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Test of Hyperelasticity in Highly Nonlinear Solids: Sedimentary Rocks
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We report measurements of three-wave mixing amplitudes on systems whose third order elastic
constants have also been measured by means of the elastoacoustic effect. Because attenuation and
diffraction are an important aspect of our measurement technique we analyze our results using a
modified Khoklhov-Zabolotskaya-Kuznetsov equation in the frequency domain. We find that the value
of � so deduced for polymethyl methacrylate agrees quite well with that predicted from the stress
dependent sound speed measurements, establishing that polymethyl methacrylate may be considered as
a hyperelastic solid. The � values of sedimentary rocks, though they are typically 2 orders of magnitude
larger than, e.g., polymethyl methacrylates, are still a factor 3–10 less than those predicted from the
elastoacoustic effect.
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The most commonly investigated nonlinear acoustic
properties of a liquid or a solid are: (a) the extent to which
the speed(s) of sound change upon the application of a
known stress [elastoacoustic (EA) effect] and (b) the
extent to which two different initial frequencies, f1 and
f2, mix to generate frequency components f1 � f2, f1 �
f2; 2f1, and 2f2 [three-wave mixing (3WM)]. Within the
context of hyperelasticity, both these processes are gov-
erned by the same nonlinear material parameters called
third order elastic (TOE) constants if one is dealing with a
solid. An isotropic solid has three such coefficients, A, B,
and C. These effects are described in Ref. [1]. A straight-
forward discussion of the underlying theory is given in
the chapter by Norris (p. 263) who makes connection with
other systems of notation.

Apparently a test of the prediction of three-wave mix-
ing efficiencies based on values of A, B, and C deduced
from the elastoacoustic effects has only recently been
done on any solid [2] and this is the focus of the present
Letter. As a practical matter we are particularly inter-
ested in these effects in sedimentary rocks, which are
known to have values of the TOE constants that are orders
of magnitude larger than those of their constituent min-
erals [3]. In the search for hydrocarbon reservoirs it is
often most useful to have some knowledge of the local
distribution of stress around a borehole. Local stress
distribution affects most aspects of hydrocarbon produc-
tion including drilling, perforating, casing, and sanding
during production. Because rocks are so sensitive to
applied stress, one can often deduce, e.g., the direction
of maximal horizontal stress by means of the effect on
borehole acoustic modes of propagation; see Refs. [4]. If
one had an independent means to measure the TOE con-
stants, such as by three-wave mixing, one could deduce
the actual stress magnitudes in addition to their direc-
tions. Unfortunately sedimentary rocks, while being ex-
tremely nonlinear, are also extremely attenuative; this
0031-9007=04=93(21)=214301(4)$22.50 
makes it difficult to quantify the amplitudes of nonli-
nearly generated signals.

We have done the following: on a sample of polymethyl
methacrylate (PMMA), a commercially available non-
porous plastic, and of three different sedimentary rocks
we have overdetermined the three parameters A, B, and C
by measuring the rate of change of five sound speeds with
applied uniaxial and hydrostatic stress. We chose PMMA
partly because of convenience and partly because we can
make the effects of attenuation in the 3WM experiments
as large as those in the rocks (see below).

Using a water immersion technique with a slab of each
material we have independently measured the (linear)
attenuation in each sample as a function of frequency
from 100 kHz to 2 MHz. We have measured the efficiency
of sum and difference frequencies, etc. generated by the
insonification of the sample with a collimated beam hav-
ing very narrow band pulses at f1 � 0:95 MHz and f2 �
1:05 MHz. Because the attenuation at frequencies in the
vicinity of 2 MHz is so large for the rocks, we have
focussed on the difference frequencies for them, but we
have quantified all four nonlinear signals for the PMMA
sample. In order to handle the simultaneous effects of
nonlinear acoustics, attenuation, and dispersion we have
analyzed our nonlinear results using a modified
Khoklhov-Zabolotskaya-Kuznetsov (KZK) equation.
The nonlinearity of this KZK equation enters via a di-
mensionless parameter, �, which is related to A, B, C in
hyperelastic materials by [1]
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We find that all four nonlinearly generated signals in
PMMA are accurately described by the same value of �
as that deduced from the elastoacoustic measurements,
thus indicating that the deformation energy of PMMA is
hyperelastic to third order in the strain. In all three
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samples of the sedimentary rocks we find values of � that
are typically a factor 3–10 smaller than those predicted
from the elastoacoustic measurements, but still 2 orders of
magnitude larger than those encountered for homogene-
ous solids.

The relevant material parameters of our four samples
are listed in Table I. We chose one limestone and two
sandstones and the porosities range from 0.18 to 0.23. The
sound speeds were measured in a time-of-flight technique
through a rectangular parallelepiped under ambient, hy-
drostatic, and uniaxial stress, as described previously [3].
A simple curve fitting algorithm allows us to extract the
slopes dV

d
 where 
 is either the hydrostatic or uniaxial
stress, as the case may be. We have so-measured five such
slopes that overdetermine the three TOE constants, as
described previously [3]. Our best estimates of ��stress�
are given in Table I.

We performed our three-wave mixing measurements in
water using a high-power source transducer and cali-
brated receivers in a tank approximately 2 m� 1 m�
1 m deep. The source signal comprised the beating of two
50 cycle tone bursts, one at f1 � 0:95 MHz and the other
at f2 � 1:05 MHz. The drive signal (f1 and f2) voltage
was varied in precisely known steps, such that the trans-
ducer face pressure ranged from approximately 1 to
1000 kPa. The source transducer was an air-backed,
1.0 MHz, 1.0 in diameter, planar-piston transducer.

We positioned receivers at a distance of 203 mm from
the source face, on axis with the transmitter beam. One
receiver was a B&K 8103, used for measuring the differ-
ence frequency (100 kHz). The other was a 0.4 mm Sonic
Technologies membrane-hydrophone probe, used for all
of the measurements around and above 1 MHz. Both
receivers were calibrated by the manufacturers in Pa
over wide frequency ranges.

With our calibrated receivers in a water-only setup
(� � 3:5) we used the KZK calculations (below) to cali-
brate the transmitter pressures at each drive voltage. We
did this by quantifying the axial and radial variations of
all received signals.

We used standard immersion techniques to derive the
linear velocity-dispersion and attenuation-dispersion
curves for each sample, which we measured over as
wide a frequency range as possible, depending on the
sample. We measured the sample densities. The samples
TABLE I. Material properties. �1;
;2 refer to the measured attenua
taken from Ref. [1]. A, B, C are determined from stress dependen

��gm=cc� V�km=s� �1�1=m� �
�1=m� �2�1=m�

Water 1.0 1.48 2:5� 10�2 2:5� 10�4 1:0� 10�1

PMMA 1.19 2.72 12.4 1.55 23.0
Portland 2.33 3.47 64.0 6.25 129
Indiana 2.40 3.89 77.0 0.89 295
Berea 2.26 2.45 288 14.3 711
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were then located in the beam of the high-power trans-
mitter, typically at a standoff of 50.8 mm from the trans-
mitter face. We varied the drive signal (f1 and f2) voltage
in the same steps as for the water-only test, recording the
received tone bursts for both high and low frequency
receivers. The received signals were then processed into
calibrated pressure values at each pertinent frequency, as
above.

In order to interpret our nonlinear measurements, we
need a theoretical tool that incorporates nonlinearity,
diffraction, attenuation, and reflection losses at the vari-
ous interfaces. We used the modified KZK equation for
this purpose [1]:
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Here, p�r; z; �� is the acoustic pressure, V is the linear
speed of sound, � is the density, and � is the nonlinear
parameter given by Eq. (1). The linear frequency depen-
dent attenuation coefficient, ��!�, is incorporated in the
quantity F, which is conveniently written in the fre-
quency domain as

~F � ��!�~p: (3)

If � / !2 $ F / @2p
@�2 , one recovers the usual KZK equa-

tion appropriate to a viscous fluid. Equation (2) is solved
in the frequency domain by expanding the solution as a
Fourier series, as described in Refs. [5]. The code was
modified by us to include discontinuities of material
properties and to allow for an arbitrary frequency depen-
dence for the attenuation, ��!�. The code accounts for
reflection losses at boundaries but does not account for
multiple reflections, which, in fact, are negligibly small
for our attenuative samples.

Although we list attenuations at three frequencies in
Table I, we have, in fact, used the actual attenuation
values for each frequency component that we measured.
The attenuation of water is quite negligible at all relevant
frequencies, for our purposes. The attenuation values at
100 kHz for all the solid samples, though not negligible,
are small enough that accuracy of those values is not an
issue (see below).

First, we consider the sample of PMMA.We have found
that the most sensitive determination of � is obtained by
using a rather thick sample (6 in) immediately facing the
tion at 1 MHz, 100 kHz, and 2 MHz, respectively. � for water is
ce of the acoustic speeds.

�A�GPa� �B�GPa� �C�GPa� ��stress� ��3WM�

� � � � � � � � � � � � 3.5
22� 6 18� 3 19� 3 9� 2 7:1� 0:5

2362� 147 1310� 106 1846� 210 332� 28 60–150
6559� 313 11 715� 286 9377� 644 1201� 43 400–525

�2234� 395 4939� 269 8787� 517 1155� 93 170–670
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transmitter. This is because the � value is not particularly
large compared to that of water and we therefore wish to
maximize the path length through PMMA. In Fig. 1 we
plot the measured amplitudes of the received signals
comprising the original components f1 and f2 as well
as the nonlinearly generated ones at f2 � f1 � 100 kHz,
2f1 � 1:9 MHz, f1 � f2 � 2:0 MHz, and 2f2 �
2:1 MHz. In this geometry we do not know the extent
to which the sample loads the transmitter. Accordingly,
we plot the measured signals vs the received f1 signal
amplitude, and not vs the initial amplitude on the trans-
ducer face.

We also plot the results of our solution to Eq. (1) using a
value of � � 7:1 for PMMA. We see that it does an
excellent job of describing all four nonlinear signals
over a wide range of amplitudes. Over the range of am-
plitudes considered, the behavior of the two fundamentals
is governed primarily by linear acoustics; the nonlinear
signals are proportional to the square of the initial am-
plitude, as can be seen from the plot.We have repeated the
calculation for a narrow range of � values in order to find
what value best fits each nonlinear signal. This range is
reflected in the error bars quoted in Table I. Our value of
� � 7:1 is to be compared to the value � � 10 deduced
by Landsberger and Hamilton [6] from the measured
amplitude of second harmonic generation in a similar
geometry and the value � � 6 deduced from earlier
elastoacoustic measurements (Winkler and Liu [3]).

In order to emphasize the role of attenuation and dif-
fraction, we plot the computed amplitudes of all relevant
waves as a function of distance along the z axis, in Fig. 2.
We see destructive interference due to diffraction effects
in the fundamental (f1 and f2) components as well as in
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FIG. 1 (color). Amplitudes of the two fundamental frequen-
cies, f1 and f2, as well as those of the nonlinearly generated
signals plotted against the received amplitude of f1. The
acoustic path is 146 mm of PMMA and less than 1 mm water.
The symbols represent the measured data and the solid curves
are the solutions to the KZK equation with � � 7:1 for PMMA.
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the higher harmonics within the first 5 cm of the sample.
We see a large decrease in the amplitudes due to attenu-
ation; we have plotted the plane wave attenuation coef-
ficients exp
��z� for f � 1 MHz, f � 2 MHz, and
f � 100 kHz as guides to the eye. We see the discontinu-
ity in the transmitted amplitudes at the PMMA-water
interface.

The value determined from these three-wave mixing
measurements, ��3WM� � 7:1, is in substantial agree-
ment with that determined from the stress dependence of
the sound speeds, ��stress� � 9. We draw the following
conclusions: (1) through third order in the strain the
deformation energy in PMMA is well described by stan-
dard hyperelastic theory. (2) Our experimental tech-
niques for determining � both from the stress
dependence of the sound speeds and from the three-
wave mixing measurements are accurate. (3) The modi-
fied KZK equation, Eq. (1), accurately describes the com-
bined effects of nonlinearity, diffraction, attenuation,
and the amplitude loss at the PMMA-water interface. It
would be unlikely if the agreement between theory and
experiment would hold for all four nonlinear signals if
these three conclusions were not true. As far as we are
aware, this represents the first such confirmation of this
aspect of the hyperelastic hypothesis in a solid.

Armed with this confidence in our technique, we turn
to the investigation of the sedimentary rock samples.
Here, the samples are much more nonlinear, having �
values 1–2 orders of magnitude larger than that of
PMMA, and they are much more attenuative. Thus, the
nonlinearly generated signals are created, not throughout
the sample thickness, but primarily within the first decay
length or so of the fundamentals; this means the attenu-
ation coefficient, �, of the fundamentals must be known
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FIG. 2 (color). Computed amplitudes of the relevant fre-
quency components of Fig. 1 on the z axis from the transmitter
to the receiver. The dashed lines represent linear decay at
1 MHz, 2 MHz, and 100 kHz, from top to bottom. The vertical
dotted line is the PMMA-water boundary
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FIG. 3 (color). Amplitudes of fundamentals and of difference
frequency in Portland S.S. with an acoustic path as indicated.
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quite accurately. Because �1 (Portland, Indiana)
� 6�1�PMMA�, the total attenuation in the 6 in of
PMMA is comparable to the total attenuation in 1 in of
both the Portland and Indiana samples, exp���1L� �
0:15. This fact makes PMMA a good nonrock with which
to test our system and compare the results against those of
the rocks.

Even though we use rock samples only � 1 in thick, we
are unable to quantify the nonlinear signals near 2 MHz
due to high attenuation in the 1–2 MHz region.
Accordingly, we focus our attention exclusively on the
difference frequency generation, f2 � f1 � 100 kHz.
Here, the decay rate, ��100 kHz�, is small enough that
the KZK calculation is relatively insensitive to its actual
numerical value. This is the motivation as to why we have
looked at the difference frequency generation for these
attenuative samples.

Our resultant three-wave mixing values are listed in
Table I as ��3WM�. We note that all three rock samples
have values that are large compared to that in PMMA, but
still a factor 3–10 less than those implied from Eq. (1),
��stress�. The range of values listed represents values
obtained from different sample thicknesses, different
standoffs from the transmitter, as well as fits to data at
different transmitter face pressures. For example, in
Fig. 3 we show results for the Portland Sandstone.
Although the difference signal initially grows quadrati-
cally, while the fundamentals are still approximately
linear, we see that there is significant deviation between
theory and experiment above 3� 105 Pa. The amplitudes
of the fundamentals are no longer linearly related to the
initial amplitudes; the amplitude of the difference signal
is no longer quadratic in the initial amplitude. Unlike the
214301-4
case of the PMMA data in Fig. 1 there is no single value of
� that will fit all the Portland data, and similar behavior
holds for the other rock samples. We consider it to be a
manifestation of the breakdown of the validity of the
KZK equation for these samples, and possibly the break-
down of the hyperelastic assumption, even for these small
strains. It is quite possible that the deformation energy as
a function of strain does not have the simple power-law
behavior implicit in the conventional hyperelastic expan-
sion. A specific example of this behavior does occur in the
theoretical case where there are so-called Hertz-Mindlin
contacts, for which U / �5=2 [7]. It may well be the case
that a new paradigm is needed to describe the nonlinear
acoustics of sedimentary rocks [8], as is clearly the case
for large, hysteretic strains.

In conclusion, we have demonstrated the validity of the
KZK equation to understand three-wave mixing experi-
ments in PMMA. The numerical value of � so deter-
mined agrees with that determined independently by
means of the stress dependence of the sound speeds,
establishing that PMMA may be considered hyperelastic
in this context. Measurements on sedimentary rocks in-
dicate a very different situation. The numerical values of
� determined from the amplitude of difference frequency
generation are approximately 2 orders of magnitude
larger than in PMMA but still a factor 3–10 smaller
than those implied by the stress dependence of the sound
speeds.

We are grateful for several helpful discussions with
M. F. Hamilton in the course of this work.
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