatively narrow band, as will be shown in the next section.

4, Results and discussion

The method outlined in the previous section was applied to
the analysis of a resonator chamber developed for separa-
tion of biological cells from the nutrient fluid (which has
acoustic properties similar to water). Operation and perfor-
mance of this device, which acts as an acoustic filter, will
be described in detail in part III of this work. Herein, the
discussion is focused on the electric and acoustic properties
of a piezoelectric resonator with four layers, shown schemat-
ically in Figure 2. The dimensions, material constants, and
parameters needed for calculation are listed in Table I in the
appendix. Figure 4 shows the measured (a) and calculated
(b) spectra of electrical admittance in the range from 1.8 to
2.8 MHz. For measurement, the resonator chamber was filled
with degassed water. The measurement set-up is described in

1 - - !
o) a
=
E
@
=3
=
8 ol
=2
]
©
L3
L3
=3
°]
=2
g 0014 e W e LR
» !
2
2
<
1]
=
<
0.001 [ i R Ci —- P .
1.8 2 22 24 2.6 2.8
Frequency [MHz]
1 _
5 b
]
E
@
<
=
R R N7l VR
g
©
= |
Comi
]
=
® 001
-
e
2
=3
2
o
<
0.001 A——- -+ - . B :
1.8 2 22 24 26 2.8
Frequency [MHz}

Figure 4. Spectrum of electrical admittance of the 4-layer piezoelec-
tric resonator according to Figure 2. (a) measured, (b) calculated.

[45]. The large number of overtone resonances arises from
the fact that the sound wavelength in the liquid layer is much
smaller than the layer thickness. The envelope curve shows
two maxima at frequencies of about 2 MHz and 2.6 MHz,
respectively. These frequencies are the eigenfrequencies (se-
ries resonances) of the piezoceramic/glass composite. The
lower eigenfrequency of the composite coincides with the
fundamental series resonance frequency of the piezoceramic
alone. This follows from the chosen layer dimensions but is
not a prerequisite for efficient resonator design, as will be
discussed in part II of this work. The comparison of mea-
sured and calculated admittance data shows excellent agree-
ment. The discrepancy between the measured and calculated
curves in the lower parts of Figures 4a and 4b, respectively,
is due to a reduced accuracy of the measurement system in
the low admittance (high impedance) range. This is caused
by two facts: (1) The test object (resonator) is inserted into
a low-ohmic resistance bridge, which provides best accu-
racy in the vicinity of the series resonance frequencies (high
admittance), but less accuracy in the range of the parallel
resonances (low admittance). (2) To reduce measurement
time, the frequency sweep procedure is also optimized for
best resolution at the series resonances, whereas the parallel
resonances are skipped.

The calculated acoustic and effective resonator perfor-
mance numbers are plotted as functions of frequency in
Figures 5 and 6. Apart from the strong, more or less pe-
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Figure 5. Calculated spectra of acoustic and effective performance
numbers of the resonator according to Figure 2. For comparison,
values obtained from perturbation theory [46] are also shown. (a) in
the frequency range 1.9 to 2.1 MHz containing the third harmonic
of the ceramic/glass-composite (approx. 2 MHz), (b) in the range
between transducer-eigenfrequencies. The effective quality factor of
the liquid layer was set to 6000.

riodic, variation due to the large number of overtone reso-
nances, it is remarkable that the performance number reaches
a maximum in the range between the eigenfrequencies of the
transducer, while it drops down in the range close to the
eigenfrequencies. The full and dashed lines show the results
obtained from calculations using equations (57) and (58),
respectively. For comparison, values obtained by a different
treatment based on perturbation theory [46] are also plotted.
Within that model the performance numbers can be calcu-
lated only at the series resonances. Hence, the black and
white dots in Figures 5 and 6 also mark the series resonance
frequencies. In Figure 5 the acoustic material quality factor
of the liquid @0, was set to 6000, corresponding to the mea-
sured effective quality factor of degassed water. In this case,
the high-performance range is rather broad and covers a num-
ber of resonances. During practical operation of the cell filter,
a decrease of the quality factor with increasing cell concen-
tration in the suspension is experienced. Figure 6 shows the
corresponding results for @7, = 1000, which corresponds to
a typical effective acoustic quality factor of a high-density
cell suspension. Besides the performance number decrease
due to the higher losses in the liquid, a significant narrowing
of the optimal frequency range is seen (compare Figures 5b

Figure 6. As Figure 5, with an effective quality factor of the liquid
layer of 1000.

and 6b). This effect has been observed in separation processes
of high-density cell cultures [47]. The reduction of the effec-
tive performance number is mainly caused by a decrease of
the electric power factor (i.e. an increase of the phase shift
between voltage and current). Another interesting fact is that
the frequencies of relative performance number maxima co-
incide well with the series resonance frequencies in the range
between the eigenfrequencies of the transducer, while this is
not the case in the region close to the eigenfrequencies. In
case of varying properties of the suspension during the sepa-
ration process (increasing particle concentration, decreasing
quality factor (J1), one has to choose the driving frequency
according to a compromise between optimum performance
at high- and low-(@) conditions. Based on this consideration,
the resonance frequency of 2.16 MHz can be regarded as
an optimal operating frequency for the resonator discussed
here. It should be noted that for a homogeneous resonator
the acoustic performance number 7, is independent of fre-
quency. The strong variation with frequency, as shown here,
is a consequence of the frequency-dependent energy distri-
bution among the layers of the multilayered structure. In
contrast, 77,5 depends on frequency even for a single-layer
resonator, since it is influenced by the electric phase angle
(power factor).

In Figure 7 the spatial distribution of displacement veloc-
ity, energy flow, energy density and power loss density in the
resonator, calculated for the optimal frequency of 2.16 MHz,
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Figure 7. Spatial distribution of displacement velocity amplitude,
true energy flow, energy density and power loss density within the
layers of the resonator according to Figure 2; calculated for the series
resonance frequency of 2.16 MHz. The apparent electric input power
was supposed to be 60 VA, the effective quality factor of the liquid
was set to 1000.

is plotted. The displacement velocity amplitude obtained by
taking the absolute value of the velocity according to equa-
tion (52) shows the characteristics of a quasi-standing wave

Figure 8. As Figure 7, calculation was carried out for the resonance
frequency of 1.99 MHz.

(compare to Figure 1). The total true energy flow is calculated
from the real part of equation (53), multiplied by the cross-
sectional area A of the resonator. The (one-dimensional)
density of stored energy is given by equation (54) after mul-
tiplication with the area A. The (one-dimensional) power loss
density is obtained from equation (55) by multiplication with
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A. Anelectric input power of 60 VA (apparent power), which
is a typical value for the considered resonator, was assumed
for these calculations. The quality factor of the liquid was set
to Q7 = 1000. A significant rise of velocity amplitude, as
well as of energy density, in the liquid layer, compared to the
transducer, is found. This corresponds to the maximum per-
formance number (maximum resonator efficiency) occurring
at the frequency considered. In contrast, Figure 8 shows the
situation at a series resonance frequency of 1.99 MHz, which
is close to the eigenfrequency of the transducer. In this case,
the velocity amplitudes are nearly equal in all layers. The
energy density is lowest in the liquid and the power loss den-
sities are extremely high in the piezoceramic and the carrier.
With equal electric power supplied, the energy density in
the liquid is about twice as high in the first case (Figure 7),
although the utilized true power is about 8% less due to a
higher reactive power component.

The increased displacement velocity amplitude in the lig-
uid compared to the transducer, when the resonator is oper-
ated between the eigenfrequencies of the transducer, can be
explained as follows: The displacement (or velocity) ampli-
tude in the liquid layer depends not only on the displacement
at the boundary surface between transducer and liquid, but
also on the stress amplitude at this surface, as is evident
from equation (33). At the eigenfrequencies of the trans-
ducer, the stress amplitude at that boundary surface vanishes
(i.e. the boundary condition T" = 0, which generally applies
to the free surfaces of the layered resonator, is transferred to
the inner boundary surface). At other frequencies, both dis-
placement and stress at the inner boundary layer can reach
significant values. Provided the resonance sharpness of the
eigenfrequencies of the transducer is low (which is generally
the case for the considered transducers), overtone resonances
of the layered structure are excitable between these eigenfre-
quencies and the displacement velocity as well as the energy
density in the liquid are higher at those resonances. The
absolute values of resonance frequencies with high or low
efficiency (performance numbers) are of course dependent
on the resonator structure. In particular, different thicknesses
of the glass carrier lead to different eigenfrequencies. How-
ever, the qualitative behaviour of the resonator remains un-
changed, i.e. resonances with highest efficiency again occur
in the range between the eigenfrequencies.

To estimate the allowable input power, knowledge of the
power loss distribution in the resonator is essential. The cal-
culated loss distribution among the four layers is shown in
Figures 9a and 9b. In the frequency range between the eigen-
frequencies of the transducer (Figure 9b), the series reso-
nance frequencies coincide with maximum power loss (due
to maximum velocity amplitude) in the liquid and minimum
power loss in the piezoceramic and the carrier. Close to the
eigenfrequencies of the transducer, in general, the series res-
onances do not correspond to minima or maxima of power
loss and stored energy in any layer (Figure 9a). The high
losses in the glass reflector around 2 MHz are due to an
eigenresonance of the reflector plate in that frequency range.

Finally, to verify the validity of the applied model, the fol-
lowing experiment was carried out: The resonator was filled

Vol. 84 (1998)
100 —- e
- piezoceramic
— — - glass carrier
water
----- glass reflector
—
®
—
»n
@
= a
i
o
-3
=3
=3
o
=
=
=)
]
&~
Frequency [MHz]
piezoceramic
— — - glass carrier
water
<= - - glass reflector

Relative power loss [%]

2.1 2.15 2.2 2.25 23
Frequency [MHz]

Figure 9. Calculated power loss distribution among the layers of the
resonator according to Figure 2. (a) within the range of an eigen-
frequency of the transducer, (b) in the range between transducer-
eigenfrequencies. The series resonance frequencies of 1.99 MHz and
2.16 MHz, respectively, are marked on the frequency-axis. The ef-
fective quality factor of the liquid was set to 1000.

with a low-concentrated suspension of corundum powder
in water (¢ = 2.5um, A = 3.7, 0 = 2.45) and driven
at a resonance frequency of 2.205MHz. The set-up was
arranged with the direction of sound propagation oriented
vertically. Due to the acoustic radiation force, the particles
formed planes perpendicular to the sound propagation di-
rection. After steady-state conditions were established, the
driving voltage of the transducer was slowly reduced until
particle sedimentation due to gravity was observed. The on-
set of this effect was found at a voltage amplitude of 18 V.
The gravitational force minus the buoyancy force acting on
the particles is F' = g(po — p)V = 1.7 - 1072N. For
a driving voltage amplitude of 1V and a measured effec-
tive quality factor of the suspension of 2500, one obtains
from equation (56) an energy density in the liquid layer of
(E) = 8-1073 J/m3. With this value and the acoustic con-
trast factor of K = (.64, the amplitude of the radiation force
calculated from equation (2) is (Fs) = 9.10"!5N. This
yields a minimum voltage amplitude for retaining the parti-
cles against gravity of approximately 14 V. This calculated
result is in good agreement with the experimental threshold
value of 18V, since settling of the particles begins rather
smoothly than at a well-defined voltage level. Nevertheless,
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the discrepancy can be attributed to an over-estimation of the
energy density in the liquid. This is mainly due to the non-
ideal behaviour of the resonator (striated columns of particles
were observed rather than uniform planes) and because the
electronic frequency control may not have maintained the
resonance condition precisely at such low power levels.

5. Conclusion

A mathematical description of layered piezoelectric res-
onators has been presented, with special emphasis on res-
onators for ultrasonic separation of suspensions or emul-
sions. The model is a powerful tool for the proper design of
separation chambers, the determination of optimum operat-
ing frequency ranges, and the calculation of energy input to
the suspension. With knowledge of the energy density, the
acoustic radiation force acting on suspended particles could
be calculated. Given a suspension with known properties, the
total power input to the resonator required for a certain mean
energy density in the suspension can be estimated.

The one-dimensional model allows relatively simple com-
putations and shows very good agreement with experiments.
The reason for the validity of the one-dimensional treatment
in describing the non-ideal layered resonator is, that all ef-
fects not contributing to the generation of one-dimensional
standing waves can be considered as losses and described in
a global way by effective acoustic quality factors ()4 for
each layer. These factors can be determined by fitting cal-
culated to measured spectra of electrical admittance. Q.
of the piezoceramic is obtained from the measured reso-
nance quality factor (resonance sharpness) of the eigenmode
considered. The quality factors of the carrier and reflector
materials can be taken from literature, whereby the damping
effect of the glueing layer between piezoceramic and carrier
can be accounted for by a reduced ). of the carrier. This
can be proven experimentally by measuring the resonance
sharpness of the composite transducer. Finally, the effective
quality factor of the liquid has to be determined from the
admittance spectrum of the whole resonator. Thereby, the
sharpness of resonances in the range between the eigenfre-
quencies of the transducer gives a good measure for Q) . of
the liquid. This is a consequence of the fact, that the electrical
properties of the layered resonator are strongly influenced by
the properties of the liquid in this frequency range, whereas
close to the eigenfrequencies of the transducer, the influence
of the piezoceramic layer and the carrier layer is dominating.
This behaviour is typical for layered resonators with a liquid
layer much thicker than the other layers. All other parameters
needed for calculations by means of the discussed model are
usually specified by the manufacturer of the piezoceramic or
well known from literature.

When driving a resonator for particle separation, a signifi-
cant temperature dependence of the resonance frequencies is
observed. This is mainly due to the temperature dependence
of the sound speed in the liquid, which causes a typical res-
onance frequency shift in the range of 2 to 3kHz/°C. Com-
parison of this value with the resonance bandwidth, which is

normally less than 2 kHz, shows clearly the necessity of an
automatic resonance control. Means of frequency control as
well as other aspects related to the design and practical oper-
ation of separation devices, such as resonator geometry and
material selection, the principle of a high-efficiency driving
source and limitations to power input, will be discussed in
part II of this work.
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Appendix
Parameters for calculation

The results presented in section 4 were obtained with the
data set given in Table I. The material parameters p, v, &,
g, and tand, of the piezoceramic and glass, respectively,
are specified by the manufacturer. The effective acoustic
quality factors () .5 were determined from measured admit-
tance spectra. For completeness, the fundamental constants
c = pr*(1 — k*), and e = kv /pe, are also listed. Ac-
cording to the one-dimensional model used, all quantities
are reduced to scalars and apply in the direction of sound
propagation (thickness direction of piezoceramic and glass
plates, respectively).

The transducer of the considered resonator consists of two
piezoceramic square (25X 25 mm) discs, glued on the glass
carrier and electrically connected in series. The total cross-
sectional area A of the sonicated volume is 1.25 - 1073 m?.

List of symbols

a  radius of suspended spherical particle [m]

A cross-sectional area of layered resonator [m?]

¢ elastic stiffness constant [Pa = Nm~2]

¢  piezoelectrically stiffened elastic constant [Pa]

d  center-to-center distance between two suspended

particles [m]

dielectric displacement [Cm ™ 2=Asm™2=NV~!m™!]
piezoelectric constant [Cm™2]

energy [J = Nm]

energy density [Jm ™3]

force [N]

acceleration due to gravity [ms 2]

j=+/—1 imaginary unit [-]

k =w/v wave number [m1]

ko = w/vy wave number of the longitudinal acoustic wave

S mETE e Qg
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Table 1. Parameters and material constants of the 4-layer piezoelectric resonator.
Piezoelectric Carrier Liquid Reflector
Layer Layer Layer Layer
Material Sonox P4 Tempax glass Degassed water Tempax glass
(Manufacturer) (Hoechst, Germany) (Schott, Germany) (Schott, Germany)

Thickness £ {mm] 1.01 27 32 271
Density p [kg/m®] 7800 2200 998 2200
Sound speed v [m/s] 4460 5430 1485 5430
Electromech. coupling factor & 0.5 - - -
Dielectric constant £ [As/Vm]) 6.02:107° - - -
Tangent of loss angle tan 9 0.007 - - -
Effective acoustic quality factor Qer 400 180 6000/1000 400
Elastic stiffness constant ¢ [GPa] 116 64.9 2.2 64.9
Piezoelectric constant e [N/Vm] 15.3 - - -

»’

in the particle material [m 1]
acoustic contrast factor [-]
layer thickness in direction of sound propagation [m]
acoustic pressure [Pa]
power [W]
power density [Wm™>]
P3P electric apparent power [W]
PYue  electric true power [W]
acoustic material quality factor [-]
reflection coefficient [}
strain [m/m = 1]
time [s]
stress [Pa]
displacement of the sound wave [m]
resonator driving voltage [V]
= Ju/Ot displacement velocity of the sound wave
[ms™ ]
volume of suspended particle [m?]
space coordinate in direction of sound propagation [m]
electrical admittance [271]
linear (amplitude) absorption coefficient [m™1]
compressibility [Pa~! = m2N~1]
penetration depth of viscous wave [m]
dielectric constant [Fm~! = AsV~Im™1]
radiation force potential [Nm]
electric conductivity [2~'m~}]
resonator performance number [}
dielectric loss angle [rad]
electric potential [V]
velocity potential of the sound wave [m?s ']
electromechanical coupling factor [-]
ratio of mass densities (see below) [-]
shear viscosity [kgm s ']
bulk viscosity [kgm 's™!]
v =w/k speed of sound [ms ']
vgp = w/ko sound speed of the longitudinal acoustic wave
in the particle material [ms ']
II Poynting vector (energy flow density) [Wm™?]
f  angle between centerline of two particles and
direction of sound propagation [rad]

v Ra v e

S QENTNnIO

ERE >I B SO >2wR 8 <

p  mass density [kgm ]

po mass density of suspended particle [kgm ™3]
o sound speed ratio (see below) [-]

w  angular frequency [s™']

Subscripts and superscripts

0  suspended particle

ac acoustic performance number

eff effective quality factor, absorption coefficient or
performance number, respectively

kin kinetic energy density

n  number of resonator layer

p  progressive wave

pot potential energy density

gs quasi-standing wave

s  standing wave

vis§ viscous case

C  carrier layer

E  electrode

L liquid layer

P piezoelectric layer

R reflector

Time-averaged quantities are denoted by angle brackets: ().
Complex quantities are marked by the tilde-sign:”. The sym-
bol “denotes amplitudes (which are real, positive constants)
of quantities with harmonic time- and space-dependence.
The following ratios are defined for abbreviation: A = po/p,
o = vy /v = k[ko, whereby pq. v, ko, refer to the sus-
pended particle and p, v, k, refer to the host fluid.
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