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A change of solute dispersion regime with the flow velocity has been studied both at the
macroscopic and pore scales in a transparent array of capillary channels, using an optical technique
allowing for simultaneous local and global concentration mappings. Two solutions of different
polymer concentrations �500 and 1000 ppm� have been used at different Péclet numbers. At the
macroscopic scale, the displacement front displays a diffusive spreading: for Pe�10, the
dispersivity ld is constant with Pe and increases with the polymer concentration; for Pe�10, ld

increases as Pe1.35 and is similar for the two concentrations. At the local scale, a time lag between
the saturations of channels parallel and perpendicular to the mean flow has been observed and
studied as a function of the flow rate. These local measurements suggest that the change of
dispersion regime is related to variations of the degree of mixing at the junctions. For Pe�10,
complete mixing leads to pure geometrical dispersion enhanced for shear thinning fluids; for Pe
�10, weaker mixing results in higher correlation lengths along flow paths parallel to the mean flow
and in a combination of geometrical and Taylor dispersion. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2714065�

I. INTRODUCTION

The problem of solute transport in porous media is rel-
evant to many environmental, water supply, and industrial
processes.1,2 In addition, tracer dispersion is a useful tool to
analyze porous media heterogeneities.3 Solute dispersion is
often measured by monitoring solute concentration varia-
tions at the outlet of the sample following a pulse or step-like
injection at the inlet: Understanding fully the dispersion
mechanisms, however, requires information on the local con-
centration distribution and on local mixing at the pore scale.
These goals can be reached by using nuclear magnetic reso-
nance imaging, computerized axial tomography �CAT� scan,
or acoustical techniques.4 However, such techniques are ei-
ther costly or have a limited resolution. In addition, they
often put strong constraints on the characteristics of the fluid
pairs. We used instead in the present work a two-dimensional
�2D� transparent square network of ducts of random widths
allowing for easy visualizations of mixing and transport pro-
cesses at the local scale. Similar systems were previously
used successfully to investigate two phase flows5 and mis-
cible displacements of Newtonian fluids.6

The key feature of the present experiments is to combine
macroscopic and local scale measurements to estimate the
influence of pore scale processes on dispersion. For this pur-
pose, dye is used as a solute and high-resolution maps of the

relative concentration distribution are obtained through cali-
brated light absorption measurements. This allows one to
determine quantitatively the global dispersion coefficient D
and the dispersivity ld while measuring simultaneously the
time lag between the invasion of channels parallel and trans-
verse to the mean flow. Further information is also obtained
from the complex geometry of an isoconcentration line.

This approach has allowed us to observe a change of
macroscopic dispersion regime for a Péclet number of the
order of 10 while the local measurements suggest interpreta-
tions in terms of variations of the degree of mixing at the
junctions. This confirms previous suggestions7,8 on the influ-
ence of mixing at the pore scale on macroscopic dispersion.

Another feature of our experiments is the use of shear
thinning polymer solutions of the type encountered in many
industrial processes in petroleum, chemical, and civil
engineering.9 In addition to these practical applications, pre-
vious measurements at the laboratory scale on glass bead
packings have shown10,11 a significant enhancement of tracer
dispersion compared to the Newtonian case. This enhance-
ment depends on the polymer concentration and represents a
useful additional input for our interpretations.

II. DISPERSION MECHANISMS IN 3D POROUS MEDIA
AND 2D NETWORKS

In homogeneous 3D porous media, the macroscopic con-

centration C̄�x ,y ,z , t� of a tracer �i.e., averaged over a repre-
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sentative elementary volume� satisfies the convection-
diffusion equation,

�C̄

�t
= U

�C̄

�x
+ D�

�2C̄

�x2 + D�� �2C̄

�y2 +
�2C̄

�z2 � , �1�

where U the mean velocity of the fluid �parallel to x� and D�

�D�� is the longitudinal �transverse� dispersion coefficient.
When the concentration distribution is uniform in the direc-
tions perpendicular to the mean flow, the D� term cancels
out and only D� needs to be taken account leading to a 1D
equation. This assumption may be assumed to be valid for
the transparent model and for the injection method used in
the present work, and the 1D version of Eq. �1� will be sat-

isfied by the concentration distribution �practically, C̄�x , t�
will be taken equal to an average of the local concentration
over an interval �y in the direction perpendicular to the
flow�. The simpler notation D will then be used for the cor-
responding longitudinal dispersion coefficient.

The value of D is determined by two main physical
mechanisms: molecular diffusion and advection by the com-
plex velocity field inside the medium �the local flow velocity
varies both inside individual flow channels and from one
channel to another�. The relative order of magnitude of these
two effects is characterized by the Péclet number: Pe
=Ua /2Dm �Dm is the molecular diffusion coefficient and a a
characteristic length of the medium, here the average channel
width�.

Various dispersion regimes are observed in usual porous
media.1 At very low Péclet numbers �Pe�1�, molecular dif-
fusion is dominant and smooths out local concentration
variations.

At higher Pe values, the distribution of the channel
widths induces short-range variations of the magnitude and
the direction of the local velocity. One can then consider that
tracer particles experience a random walk inside the pore
volume with a velocity varying both in magnitude and direc-
tion relative to the mean flow velocity U. The typical length
l of the channels represents the length of the steps, and their
characteristic duration � is �� l /U. A classical feature of
random walks is that the corresponding diffusion coefficient
satisfies D� l2 /�=Ul. The proportionality constant depends
both on the disorder of the medium and on the rheology of
the fluid. In this so-called geometrical dispersion, the coef-
ficient D should then be proportional to U.

The 2D networks of interest in the present work have
several specific features and D should be very much influ-
enced by the redistribution of the incoming tracer between
the channels leaving a junction. This redistribution strongly
depends on the local structure of the flow field and on the
Péclet number.12,13 At low Pe values, the transit time through
a junction is large enough for tracer to cross streamlines by
molecular diffusion and one may assume a perfect mixing. In
the other limit Pe�1, molecular diffusion is negligible: the
path of the tracer particles coincides with the flow lines and
is determined by the flow field in the junctions and by the
location of the particles in the flow section.

In the case of 2D networks with small variations of the
channel apertures, the flow field is close to that in a periodic

square channel with a mean flow parallel to one of the axis:
the major part of the flow is localized in longitudinal chan-
nels parallel to the axis where the velocity is high, while that
in transverse channels is small. Tracer particles remain then
inside sequences of channels parallel to the mean flow for a
long distance without moving sideways. Taylor-like
dispersion14,15 similar to that encountered in capillary tubes,
between parallel plates or inside periodic structures, may
then develop: it corresponds to a balance between �a� spread-
ing due to velocity gradients between the centers of the flow
channels and their walls and �b� molecular diffusion across
the flow lines. The increased dispersion in 2D periodic net-
works when flow is parallel to one of the axes7 may, for
instance, result from the increased influence of Taylor disper-
sion.

Another issue of the present work is the influence of the
shear-thinning properties of the fluids. They may influence
the dispersion process in different ways: on the one hand,
when the viscosity � decreases with the shear rate 	̇, the
velocity profile in individual channels becomes flat in the
center of the channel. In simple geometries like capillary
tubes, the corresponding Taylor dispersion coefficient D is
then lower than for a Newtonian fluid, although one has still
D� Pe2.16 On the other hand, numerical investigations sug-
gest that the flow of shear thinning fluids is localized in a
smaller number of flow paths than for Newtonian fluids.17,18

As a result, geometrical dispersion reflecting the distribution
of the local velocities should increase, as is indeed observed
experimentally.10,11 A key point here is the influence of the
fluid rheology on tracer mixing at the intersections between
channels: to our knowledge, no previous experimental or nu-
merical work has dealt with this crucial issue.

III. EXPERIMENTAL SETUP AND PROCEDURE

A. Experimental models and injection setup

The model porous medium is a two-dimensional square
network of channels of random aperture: these models have
been realized by casting a transparent resin on a photographi-
cally etched mold as described in Ref. 5. The model contains
a square network of 140
140 channels with an individual
length equal to l=0.67 mm and a depth of 0.5 mm; the width
follows a discrete, log-normal distribution with seven values
between 0.1 and 0.6 mm �the average width is ā=0.33 and
its standard deviation ��a�=0.11 mm�. The mesh size of the
network is equal to 1 mm. The overall size of the model is
150
140 mm and the two facing lateral sides are sealed. On
the two others, the channels are directly connected to the
outside. The total pore volume is close to 6.09
103 mm3.
Following the definition of Bruderer et al.,19 the degree of
heterogeneity of the network can be characterized by the
normalized standard deviation ��a� / ā. In the present work,
��a� / ā	0.33.

B. Fluid preparation and characterization

The fluids used in the experiments are shear thinning
water-polymer solutions. The shear thinning fluids are solu-
tions of 500–1000 ppm of high molecular weight scleroglu-
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can in high-purity water �Millipore—Milli-Q grade�. Sclero-
glucan �Sanofi Bioindustries, France� is a polysaccharide
with a semirigid molecule �persistence length 	180

10−9 m�; it has been selected because it is electrically neu-
tral and its characteristics are therefore independent of the
ion �and dye� concentration. All solutions are protected from
bacterial contamination by adding 0.2 g/ l of NaN3. In all
experiments, the injected and displaced fluids are identical
except for Water Blue dye, which is added to one of the
solutions at a concentration of 200 ppm by weight to allow
for optical concentration measurements.

The molecular diffusion coefficient of the dye is deter-
mined independently in pure water by means of Taylor dis-
persion measurements performed separately in a capillary
tube �the measured value of Dm was close to 6.5

10−4 mm2 s−1�.

The rheological properties of the scleroglucan solutions
have been characterized using a Contraves LS30 Couette
rheometer with shear rates 	̇ ranging from 0.016 up to
87 s−1. Rheological curves obtained experimentally for the
two polymer concentrations are displayed in Fig. 1: these
curves display the variation of the effective viscosity � �ratio
of the stress and the shear rate 	̇ for a given value of 	̇� as a
function of 	̇. The properties of 500 ppm clear and dyed
solutions are identical within experimental error and constant
with time over a period of two weeks. The properties of two
1000 ppm solutions realized independently are reproducible
and constant over a period of six weeks �for the second so-
lution�.

The variation of � with 	̇ is well adjusted by a Carreau
function �dotted lines in Fig. 1�,

� =
1

�1 + 
 	̇

	0
˙ �2��1−n�/2 ��0 − �� + �. �2�

The values of these different rheological parameters for the
polymer solutions used in the present work are listed in Table

I; determining � would have required values of 	̇ outside
the measurement range so that we assume that �

=10−3 Pa s �the value for the solvent, i.e., water�. In Eq. �2�,
	0
˙ corresponds to a crossover between two regimes. On the

one hand, for 	̇�	0
˙ , the viscosity � tends toward �0, and the

fluid displays a Newtonian behavior �“Newtonian plateau”

regime�. On the other hand, for 	̇�	0
˙ , the effective viscos-

ity decreases with the shear rate following the power law �
�	̇�n−1� �n=1 for a Newtonian fluid.� It should finally be
noted that the high effective viscosity of these solutions at
low shear rates avoids the appearance of buoyancy-induced
instabilities at low shear rates and helps stabilize the fluid
displacement.

Such a stabilizing effect might also be obtained by using
high-viscosity Newtonian fluids, but this would result in po-
tentially destructive overpressures at high flow velocities.
More importantly, the molecular diffusion coefficient would
decrease as the inverse of the viscosity, which would disturb
strongly the mixing process; on the contrary, for the polymer
solutions, the molecular diffusion coefficient is almost iden-
tical to that of the solvent and is practically independent of
the effective viscosity of the fluid.

C. Fluid injection and flow visualization

The model is placed vertically with its open sides hori-
zontal: the upper side is fitted with a leak tight adapter al-
lowing one to suck fluid upwards. The lower open side is
initially slightly dipped into a bath of one of the liquids and
is saturated with this fluid by pumping it slowly upwards.
After switching off the pump, the bath can be lowered until it
no longer touches the model �Fig. 2�. The bath is then com-
pletely emptied, refilled with the other fluid, and raised to its
initial position. Finally, the first fluid is sucked upwards at
the upper end of the model by the syringe pump. The lower
bath rests upon computer controlled electronic scales for
monitoring the amount of fluid that has entered the model.

This procedure allows one to obtain a front of the dis-
placing fluid that is initially perfectly straight: this uniform
injection of dye across the full width of the model �in the y
direction� insures that front spreading reflects only longitu-
dinal dispersion as long as the medium does not display any
large permeability heterogeneity.

The flow rates used in the experiments correspond to
mean front velocities between 0.005 and 2.5 mm s−1. As-
suming a channel width of 0.4 mm, the corresponding typi-
cal shear-rate is of the order of 0.025 s−1: this is lower than

the value 	0
˙ marking the transition toward the “Newtonian

plateau regime” for the 500 ppm solution but comparable for

FIG. 1. Variation of the effective viscosity � of the polymer solutions as a
function of the shear rate 	̇ for two water-polymer solutions of different
concentrations. 500 ppm: ��� clear solution; ��� same with 200 ppm dye;
��� dyed solution after two weeks. 1000 ppm: ��� fresh clear solution; ���
same after four days; ��� same after six weeks. The dotted lines represent
Carreau functions corresponding to the sets of parameters of Table I.

TABLE I. Rheological parameters of scleroglucan solutions used in the flow
experiments.

Polymer conc. n 	̇0 �0

ppm s−1 mPa s

500 0.38±0.04 0.077±0.018 410±33

1000 0.26±0.02 0.026±0.004 4500±340
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the 1000 ppm one �see Table I�. At the lowest velocities at-
tainable, the 500 ppm solution should therefore give similar
results as a Newtonian fluid of high viscosity �0 but with the
same molecular diffusion coefficient as for water while the
1000 ppm one will retain its shear thinning character.

The model is illuminated from the back by an electronic
light panel and images are acquired by a 12-bit, high stability
digital camera with a 1030
1300 pixels resolution and then
recorded by a computer. The pixel size is 0.16 mm or 0.4
times the mean width of the channels: this allows one to
discriminate between the various regions of the pore space.
Typically 100 images are recorded for each experimental run
at time intervals from 2.5 to 700 s.

D. Image analysis procedure

The images are then translated into maps of the relative
concentration using the following procedure. First, a calibra-
tion curve is obtained from images of the model saturated
with seven solutions of increasing dye concentration C start-
ing from zero up to the concentration used in the experi-
ments. The logarithm Ln�I�C� / Io� of the transmissivity is
then plotted as a function of C; I�C� and Io are averages of
the light intensity over the model and correspond, respec-
tively, to dye concentrations equal to C and 0. Due to the
nonlinear absorbance effect,20 a better fit is obtained with a
third-order polynomial variation of Ln�I�C� / Io� with C than
with the linear dependence corresponding to Lambert’s law.
This calibration is performed every time the locations of the
light source and of the models are significantly changed.

For all experiments, reference images are recorded both
with the micromodel initially saturated with the displaced
fluid and, at long times, when it is fully saturated with the
injected one. After the fluid displacement has been per-
formed, the local concentrations are determined pixel by
pixel for each image by means of the calibration curve. This
operation is performed only on pixels belonging to channels;
those located in solid parts are not considered. Finally, maps
of the local relative concentration of the two fluids are ob-

tained by normalizing the local concentration between its
values in the initial and final images.

IV. EXPERIMENTAL RESULTS

A. Qualitative observations of miscible displacements

Figure 3 compares displacement experiments realized at
the same flow velocity for the two water-scleroglucan solu-
tions. For a given solution, narrow structures of the front
with a lateral extent of a few channel widths appear when the
velocity increases and reflect local high- or low-velocity
zones. For the same flow rate, images obtained with the two
solutions are qualitatively similar: the size parallel to the
flow of medium scale front structures �with a width �y of the
order of one-tenth of that of the model� is, however, larger
for the more concentrated solution both at low and high ve-
locities.

The stability of the displacement with respect to buoy-
ancy driven instabilities has also been verified by comparing
experiments using the same pair of fluids and exchanging the
injected and the displaced fluid: no quantitative difference
was measured between the two configurations and no finger-
ing instabilities appeared in the unstable configuration.

While fluid displacement images provide information on
the front geometry down to a fraction of the channel size, it
will be shown next that they also allow one to determine
macroscopic parameters characterizing the process.

B. Quantitative dispersion measurement procedure

Quantitatively, the global displacement process is ana-
lyzed from the variations with time and distance parallel to

FIG. 2. Experimental setup for miscible displacement measurements in 2D
micromodels. Flow is vertical and parallel to the x axis. The width of the
channel network is horizontal and parallel to the y axis.

FIG. 3. Relative concentration maps for experiments using water-
scleroglucan solutions of respective concentrations 500 ppm ��a� and �b��
and 1000 ppm ��c� and �d�� for flow rate values Q=0.075 ml/mn ��b� and
�d�� and Q=1.5 ml/mn ��a� and �c��. Gray levels code used in the figure:
darkest shade�pure displaced fluid, intermediate–pure displacing fluid–
lightest�intermediate concentrations.
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the flow of a macroscopic concentration C̄�X , t�
= �C̄�X ,Y , t�Y; the average is taken over an interval �Y per-
pendicular to the flow and only pixels located inside the pore
volume are considered. The width �Y is large enough to
average out local fluctuations and small enough to avoid the

influence of the side walls: C̄ was found to be independent of
�y within experimental error when these conditions are veri-
fied. Even when �y corresponds to only one channel, it will
be seen below that the results are all but similar. Figure 4

displays a typical variation of C̄�X , t� with time. For step-like
initial concentration variations corresponding to our experi-
ments, the solution of the convection-dispersion equation �1�
is

C̄ =
1

2�1 − erf
t − t̄

�4
D

U2 t� . �3�

As seen in Fig. 4, a very good fit of the experimental data
with this solution �continuous line� is obtained by adjusting
the two parameters of the equation, namely the mean transit

time t̄ and the ratio D /U2�=�̄t2 /2t̄, where �̄t2 is the centered
second moment�.

Figure 5 displays the variation of the mean transit time t̄
with the distance X from the inlet for two very different flow
rates: t̄ increases in both cases linearly with distance, indi-
cating that the mean velocity U is constant and can be deter-
mined by a linear regression of the data. The inset �magnified
view of the curve� shows that, in both cases, t̄�X� oscillates
about the mean trend �dotted line� corresponding to the linear
regression. The dependence of the amplitude of these oscil-
lations on Pe and on the rheology of the fluid will be inves-
tigated systematically in Sec. IV D.

Similar features are observed on the variation of the dis-
persion coefficient D plotted in Fig. 6 as a function of the
distance X from the injection �D is computed from the value
of D /U2 given by the fit with U equal to X / t̄�. This time,
D�X� is globally constant with X; like t̄, it displays periodic

FIG. 4. Normalized concentration variation C̄�x , t� as a function of time for
a displacement experiment using a 500 ppm polymer solution with Q

=3.75 ml/mn. C̄�x , t� is computed by averaging local concentration over an
interval �y	35 mm located in the central part of the model. Distance from
inlet: X=100 mm. Continuous line: fit by Eq. �3�.

FIG. 5. Variation of t̄ with the distance X �polymer concentration: 500 ppm�,
for dyed fluid displacing clear fluid. Inset: close-up view including four
channels. Vertical arrows: location of junctions between channels. Dashed
line: linear regression of the variation of t̄ with X. Dash-dotted lines: mean
trend of maximum and minimum values of t̄ for different distances from the
inlet ��tjt and �tl�mean amplitudes of the upwards and downwards devia-
tions from the linear regression�. �a� Mean velocity U=1.25 mm/s, Pe
=320, �tjt=2.1 s, �tl=−2.1 s; �b� U=0.05 mm/s, Pe=1.3, �tjt=450 s,
�tl=−450 s.

FIG. 6. Variation of D with the distance X for dyed fluid displacing clear
fluid �polymer concentration: 500 ppm, Q=3.75 ml/min, Pe=317�. Inset:
close-up view including four channels. Vertical arrows: junctions between
flow channels.
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oscillations related to the structure of the network, which
will be discussed below. While these curves have been ob-
tained for dyed fluid displacing clear fluid, comparison ex-
periments have been realized with clear fluid displacing dyed
fluid; no systematic difference between the two sets of data
was observed, confirming that there are no buoyancy driven
instabilities.

The oscillations of t̄ and D as X varies are closely related
to mixing at the junctions and to the exchange of tracers
between the transverse channels and the rest of the flow �a
quantitative analysis will be presented in Sec. IV D�.

The above analysis has been performed for all experi-
ments realized with both polymer concentrations. In the fol-
lowing section, variations with Pe of the dispersion coeffi-
cient D measured in this way are discussed.

C. Flow velocity dependence of dispersion coefficient

The variations with the Péclet number Pe of the disper-
sion coefficient D determined as explained in the previous
section are displayed in the inset of Fig. 7. For both polymer
concentrations, D always increases with Pe but two different
variation regimes are visible.

For Pe�10, values of D corresponding to the two poly-
mer concentrations fall on top of each other and increase like
D�Pe� with �=1.33±0.03. This is in good agreement with
numerical simulations19 realized for a similar geometry and
degree of heterogeneity �as characterized by ��a� / ā=0.33�
and for which a power-law variation with an exponent of the
order of 1.3 is also obtained. The difference between this
exponent and the value �=1 corresponding to geometrical
dispersion is therefore higher than the experimental error
even if a logarithmic correction factor such that D
�Pe Log Pe is introduced.21 A likely hypothesis is that this
variation reflects a crossover from geometrical dispersion

�D�Pe� to Taylor dispersion �D�Pe2�: in that range of
Péclet numbers, both mechanisms would then contribute to
the dispersion process.

For Pe�10, on the contrary, values of D obtained for
the 1000 ppm polymer solution are higher than those ob-
tained with the 500 ppm one. The variation of D with Pe in
that range has been studied more precisely by plotting the
dispersivity ld=D /U in the main graph of Fig. 7. The value
of ld is approximately constant for Pe�10 for both polymer
concentrations and its mean is significantly larger for the
1000 ppm solution �ld=1.95±0.25 mm� than for the
500 ppm one �ld=1±0.25 mm�. This implies that, in this
range of Péclet numbers, the geometrical mechanism con-
trols dispersion and that the corresponding dispersivity in-
creases with the polymer concentration �at higher Pe values,
ld is, in contrast, almost identical for the two solutions�.

The values plotted in Fig. 7 have been obtained by av-
eraging the concentration C over 35 channels in the direction
perpendicular to the mean flow. In order to estimate the in-
fluence of the heterogeneities of the network, we performed
an analysis in which the concentration C is only averaged
over �y=4 pixels �or about 0.55 mesh sizes of the lattice�:
the coordinates y of these measurement lines are chosen so
that all pixels are inside a single row of successive longitu-
dinal channels connecting the inlet and the outlet of the mi-
cromodel. The dispersivity in these channels is determined as
above.

These values of ld are represented as dark symbols in
Fig. 7 and are only slightly lower than those obtained for
�y=35 mm. This result confirms that the macroscopic lon-
gitudinal dispersivity ld is independent of the averaging
width �no large-scale heterogeneity must, however, be
present in the averaging domain, as is indeed the case here�.

Since all data points correspond to Pe�1, the direct
influence on longitudinal dispersion of molecular diffusion is
low: It has, however, a strong indirect influence at the lower
Péclet numbers investigated �Pe�10�. The transit time of
the tracer inside the junctions or individual flow channels is
then large enough so that molecular diffusion across the flow
lines is significant: this influences strongly the redistribution
of the incoming tracer between channels leaving each
junction.12 In the next section, we show that, in addition to
the determination of macroscopic parameters like U, D �or
ld�, the concentration maps allow one to investigate mixing
processes at the pore scale or even below.

D. Tracer exchange dynamics between transverse
and longitudinal channels.

The variations with the distance X from the inlet of both
the mean transit time t̄�X� �Fig. 5� and the dispersion coeffi-
cient D�X� �Fig. 6� display periodic oscillations about, re-
spectively, an increasing linear trend and a constant value. As
shown by Fig. 5�b�, these oscillations are also observed at
the lowest Péclet number used in our experiments, for which
the rheology of the 500 ppm solution is almost Newtonian:
they do not result, therefore, solely from the shear thinning
properties of the fluid, although they are influenced by them.
In the following, the oscillation of D is characterized by the

FIG. 7. Variation of the dispersivity ld �mm� with the Péclet number for
experiments with water-polymer solutions: ���, ���: 500 ppm concentra-
tion; ���, ���: 1000 ppm. Open �dark� symbols: averaging interval: 35 �0.4�
mesh sizes. Inset: variation of normalized dispersion coefficient D /Dm as a
function of the Péclet number for two polymer concentration �same symbols
as in the main graph�. Solid line: power law fit for Pe�10 �exponent
1.33±0.03�. Dotted lines: average of the values of ld corresponding to Pe
�10.

033103-6 D’Angelo et al. Phys. Fluids 19, 033103 �2007�

Downloaded 29 Mar 2007 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



difference between D�X� and its mean; the variation of t̄�X�
is characterized by its difference with the linear regression
line over all data points giving the mean front velocity U. At
a given distance X the time corresponding to this regression
is equal to X /U as shown in the insets of Figs. 5�a� and 5�b�.
The difference t̄�X�−X /U is negative when the line X=cst
over which C�X , t� is computed contains only longitudinal
channels parallel to the axis x; it is positive when the line
contains both transverse channels parallel to y and junctions.
The coefficient D�X� is also higher than the mean value
when the line X=cst contains only longitudinal channels and
lower when it contains both junctions and transverse chan-
nels �see the inset of Fig. 6�. The oscillations of t̄�X� reflect
the different influence of longitudinal and transverse chan-
nels on transport. As already discussed in Sec. II, in a weakly
disordered square network like the present one, most convec-
tive flux takes place inside the longitudinal channels �parallel
to the mean flow�. The mean velocity there is significantly
higher than in the transverse channels and they get saturated
faster with the displacing fluid. There is therefore a time lag
between the saturation of the transverse and longitudinal
channels at a same distance X from the inlet, which explains
the oscillations of t̄�X� in Fig. 5.

Moreover, the respective amplitudes of the successive
minima and maxima of t̄�X�−X /U are found to be almost
constant from one to the other. In the following, the time lags
will therefore be characterized by the respecting averages �tl

and �tjt over all minimal and maximal values of t̄�X�−X /U
as displayed in the insets of Figs. 5�a� and 5�b�.

In the limit of a perfect mixing at the junctions �Pe
�10�, fluid particles do not retain the memory of their past
trajectory �i.e., whether they got previously trapped inside
slow transverse channels�. Therefore, the time lag for lines
X=cst containing transverse channels should reflect directly
the residence time in an individual �slow� transverse channel,
weighted by the corresponding volume fraction. As long as
Pe�1 and molecular diffusion is negligible, the residence
time in a given channel will be inversely proportional to the
local velocity; the latter is, in turn, proportional to the mean
velocity U when the Reynolds number is low enough and the
linear Stokes equation is applicable. As a result, the local
velocity is proportional to the mean velocity U and the time
lag �tjt�0 should vary as 1/U �similarly �tl�0 should also
vary as 1/U�. Figure 8 displays the variations of �tjt and �tl

with 1/U for the two polymer solutions investigated: in both
cases, the variation is linear for 1 /U�40 s mm−1 �corre-
sponding to Pe�6�.

For 1 /U�40 �Pe�6�, �tjt ��tl� is higher �lower� than
the values extrapolated from the linear trend for 1 /U�40:
the transition is observed at the same mean velocity for the
two solutions. This increase of the absolute values of the
time lags reflects very likely the breakdown of the assump-
tion of perfect mixing at junctions or inside individual chan-
nels: at high Péclet numbers, a solute particle may indeed
flow through several junctions and channels without moving
across flow lines through transverse molecular diffusion. If
the lattice is weakly disordered, the solute will remain for a
longer time inside a sequence of longitudinal high-velocity

channels than when there is perfect mixing at the junctions:
the value of �tl is then lower. Similarly solute particles re-
main trapped for a longer time in slow zones and �tjt is
higher than when there is good mixing at the junctions.

Although the transition between the above two regimes
takes place at the same Péclet number for both solutions, the
absolute amplitude of the variations of �tjt and �tl with 1/U
is significantly larger for the 1000 ppm one. This is a direct
consequence of the different rheological properties of the
two fluids, namely of the stronger shear-thinning character of
the 1000 ppm solution, particularly at low flow rates. The
effective viscosity of shear-thinning solutions increases
much more with the polymer concentration in slow trans-
verse channels �where the shear rate is low� than in fast
longitudinal ones: as a result, the contrast between the ve-
locities �and therefore the residence times� in the longitudi-
nal and transverse channels is enhanced, leading to the ob-
served increase of ��tjt� and ��tl�. These velocity contrasts
will be estimated below in Sec. V.

At the opposite limit of low velocities such that Pe�1
�1/U�250 s
mm−1�, longitudinal diffusive transfer be-
comes significant. The increase of the residence times with
1/U is then limited by molecular diffusion to a value of the
order of a few l2 /Dm ��1000 s�: the variations of �tjt and �tl

should then level off at high 1/U values. The lowest values
of Pe are, however, still too high in our experiments to ob-
serve this effect.

These results suggest that such local observations as re-
ported here provide important information on mixing pro-
cesses at the pore scale. As pointed out recently,7,8 these
processes influence strongly, in turn, mass transfer at the
macroscopic scale. In a similar perspective, the dependence
of the geometry of the isoconcentration fronts on the flow
velocity and on the polymer concentration will now be in-
vestigated. Their relation to local mixing in the pores will
also be discussed.

E. Geometry of tracer displacement fronts

In the present experiments, the pixel size in the concen-
tration maps is 0.4 times the mean channel width. This al-

FIG. 8. Variation of �tl �filled symbols� and �tjt �open symbols� with 1/Pe.
�� , � �: experiments realized with 500 ppm polymer solutions;
�� , � � : 1000 ppm. Dashed lines are guides for the eyes.
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lows for a study of the tracer distribution in the mixing zone
at length scales varying from the size of the network down to
a fraction of the pore size. For practical reasons, we shall not
use the full spatial concentration distribution in the following
analysis: we chose instead to characterize its spatial hetero-
geneity by the isoconcentration lines c=0.5 which may be
assumed to reflect the displacement front geometry. Ex-
amples of such fronts determined by a thresholding proce-
dure are displayed in Figs. 9 and 10 for Péclet numbers Pe
equal to 1.3 and 32, respectively.

The width of the front parallel to the mean flow is larger
for the more concentrated solution and increases with Pe.
Also, at high Pe values, large spikes are visible while the
front is relatively smooth at lower ones. In spite of these
differences, the main geometrical features of the front are
similar: large peaks and troughs are generally located at the
same points for different flow velocities and polymer con-
centrations. This confirms that irregularities of the front

structure are related to deterministic features of the velocity
field and not to uncontrolled imperfections of the injection.

Quantitatively, the effective width of the front parallel to
the flow is characterized in the following by the standard
deviation ��x̄� of the distance x of its points from the inlet:
��x̄� satisfies ��x̄�= ��x̄−x�y��21/2 in which x̄ is the mean
value of x. In Figs. 9 and 10, x̄ is equal to half the length of
the model, and the values of � corresponding to the curves
displayed are listed in the captions. Figure 11 displays the
variation of � as a function of the mean flow velocity U for
x̄=L /2. For both solutions, the width � increases logarithmi-
cally with U: the value of � is larger for the 1000 ppm so-
lution while the slope of its variation with U in Fig. 11 is
slightly lower.

The values of � are different for the two solutions be-
cause the effective viscosity decreases faster with the veloc-
ity gradients for the 1000 ppm solution than for the 500 ppm
one. The ratio between the effective viscosities, and therefore
the velocities in the longitudinal and transverse channels, is
therefore higher, and the front width, which is directly re-
lated to this ratio, increases.

The second major feature of the front geometries at high
velocity is the large amplitude of the peaks and troughs,
which are smaller and narrower at lower velocities. This, too,
may be explained by the reduced tracer mixing at junctions
at high Péclet numbers �Sec. IV D�: solute remaining for a
long distance inside longitudinal, high velocity, channels
contributes to the spikes while that moving through a se-
quence of slow lateral channels contributes to the troughs. At
lower Péclet numbers, mixing is more efficient and solute
particuls sample more effectively the velocity distribution:
this reduces the dispersion of the transit times and, therefore,
the amplitude of the peaks and troughs.

V. DISCUSSION AND CONCLUSIONS

The local analysis of the transit times and of the front
geometry provide, therefore, important information on mix-
ing inside junctions and flow channels and on its dependence

FIG. 9. Isoconcentration fronts at a mean velocity U=0.005 mm/s �Pe
=1.3� for polymer solutions of concentrations 1000 ppm �upper curve� and
500 ppm �lower curve�. Mean distance of tracer from inlet: 0.5
L
�L�model length�. Flow is upward on the figure. Front widths: �
=4.5 mm �1000 ppm� and �=2.6 mm �500 ppm�.

FIG. 10. Isoconcentration fronts for a mean velocity U=0.125 mm/s �Pe
=32� for polymer solutions of concentrations 1000 ppm �upper curve� and
500 ppm �lower curve�. Mean distance of tracer from inlet: 0.5
L
�L�model length�. Flow is upward on the figure. Front widths: �
=6.1 mm �1000 ppm� and �=4.6 mm �500 ppm�.

FIG. 11. Effective front width � as a function of the mean front velocity U
�mm/s� for a mean distance x̄=0.5
L and polymer concentrations equal to
1000 ppm ��� and 500 ppm ���. Solid �dotted� lines: fit of the experimen-
tal data for a 1000 ppm �500 ppm� polymer solution by the equation �=a
+b log�U� with a=6.9±0.1 and b=0.4±0.05 �a=6.2±0.2 and b=0.5±0.1�.
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on the Péclet number. This information greatly helps one to
interpret the macroscopic dispersivity measurements of Sec.
IV B. Some of the features observed are specific to 2D sys-
tems while others can occur in usual 3D media.

At low Péclet numbers �typically Pe�10�, the dispersiv-
ity ld remains constant with Pe and is lower for the 500 ppm
polymer solution than for the 1000 ppm one. In Secs. IV D
and IV E, we have seen that, in this regime, transverse mix-
ing in junctions and channels is very effective so that the
correlation length of the motion of solute particles is of the
order of the length l of individual channels. As a result, this
motion may be described as a sequence of random steps of
varying durations and directions inside the medium; this is
the geometrical dispersion regime discussed in Sec. II and
for which D�Pe �ld=cst�.

In this regime, the factor of 2 difference of the disper-
sivities for 500 and 1000 ppm solutions is likely due to en-
hanced velocity contrasts between the fast and slow flow
regions. It is known, for instance,17 that the mean flow ve-
locity inside a cylindrical channel under a given pressure
gradient varies as the square of the radius a for a Newtonian
fluid and as a1+ 1 � n for a shear thinning fluid verifying Eq.
�2�. Let us assume that the pressure gradient between the
ends of flow channels in parallel is constant. If ��a�� ā, the
standard deviation �U of the mean velocities in the different
channels should scale like

�U

U
�

1 + n

n

��a�
ā

, �4�

where ��a� / ā is the normalized standard deviation of the
channel aperture �see Sec. III A�. Still using the same sim-
plistic approach, the typical standard deviation �t of the tran-
sit time along a channel of length l=0.67 mm should be
l�U /U2. Estimating the dispersion coefficient D from the
relation D� l2�t / t2 �t= l /U� provides the order of magnitude
of the dispersivity,

ld �
n + 1

n

�a

a
l . �5�

Since n decreases with the polymer concentration, ld should
therefore increase for a fixed aperture fluctuation ��a� /a.
Using in Eq. �5� the values of l, ��a� /a, and n corresponding
to the present experiments �Table I� leads to ld	0.7 and
1 mm, respectively, for the 500 and 1000 ppm solutions.
These estimations are close to the experimental values ld

=1±0.25 and 1.95±0.25 mm reported in Sec. IV C for the
same solutions �Fig. 7�. The difference may be due to the
assumption of identical pressure gradients on different paral-
lel channels used to obtain Eqs. �4� and �5�.

At higher Péclet numbers Pe�10, ld is no longer con-
stant but increases with Pe. This reflects the transition toward
a second dispersion regime in which mixing is less effective.
One must then take into account the stretching of dye paral-
lel to the flow by local velocity gradients in the flow section
�dye moves slower in the vicinity of the walls than in the
center of the channels�. This stretching effect is balanced by
transverse molecular diffusion, resulting in a Taylor-like dis-
persion mechanism �Sec. II�. This effect is made significant

by the increase with Pe of the correlation length of dye trans-
port along chains of flow channels parallel to the mean flow
discussed above in Secs. IV D and IV E.

The effect of the local velocity gradients is also en-
hanced by the specific topology of 2D micromodels. The
upper and lower walls are indeed continuous and some flow
lines remain close to them over their full length: as in Taylor
dispersion, slow solute particles near these walls may only
move away from them through molecular diffusion. Simi-
larly, fast moving particles halfway between the walls can
only reach them through transverse molecular diffusion. The
large correlation length of these velocity contrasts also re-
sults in Taylor-like dispersion effects.

Yet the influence of the disorder of the medium cannot
be completely neglected �since some tracer always moves
into lower velocity transverse channels�: the global disper-
sion results, therefore, from the combined effects of geo-
metrical and Taylor dispersion. As a result, the macroscopic
dispersion coefficient D follows in this regime a power law
D�Pe� of the Péclet number with an exponent �	1.33 in-
termediate between the values 2 and 1 corresponding, re-
spectively, to Taylor and geometrical dispersion.

Regarding the influence of the shear thinning properties,
increasing the polymer concentration enhances velocity con-
trasts between different flow channels while it flattens the
velocity profile in individual channels. The first effect in-
creases geometrical dispersion and is indeed observed at low
Péclet numbers. The second reduces Taylor dispersion: this
explains why, at higher Pe values, the values of ld for the two
polymer solutions are similar when the influence of Taylor
dispersion is large.

To conclude, the dispersion measurements reported in
the present work for transparent micromodels provide sig-
nificant novel information on the influence of the flow veloc-
ity and fluid rheology on miscible displacements in porous
media. Quantitative high-resolution optical measurements al-
lowed for thorough studies over a broad range of length
scales: in particular, it has been possible in the same experi-
ment both to determine macroscopic parameters such as the
effective dispersivity and to analyze at the pore scale the
dynamics of concentration variations.

In particular, the local analysis of the time lag between
the invasions of longitudinal and transverse channels of the
model has allowed us to relate the transition between two
dispersion regimes for Pe	10 to variations of mixing in
channel junctions. The variations of small scale structures of
the displacement front with the Péclet number and the poly-
mer concentration also provide information on the spatial
correlation of transport at the local scale.

In the future, investigation of these effects at still higher
resolutions should allow for detailed direct studies of mixing
and flow patterns right inside individual flow channels and
their junctions.
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