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Influence of flow confinement on the drag force on a static cylinder
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The influence of confinement on the drag force F on a static cylinder in a viscous flow inside a
rectangular slit of aperture /i has been investigated from experimental measurements and numerical
simulations. At low enough Reynolds numbers, F varies linearly with the mean velocity and the
viscosity, allowing for the precise determination of drag coefficients N and N\, corresponding,
respectively, to a mean flow parallel and perpendicular to the cylinder length L. In the parallel
configuration, the variation in A\ with the normalized diameter S=d/h of the cylinder is close to
that for a two-dimensional (2D) flow invariant in the direction of the cylinder axis and does not
diverge when B=1. The variation in A with the distance from the midplane of the model reflects the
parabolic Poiseuille profile between the plates for S<<1 while it remains almost constant for
B~ 1. In the perpendicular configuration, the value of \ | is close to that corresponding to a 2D
system only if 8<<1 and/or if the clearance between the ends of the cylinder and the side walls is
very small: in that latter case, N | diverges as 8— 1 due to the blockage of the flow. In other cases,
the side flow between the ends of the cylinder and the side walls plays an important part to reduce
N\ : a full three-dimensional description of the flow is needed to account for these effects. © 2009
American Institute of Physics. [doi:10.1063/1.3253324]

I. INTRODUCTION

Because of its fundamental and practical implications,
considerable research efforts have been devoted to the study
of fluid flow past fixed or moving slender bodies. Typical
examples include the settling of suspensions of solid par-
ticles such as found in the paper industry or the injection of
fibers.' Existing literature reports that for flows in confined
geometries such as pipes, hydrodynamic interactions be-
tween the fibers and the wall have a great influence on the
fiber orientation and, in turn, on the flow properties.3 Before
addressing such complex situations involving a large number
of particles, simple models considering isolated fibers have
recently been developed.4 In addition, the recent develop-
ment of applications involving micro- and nanorodlike
objectss‘6 also raises questions on the hydrodynamic forces
on objects placed in confined geometries such as microflu-
idic channels.

In this paper, the hydrodynamic forces F acting on a
static cylindrical rod inside a viscous flow in a slit of rectan-
gular cross section /g X W (with hy<< W) are determined both
experimentally and numerically. We have, in particular, com-
pared the cases of a cylinder parallel and perpendicular to the
flow. The rod is a cylinder of high aspect ratio, i.e., its length
L is always larger than its diameter d (L>d) but its length is
of the same order as the slit size W. The effect of the con-
finement due to the two closest plane plates of the slit is
particularly investigated: more precisely, the influence of the
ratio B=d/hg is studied over a broad range of values up to
B~ 1 (very strong confinement). The influence of the dis-
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tance W between the two lateral sides is also analyzed: it is
particularly significant for cylinders normal to the mean flow
and blocking it partly, resulting in large hydrodynamic
forces.

For viscous flows (either confined or not), the drag force
F per unit length is proportional to the dynamic viscosity 7
and to the velocity U far from the cylinder.7 For unbounded
flows, the leading term of the proportionality coefficients,
named N=F;/(nLU) [respectively, N\, =F, /(n»LU)] for
flow, respectively, parallel and perpendicular to the axis of
the cylinder, is of order e=1/In(d/ L)%

For slightly confined flows, wall correction terms in-
crease the drag force. The configuration in which a small
cylinder sediments halfway between parallel vertical plates
separated by a large distance hy (d<<L<<hy<<W) has been
studied experimentally by de Mestre.'” In this case, one has
N=a{e+[ay(L/hy)+ as]€’}, where the parameters a; are
constants, depending only on the orientation of the cylinder,
which is either vertical or horizontal. This configuration has
also been studied in the limit of cylinders of length large
compared with the aperture (hy<<L<W). In this case, the
influence of the boundaries on the drag is dominant and A
depends solely on the ratio S=d/h (and not on the cylinder
length L) and scales like 1/1n(B) for B<< 11

These theoretical predictions were confirmed and ex-
tended to large values of B by two-dimensional (2D) numeri-
cal simulations'* and experimental measurements'>'® in the
case of cylinders moving with their axis normal to the flow.
The situation where the cylinders are fixed has been also
considered in the limit of low™'** and higth23 Reynolds
numbers and for flows of complex fluids.”** Experimental
results are, however, scarce in this geometry: Dhahir and
co-worker”® measured forces on a cylinder of low aspect
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FIG. 1. Left: schematic view of the experimental setup used to measure \|,
L e[49,200] mm, /=60 mm, W=90 mm, h, is either 0.75 or 4.9 mm.
Right: setup for measuring \ |, 7p=4.9 mm, L € [20,89] mm.

ratio (d~L) for different fluid rheologies while Rehimi
et al.”’ used a geometry similar to ours, but did not perform
force measurements.

In the present experiments, forces are measured on a
static cylinder in a long slit of rectangular section where the
flow takes places. Both S8=d/hy and L/ W are varied as well
as the distance of the axis of the cylinder from the center
plane of the slit; both cases of a cylinder parallel and perpen-
dicular to the mean flow are studied. In the perpendicular
case, particular attention is given to the influence of the flow
between the ends of the cylinder and the sides of the slit (if
L<W): flow in this region is highly three dimensional (3D)
and 3D simulations are needed to estimate it.

The other parallel configuration has not been studied up
to now to our knowledge. However, previous authors studied
theoretically in the viscous regime28 and experimentally in
the inertial regime29 the related problem of the forces on a
cylinder located inside another coaxial one. In the viscous
regime, the velocity of a cylinder falling inside another one
has also been investigated.ao In this parallel case, we mea-
sure the drag forces induced by the flow on cylinders of
different diameters (0.04 < B=d/h,=0.83) and for different
locations in the aperture of the slit. In order to extend the
range of physical parameters investigated, 2D numerical
simulations are performed; they allow, in addition, to dis-
criminate between the contributions of the pressure and vis-
cous shear forces to the global measured drag force.

The experimental setup is presented in Sec. II and the
numerical method in Sec. III. The experimental and numeri-
cal results are reported in Secs. IV and V, respectively, for
cylinders parallel and perpendicular to the flow.

Il. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setups used for the determination of A\
and N\ | are shown in Fig. 1: they consist of a slit of rectan-
gular cross section placed vertically and made of two trans-
parent milled polymethyl methacrylate (PMMA) plates. The
cell aperture has the constant value hy=4.9 or 0.75 mm ex-
cept in the upper 60 mm of the cell, where it increases with
height from 0.75 (respectively, 4.9) to 5 mm (respectively,
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10 mm) for the first (respectively, second) model. This
Y-shape profile was designed to ease the insertion of the
cylinders into the cell.

The cylinders are hung on the hook of computer con-
trolled scales (Sartorius CP 225) measuring drag forces of
the flowing fluid on the cylinder in a range from 1077 to
8 X 107! N. A precision translation stage allows one to dis-
place the cylinders across the gap of the cell: in this way, the
hydrodynamic forces can be measured as a function of the
distance from the walls. Furthermore, the latter are transpar-
ent allowing one to determine precisely the location of the
cylinders within the cell. For the cell with the largest aper-
ture, side views can also be obtained so that the distance
separating the cylinder from the walls may also be measured;
this also allows one to control the parallelism of the object
with respect to the wall.

A gear pump sucks the fluid at the bottom side of the cell
and reinjects it into a bath covering the top side (the fluid
flows, therefore, always vertically downward). The fluids are
either pure water or water-glycerol mixtures with a relative
mass concentration of glycerol ranging from 50% to 80%.

The density p of the solutions and their temperature 7T
are first measured before each series of experiments by
means of an Anton Paar 35N densimeter. Tables of the values
of the dynamic viscosity # and of the corresponding density
of the solutions at all glycerol concentrations and for differ-
ent temperatures can be found in the literature.*"** The dy-
namic viscosity 7 corresponding to the measured values of
the temperature and of the density is then computed by in-
terpolation between the tabulated values. The final uncer-
tainty on 7 is about 3% and is lower for all other parameters:
this value has been confirmed by comparisons to direct mea-
surements of the viscosities of a few test solutions using an
Anton Paar MCR 501 rheometer. The relative influence of
viscous and inertial effects is characterized by the Reynolds
number Re=phoU/ 7 in which U is the mean velocity far
from the cylinder.

Measurement of \; was performed for several cylinders
with different diameters (see Table I), which were either
rigid (glass, copper, iron, or PMMA) or flexible (polyester or
silk threads). The flexible threads were stretched prior to the
experiments in order to remove their residual curvature.
These threads include multiple fibers so that their diameter is
not constant and varies periodically. Yet, such variations
were found to have a negligible effect on the drag force: in
the next parts, these threads are characterized by their mean
diameter.

For measuring A ;| (see Table II), the rigid cylinders are
placed horizontally in the cell of largest aperture (i.e.,
hy=4.9 mm); their center is halfway between the side walls
of the cell. There are hung using threads of small diameter
(100 wm), as shown in the right drawing of Fig. 1. There-
fore, the drag forces on the threads and on the vertical rod
add up: the former is, however, generally small compared
with the latter. Moreover, this extra force may be estimated
numerically (see Sec. III) and subtracted from the measure-
ments.

The flow rate is increased stepwise from Q=0 up to
Q=400 ml/min (respectively, Q=1400 ml/min) for the
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TABLE I. Experimental parameters corresponding to the measurements of
\j. d,L: diameter and length of the cylinder; /: cell aperture in the constant
aperture region; B=d/hgy; 7. dynamic viscosity of the solutions. The sym-
bols characterizing the different experiments are the same as in the experi-
mental figures. For data corresponding to symbols ([J), (H), and (X), L is
the difference between the lengths of two cylinders.

d hg L n
(mm)  (mm) B (mm) (mPas)  Symbol
Glass 1.5 4.9 0.31 89 40.0 O
PMMA 32 4.9 0.65 110 22.4 H
PMMA 4.05 4.9 0.83 100 21.7 X
Optical fiber 0.14 4.9 0.029 195 35.0 <
Polyester 0.20 4.9 0.041 177 17.5 O
Polyester 0.20 4.9 0.041 177 7.34 v
Silk 0.45 4.9 0.092 153 37.2 >
Glass 1.5 4.9 0.31 151 6.5 A
Glass 1.5 4.9 0.31 138 40.0 O
Iron 2.0 4.9 0.41 177 32.0 >
Iron 4.0 4.9 0.82 184 37.6 )
PMMA 4.05 4.9 0.83 179 21.7 ®
Polyester 0.18 0.75 0.24 135 119 v
Silk 0.45 0.75 0.6 82 24.0 2

water-glycerol mixtures (respectively, for water), and then
decreased down to Q=0. Three such cycles are performed in
order to verify the reproducibility of the measurement. Fig-
ures 3 and 4 display the variations in the drag force (aver-
aged during each constant flow rate step) as a function of the
mean velocity U. All data points corresponding to the same
value of U almost coincide: this demonstrates the very good
reproducibility of the measurements and the lack of hyster-
esis between the phases during which the flow rate is in-
creased or decreased.

lll. NUMERICAL SIMULATION PROCEDURE

In order to determine numerically A\ and \ |, the Stokes
and incompressibility equations must be solved with appro-
priate boundary conditions. The shear stress and the pressure
at the surface of the cylinder are then computed and added in
order to determine the total hydrodynamic force. For flow

TABLE II. Values of the experimental parameters corresponding to the mea-
surement of A ;. All these experiments were performed on the cell of aper-
ture 7,=4.9 mm and width W=90 mm; Re<<5.

d Range of L

(mm) B (mm) Symbol Position
Steel 0.98 0.20 85 v Center
Glass 1.5 0.31 37.5-88 A Center
Brass 2.96 0.60 86.5 | Center
PMMA 3.2 0.65 44.7-88 * Center
PMMA 4.05 0.83 67.5-88.7 [ J Center
Glass 1.5 0.31 37.5-84 A Wall
Brass 2.96 0.60 86.5 O Wall
Glass 4.15 0.85 25.4-88.8 O Wall
Glass 4.15 0.85 57.6 + Wall
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FIG. 2. Schematic 2D representation of the experimental configuration. (a)
Parallel case. (b) Perpendicular case.

parallel to the cylinders, 2D simulations provide reliable re-
sults; in the perpendicular configuration, 2D simulations
have also been used but 3D simulations are more realistic in
several cases. Figure 2 displays the geometry used in the 2D
simulations: the pressure gradient is applied in the z direc-
tion, which is along the cylinder axis for \; [see Fig. 2(a)]
and perpendicular to the cylinder axis for A | [see Fig. 2(b)].

A. Computation of \;

For a constant pressure gradient parallel to the z axis, the
velocity is everywhere parallel to z and V=V(x,y)e, due to
the translational symmetry of the system. The governing
equation of the flow then reduces to a 2D Laplace equation,
which has been solved by means of the finite element pro-
gram FREEFEM++.>> The grids contain at least 12 000 nodes
(values of the force computed with a finer mesh size were
identical within 2%). The hydrodynamic force per unit
length f is computed by adding to the shear force the contri-
bution of the pressure [(7/4)%dp/dz, where B=d/hg]. The
influence of the lateral side plates is taken into account by
setting a zero-velocity boundary condition for x=* W/2. A
cell of infinite width is modeled by assuming for x=* W/2 a
parabolic variation in the velocity with the distance y from
the midplane.

The force measured experimentally is the integral of the
forces acting along the full length of the cylinder. Assuming
that the velocity profile in the gap of the cell depends only on
its local aperture i(y) (lubrication approximation), the total
force is computed numerically from

L
Fp(L) = f f2)dz, (1)
-1

in which L is the length of the part of the cylinder located
inside the constant aperture domain (see Fig. 1) and [ corre-
sponds to the part inside the Y-shaped section. In the upper
fluid bath at the top of the model, the fluid velocity is small
enough so that the contribution to the force can be neglected.
The corresponding error has been estimated experimentally
by measuring the force on a short (20 mm long) cylinder
with its lower end at the top of the Y-shaped section: the
force was always less than 2% of the value measured for the
shorter cylinders used in the actual experiments.
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B. Computation of A |
1. 2D computation

Here, we consider the configuration in which the flow is
normal to the cylinder [see Fig. 2(b)]. Far from the cylinder,
the velocity has a parabolic Poiseuille profile. In this 2D
approach, the flow is assumed to be invariant in the x direc-
tion so that V=V,(y,z)ey+V,(y.z)e,. The 2D Stokes equation
is solved numerically by means of the FREEFEM++ program
using a mesh containing at least 15 000 nodes. The length of
the computational domain in the z direction is eight times its
height in the y direction (we checked that choosing a longer
computational domain in the z direction has a negligible in-
fluence on the value of the force). The shear and the pressure
forces are then computed from the velocity field.

In order to validate the present method, we compared its
predictions in the particular case of a cylinder located half-
way between the plates with those available in the literature.
In particular, Richou et al.* estimated analytically an asymp-
totical value of \ | in the limit when the free space between
the cylinder and the walls is small (8~ 1) by using the lu-
brication approximation. This approximation is valid in re-
gions where one of the front walls and the surface of the
cylinder are close to each other and nearly parallel. Since the
volume flow rate is conserved along the stream tubes, these
are the same regions in which the fluid velocity is the highest
(and therefore also the friction force and the pressure gradi-
ent). Rewriting these results* with our notations gives

5 B” 1/2 B3/2
N (B, 6= 0) — 671'w2(1 ,8)3/2 +9m\2 - ,3)5/2 ,
~
)‘shedr )\pressure (2)

where O is the distance between the middle of the cell and
the axis of the cylinder [see Fig. 2(b)]. The pressure term is
dominant when S— 1. Still using the lubrication approxima-
tion, we extended this result to the case of a cylinder touch-
ing the wall in the constant aperture region (thickness of the
free space equal to zero on one of the sides) with

Ni[B.5=(hy— d)/2]ﬂ—>

1
—=\,(B.6=0). 3
2z 1(B,6=0) 3)

Table IIT compares for different values of B=d/h the results
of the present 2D numerical simulations with the predictions
of Eq. (2) and with the theoretical and numerical results of
other authors for a cylinder located halfway between the
plates. The good agreement between the different values
validates the present numerical procedure.

2. 3D computation

The 2D approaches described above assume that the cyl-
inder is infinitely long: they describe correctly, therefore,
only the case of a cylinder of length equal to the width of the
slit (L=W in Fig. 1). If L<W, there is a deviation of the
flow lines from the z=cst planes (Fig. 2) resulting from
the free space separating the edge of the cylinder and the
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TABLE III. Comparison between values of N\, for a cylinder halfway be-
tween the plates from the present work and from previous numerical and
theoretical studies. The analytical solution of Ref. 4 uses Eq. (2); all the
results of the table correspond to 2D systems.

Numerical Numerical Analytical Analytical
B (present work) (Ref. 4) (Ref. 38) (Ref. 4)
0.01 5.100 5.309 5.109
0.1 13.34 13.74 13.36 11.52
0.4 72.69 73.28 72.93 72.55
0.6 262.4 266.8 265.3
0.8 1850 1884 1866
0.96 1.205 % 10° 1.149 X 10° 1.208 X 10°
0.99 3.955x 10° 3.174x 10° 3.965 % 10°

lateral walls. If this lateral clearance is large, this reduces
strongly the force on the cylinder compared with the 2D
configuration.

In order to estimate the magnitude of this latter effect
and compare the results with the experimental observations,
we solved numerically the 3D Stokes equation in some of
our experimental configurations by means of the FREEFEM3D
program.34 The numerical discretization consists of a P1-P1
finite element method using penalty for the pressure stabili-
zation. The meshes are generated using Gmsh (Ref. 35) and
the total number of vertices is at least 70 000. The ratio be-
tween the numerical lengths in the directions x and y is 18
(like in the experimental cell), and the ratio between the
numerical lengths in the y and z directions is 12.

IV. EXPERIMENTAL AND NUMERICAL VARIATIONS
IN A

Most previous experimental studies investigated only
configurations in which the cylinders are weakly confined
(i.e., B<1) and/or located halfway between the walls of the
channel. The present experimental setup has allowed us to
investigate the cases in which the confinement is strong as
well as the variations in the force when the cylinder comes
close to the wall.

A. Variation in the drag force on a cylinder parallel
to the flow with the mean velocity

In the present study, the dependence of the drag force on
the geometry of the system for viscous flow is addressed. For
this flow condition, the drag increases linearly with the mean
flow velocity, so that \; is independent of the velocity. There-
fore, before analyzing the dependence of A on the geometri-
cal parameters of the flow, we investigated the domain in
which the force and the velocity are proportional for fluids of
different viscosities.

Figure 3 displays a set of measurements obtained using a
water-glycerol mixture as the flowing fluid: the dashed line is
the variation in the force with the velocity predicted by the
2D numerical simulations of Sec. III A. The difference be-
tween the experimental data and the numerical results is
lower than 5% for all the experiments performed in the par-
allel case without any adjustable parameter. The linear in-
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FIG. 3. Variation in the force on a vertical cylinder located halfway
between the plates as a function of the mean velocity U of a water-glycerol
mixture: d=1.5 mm, hy=4.9 mm, =03, p=1.165><103 kg m™, and
7=40.0 mPas. Reynolds numbers: 0=Re=2.15. (A): experiments.
Dashed line: numerical computation.

crease in the force with the fluid velocity implies that the
inertial effects are negligible and the viscous effects are
dominant. This was to be expected in view of the low value
of the Reynolds number Re, which is less than 3 for all the
experiments using the water-glycerol solution (including that
of Fig. 3).

This condition is not satisfied for the experiments using
water displayed in Fig. 4: in this case, the variation displays
a clear upward curvature reflecting inertial effects at the
highest Reynolds numbers (up to Re=200 in the present
case). These effects become negligible only at the lowest
velocities corresponding to Reynolds numbers 0=Re=20.
In this latter range, the variation is linear and the slope is in
good agreement with the results of the numerical simulations
assuming Stokes flow (dashed line): a reliable value of the
coefficient \; can therefore be determined from the slope
of the curve. In the following, only results obtained for
Re=15 and corresponding, therefore, to this linear range of
variation in F with U will be reported.

B. Variation in A with the diameter

In this section, we study how confinement influences the
hydraulic forces on cylinders with their axis vertical (i.e.,
parallel to the flow) and located halfway between the two
parallel vertical walls of spacing h,. For this purpose, we
determine X\, from force measurements and we study its
variation as a function of the ratio S=d/h, by using cylin-
ders of different diameters d.

80+ a
- A
=2 60 -
g P
5 A’,‘
L 40 _-
.
A
20 ’A”
A"A/
07\3’ T T T T
0 10 20 30 40

Velocity (mm.s™)

FIG. 4. Same measurements as in Fig. 3 but using water (p=10° kg m>,
7=1.0 mPa s, and 0 <Re<220). (A): experiments. Dashed line: numerical
computation.
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16+

FIG. 5. Variation in N vs S8=d/h,, for cylinders located halfway between the
walls. Symbols of experimental data points are defined in Table I. Solid
lines: 2D numerical predictions. (a) Cell of aspect ratio W/hy=18
(hy=4.9 mm). Dashed line: numerical value in the limit W/hy— . (b)
Cells of very large aspect ratio W/hy=120 (hy=0.75 mm); dotted line:
viscous shear force term. Dashed line: pressure term. For all experiments,
Re=15.

However, in this configuration, the local distance be-
tween the front walls varies continuously in the Y-shaped
section at the top of the cell. As a result, the drag force per
unit length increases continuously along the rod and is only
constant in the region of constant aperture /. In order to
determine the value of the drag specifically in this latter re-
gion, we repeat the experiment twice with cylinders of two
different lengths L; and L, (large enough to reach the con-
stant aperture domain), but otherwise identical. From Eq. (1),
the difference between the forces measured at the same mean
flow velocity U on the two cylinders is AF=N\nU(L;—L,).

Figure 5(a) displays (solid lines) the variation in A, with
B predicted from the 2D numerical simulations for a cell of
aspect ratio W/ hy=18 (i.e., of aperture 1y=4.9 mm). Values
obtained by subtracting the forces measured for two cylin-
ders of different lengths [((J,H,X) symbols] are in good
agreement with the numerical model.

In the present experiments, the part / of the length of the
cylinder inside the Y-shaped section is generally much
smaller than the length L inside the constant aperture zone.
In this case, we estimate A\ from a single measurement of the
force F by assuming that although the local aperture
h(z) varies, \; is the same in all sections and that the corre-
sponding local mean velocity is U(z)=hoU/h(z) (in order to
ensure mass conservation). Equation (1) becomes then
F=NynU{L+[°[h/h(z)]dz} with h(z)=ho+(hg—h)z/1 (h; is
the aperture at the top of the Y-shaped section). \; is then
related to the force F by Nj=F/(nUL") in which L*=L
+1ho In(h;/ hy)/ (h;—hy) is an equivalent length. All data
points, except those corresponding to the ((J, B ,X) symbols
in Fig. 5(a), were obtained by this “equivalent length”
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FIG. 6. Variation in N\ with the normalized distance &/h, from the middle
plane [|8/hy| <]0.5—d/(2h)|=0.35] for d=1.5 mm and h;=4.9 mm. Other
parameters are the same as for the (A) symbols in Table I. (O, ¢, O):
repeat experimental runs for the same parameter values as (A). Solid line:
numerical computation of the force; dashed line: Poiseuille profile. Inset:
variation in the ratio of the values of A at the wall and at the center as a
function of B. (A) and (): experimental values; solid line: numerical
computation.

method: its validity is demonstrated by the small difference
between values obtained for same experimental parameters
by the two methods (® and X symbols).

Points ( ¢ ) and (V) correspond to the same experimen-
tal configuration except for the viscosity which differs by a
factor of 2: they coincide within experimental error which
confirms that the force is proportional to the viscosity.

In Fig. 5(a), experimental data points are (as expected)
closer to the numerical values taking into account the finite
aspect ratio W/hy=18 of the cell (solid line) than to those
assuming an infinite width W (dashed line). The difference
between the two curves is, however, only of the order of
10%, indicating that the effect of the lateral boundaries is
weak. This correction becomes completely negligible for the
narrower cell (5,=0.75 mm and W/h,=120) and the results
are then the same as for W/hy— . In this case, it is more
difficult to control experimentally the position of the cylin-
ders: the two experimental values obtained (using the
equivalent length approach) are, however, in good agreement
with the numerical predictions [see Fig. 5(b)].

Still in the high aspect ratio limit, we computed numeri-
cally the pressure force term [dashed line in Fig. 5(b)] and
the shear force term [dotted line in Fig. 5(b)]. On the one
hand, for 8>0.2, the viscous contribution levels off and de-
creases for 5> 0.8; on the other hand, the pressure contribu-
tion increases sharply when S increases. For > 0.2, the sum
of the two contributions (i.e., \;) increases almost linearly
with B8 (\j=2.1+13.88) and does not diverge for B=1 due
to the weak perturbation of the flow.

C. Variation in A with the location of the cylinder
in the aperture

The experimental setup also allows one to move pre-
cisely the cylinder across the gap of the cell. The normalized
distance 6/hy along y of the axis of the cylinder from the
middle plane of the cell is then determined with a precision
better than 50 wm using the side view pictures. The experi-
mental values of N\, are plotted as a function of d/h in
Fig. 6: in this case, the sequence of displacements toward
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and away from the walls is performed three times. For all the
values of B considered in the present work, this curve has a
parabolic shape with a maximum for 6/hy=0. The coeffi-
cient \; decreases when approaching the wall (solid line in
Fig. 6) but less than if it follows a parabolic variation for a
Poiseuille velocity profile with no cylinder present (dashed
line). The influence of the finite diameter of the cylinder,
particularly when it is of the order of the distance to the wall,
accounts for this difference.

The inset of Fig. 6 displays the variation with 8 of the
ratio of the values of A for a cylinder in contact with the
walls and in the middle of the cell. This curve is well fitted
by the function 1-0.9 exp(-3.48) in the range 0.03=B8=1.
Even though the overall variation is always parabolic, the
decreasing trend of N; near the wall is stronger for lower
values of ; for 8<<1, this variation is expected to be similar
to the Poiseuille parabolic profile.

V. EXPERIMENTAL AND NUMERICAL VARIATIONS
INA,

While the cylinder perturbs only weakly the flow when
its axis is parallel to it, the perturbation is much larger in the
perpendicular configuration. More precisely, the flow section
may be significantly reduced in the vicinity of the cylinder,
particularly as the normalized diameter S=d/hy— 1. This
blockage effect forces the fluid to flow around the cylinder: it
increases the local velocity and pressure gradient and, there-
fore, the drag force F. This local increase in the velocity does
not enhance inertial effects because the local distance be-
tween the surface of the cylinder and the side wall is also
reduced and its product with the local velocity is still of the
order of Uhy: the local Reynolds number remains therefore
of the order of Re. Practically, all experiments have been
performed in the range of 0 =Re =35 in which the drag force
is found to remain proportional to the velocity. These as-
sumptions of negligible inertial terms are confirmed by the
following observations: the cylinder remains motionless in
the middle of the cell at all flow velocities and no vortex
shedding is observed when dye is injected. This is likely due
to the confinement by the side walls increasing the threshold
Reynolds number for vortex emission compared with an in-
finite medium, as shown numerically by Zovatto’' and ex-
perimentally by Rehimi.”’

Section V A reports measurements of F for different val-
ues of B and for various locations of the cylinder in the slit
section (but always for L=W). The blockage effect dis-
cussed above is reduced when the cylinders do not span the
full width W of the slit (i.e., L<<W); then, a part of the flow
takes place between the ends of the cylinder and the side
walls. This bypass effect reduces in turn the drag force F.
Section V B reports experimental measurements of the varia-
tion in A, as a function of L/W together with the 3D nu-
merical simulations, which are needed to reproduce the
highly 3D bypass flows.

We observed that when perpendicular to the flow, the
cylinders move toward the middle of the cell while remain-
ing parallel to the plates (except for short cylinders) even for
Reynolds numbers as low as 0.1. Such a repulsion effect has
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FIG. 7. Variation in N\, as a function of B for L= W. Cylinder in contact
with a wall: open symbols (experiments); dashed dotted line (2D numerical
computations). Cylinder in the middle plane of the cell: filled symbols (ex-
periments); solid line (2D numerical computations, see Table III). Dotted
line: ratio of the values corresponding to the solid and dashed dotted lines.

already been reported in Refs. 21 and 22 and is related to
inertial effects of small magnitude (in a pure viscous flow,
the lift would be zero7). In contrast, the studies of Zovatto
and Juarez®'? predicted an attraction by the walls due to
variation in the shear in the slit gap, resulting in a shift—
increasing with the Reynolds number—in the equilibrium
position toward the walls. However, this phenomenon was
observed only for Reynolds number larger than 80 while the
present study deals with Reynolds number (Re<<5); this ef-
fect may, therefore, be expected to be negligible in the
present work and the cylinders should reach (as indeed ob-
served) an equilibrium in the middle plane of the cell.

A. Variation in A, with the diameter and the location
of the cylinder in the aperture

In these experiments, the length of the cylinder is chosen
as close as possible to the width of the cell (0.93<L/W
<1) in order to minimize the lateral bypass flow (this point
is discussed in detail in Sec. V B). In this case, Fig. 7 dis-
plays the variation in A ;| as a function of S, both for cylin-
ders located in the middle plane of the cell and in contact
with the front wall; this latter case is achieved experimen-
tally by inserting a magnetic wire in the cylinder and attract-
ing it with a magnet.

Here, too, the experimental results and the 2D numerical
simulations agree (to better than 10%). Experimental values
of A | up to 2500 are measured while, as shown in Fig. 5, the
maximal value of A is about 18; such large values and the
divergence of A | when S—1 are due to the small gap left
for the flow between the cylinder and the front walls. As this
gap decreases, the pressure drop corresponding to a given
constant flow rate rises strongly, leading to a sharp increase
in the drag force F on the rod.

When the axis of the cylinder is in the middle plane of
the cell, the minimum hydraulic aperture of each of the
two spaces between the cylinder and the nearest wall is
ho(1-B)/2 and the flows in both flow paths add up. If the
rod is displaced from its equilibrium position and touches
one of the walls along its full length, there is only one flow
path of minimum hydraulic aperture Ay(1—p) (i.e., twice the
previous one). In the lubrication limit (8— 1), the pressure
drop Ap for a given flow rate g varies as the power —5/2 of
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FIG. 8. Variation in the normalized drag coefficient X | /NT* as a function of
the normalized length of the cylinder L/W for cylinders of different diam-
eters located in the middle plane of the cell. (A), (¢), and (@) symbols
correspond, respectively, to experiments for 8=0.31, 0.65, and 0.83 (see
Table II for more details). Dashed, dashed-dotted, and dotted lines: 3D nu-
merical results obtained, respectively, for 8=0.31, 0.65, and 0.83.

the hydraulic aperture, as shown by Eq. (2). Even taking into
account the fact that the flow takes place in a single channel,
this variation with the aperture is fast enough so that the drag
force is lower in the configuration in which the cylinder
touches the wall: more quantitatively, from Eq. (3), the co-
efficient A | decreases by a factor of 2\5 from its value in the
centered position. This difference between the drag forces
measured in these two locations of the cylinder is indeed
observed experimentally, as shown in Fig. 7 (dashed line).

The case L= W seems, therefore, to correspond well to
the 2D configuration studied numerically;4’l9’20 however,
when the cylinder is shorter than the width W of the slit, flow
may be perturbed (particularly when B— 1) so that the 2D
approximations do not reproduce well the observations.
These effects will now be investigated.

B. Variation in A ;| with the length of the cylinder

In this section, the variation in the transverse drag coef-
ficient \ | is studied as a function of the normalized length
L/W characterizing the lateral confinement. The experimen-
tal variations in A ;| with W for three cylinders of different
diameters d have first been compared. For each cylinder, the
maximum value AT of \ | is reached when L/ W is close to
1. In this case, the values of AT** are close to the predictions
of 2D simulations (see Fig. 7); small fluctuations are ob-
served and are likely due to experimental uncertainties (in-
homogeneities of the cell aperture and cell roughness for
instance).

Figure 8 displays the experimental variation (symbols)
in the normalized ratio A | /\T™ with L/W in the range of
0.42=L/W=0.99. As L/W decreases away from 1, the ratio
N /NT™ becomes significantly lower than 1; this variation
occurs earlier and is particularly strong when §3 is large: for
instance, for 8=0.83, A | /N7 decreases by 60% for a small
reduction in L/W by 5%. This sharp variation is due to the
partial diversion of the flow into the free space between the
ends of the rod and the side walls which, in turn, reduces the
drag force F. As observed in Fig. 8, this bypassing effect is
particularly strong when the clearance at the end of the cyl-
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FIG. 9. Variation in the normalized drag coefficient X | /NT** as a function of

the normalized length L/ W for two cylinders of different diameters located
either in the middle plane of the cell (filled symbols) or near a wall
(open symbols). (A, A) and (O, @) symbols correspond, respectively, to
B=0.31 and 0.83 (see Table II). Lines are a guide to the eyes.

inder is large (low values of L/ W) while the interval between
the surface of the cylinder and the two parallel walls is small
(when B—1).

In order to predict numerically the variations in N | /T,
the full 3D flow velocity field v(x,y,z) must be determined,
and not only the components v,(y,z) and v.(y,z) as before.
This has been achieved by using the 3D version of the
FREEFEM program (see Sec. III). As a validation test, we
consider first the special situation in which the length of the
cylinder is equal to the width of the cell (L=W). If, in addi-
tion, a perfect slip condition is used for the side walls, then
the 3D and 2D simulations are equivalent and similar results
should be obtained. Actually, 3D simulations predict values
of N, larger than 2D ones by 20% or less: this difference is
likely due to computational limitations related to the minimal
practical value of the mesh size.

These 3D simulations were then performed for different
values of L/ W and for two different normalized diameters 8
corresponding to actual experiments. The dotted and dashed-
dotted lines in Fig. 8 connect the data points corresponding
to the ratios N | /\T™ obtained from these simulations (the
values of N7 are those obtained in the validation simula-
tions for L=W). The experimental and numerical variations
in A | /NT* with L/W are in very good agreement. This con-
firms that in this geometry, the variations in the drag force
with L/W reflect 3D modifications of the flow structure and
cannot be accounted for by 2D models.

The variation in \ | with the distance of the rod from the
middle plane of the cell has also been investigated: as shown
in Sec. V A, the drag force should be lower when the rod is
in contact with one of the front walls than when it is located
halfway between them. We compared the experimental varia-
tions in X | /N'T** with L/ W in both configurations: the results
obtained for two values of the normalized diameter B are
displayed as symbols in Fig. 9. The drop of the coefficients
when L decreases is more pronounced for a cylinder halfway
between the walls. This can be explained by the different
relative magnitude of the hydraulic impedance of the flow
paths between the ends of the rod and the side walls and of
the direct paths between the rod and the front walls.

Finally, the influence of the viscosity has been investi-
gated by comparing the results of experiments using identi-
cal parameters but fluids with two different viscosities:
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7=50 mPas (+) and =30 mPas (O). The points coin-
cide, which confirms that the drag force is proportional to the
viscosity.

VI. CONCLUSION

The experiments and numerical simulations reported in
the present paper have allowed one to determine the influ-
ence of confinement effects on the drag force F on a static
rigid cylinder in a viscous flow inside a rectangular slit.
Significantly different results have been obtained in the cases
of cylinders with their length parallel and perpendicular to
the mean flow, although, in both cases, F is proportional to
the mean velocity and the viscosity in the range investigated
and can, therefore, be characterized by drag coefficients \;
and A\ | .

In the parallel case, A, increases linearly with the con-
finement parameter S=d/h, but does not diverge for S=1;
\ | increases much faster with B8 and diverges near 8=1 (due
to the blockage of the flow) when the length L of the cylinder
is close to the width W of the slit. 2D numerical simulations
in planes, respectively perpendicular (for ;) and parallel (for
N, and L=W) to the mean flow, reproduce well the results
obtained in these two cases. In the perpendicular case, ana-
lytical model based on the lubrication approximation also
provides a good agreement, still for L=W and for a strong
enough confinement (i.e., for 8>0.2).

When the cylinders are shorter than the width W of the
slit, a bypass flow appears in the space between the edges of
the cylinder and the side walls of the slit: this reduces the
direct flow in the gap between the front walls and the cylin-
ders. This effect is particularly strong when the confinement
parameter S is close to 1; it results in a sharp decrease in the
coefficient A | . 3D numerical simulations are needed in order
to predict quantitatively this effect.

The present experiments also provided evidence for an
inertial lift force in the case of cylinders perpendicular to the
flow direction. This force was observed for Reynolds num-
bers as low as 0.1 and kept the cylinders in the middle plane
of the model: this may explain recent observation of the
depinning of fibers trapped inside fractures.’® This observa-
tion may be contrasted with numerical simulations,”"**
which predict an opposite effect, i.e., a force pushing the
cylinder toward the walls. This latter force should, however,
appear only at larger Reynolds numbers: further studies are
needed to investigate these issues.

The present study dealt only with motionless rigid cyl-
inders inside a viscous flow. Extending these studies to the
measurement of forces on moving cylindrical objects, both
rigid and flexible, will make the results applicable to the
motion of freely swimming microorganisms.37
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