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Abstract

Flow and transport are studied in transparent model fractures with rough comple-
mentary self-affine walls with a relative shear displacement ~u. The aperture field
is shown to display long range correlations perpendicular to ~u: for flow in that
direction, the width and geometry of the front of a dyed shear-thinning polymer
solution displacing a transparent one have been studied as a function of the fluid
rheology and flow rate. The front width increases linearly with distance indicating
a convection of the fluids with a low transverse mixing between the flow paths. The
width also increases with the flow-rate as the fluid rheology shifts from Newtonian
at low shear rates towards a shear thinning behaviour at higher shear rates. The
width also increases with the polymer concentration at high flow-rates. These re-
sults demonstrate the enhancement of the flow velocity contrasts between different
flow channels for shear thinning fluids. The relative widths at low and high shear
rates for different polymer concentrations are well predicted by an analytical model
considering the fracture as a set of parallel ducts of constant hydraulic apertures.
The overall geometry of the experimental front geometry is also predicted by the
theoretical model from the aperture map.

Key words:

1 Introduction

Transport and flow in porous media and fractured rocks are encountered in
many engineering fields [1] and complex fluids such as polymer gels or surfac-
tants are often involved. Applications include enhanced oil recovery (EOR),
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drilling muds and heavy oil recovery. In EOR, for instance, polymer flood-
ing reduce viscosity driven instabilities (a polymer solution is injected in the
reservoir and followed by a water flood). When these complex fluids have shear
thinning properties, experimental flow measurements (see [2]) display specific
features such as an enhancement of the effective hydraulic conductivity (or a
reduction of the apparent viscosity) compared to the case of Newtonian flu-
ids.
These effects may be strongly influenced by fractures which are frequently
encountered in many reservoirs and generally display a broad range of charac-
teristic length scales. While it is customary to visualize the fractures as parallel
plates separated by a constant distance [3], this representation is rarely accu-
rate: fracture wall surfaces are indeed rough and do not perfectly match [4].
This creates voids of various size resulting in spatial heterogeneities of the flow
field [5,6].
The objective of the present work is to analyze experimentally and analytically
the fluctuation of the flow velocity and its dependence on the fluid rheology
and on the mean flow velocity for shear thinning solutions flowing in transpar-
ent models of single fractures with rough walls. The experiments have been
realized in a configuration in which flow is strongly channelized as is frequently
the case in natural fractures [1]: this will be shown to allow for analytic pre-
dictions of the relation between the flow distribution and the apertures and,
also, of their dependence on the rheological characteristics of the fluids used
in the experiments.
We have sought particularly in this work to reproduce the roughness of natural
fractured rocks which is characterized by a broad distribution of the charac-
teristic length scales [7]. More precisely, these surfaces can often be considered
as self-affine [8], this means that they remain statistically invariant under the
scaling transformation:

h(λx, λy) = λζh(x, y), (1)

where h(x, y) is the surface height and ζ is the roughness or self-affine ex-
ponent. For most materials including granite, ζ is close to 0.8 [9] but it is
close to 0.5 for materials such as sandstone and sintered glass beads [10,11].
Many experiments suggest that ζ is independent on the orientation of profiles
measured on the surface with respect to the direction of crack propagation (a
slight anisotropy has however been recently observed experimentally on some
materials [12]).
The rough surfaces used in the present work are transparent milled plexiglas
plates with an isotropic self-affine geometry of characteristic exponent ζ = 0.8:
they allow for optical flow observations by means of dyed fluids (practically,
a transparent solution is displaced by a dyed one and the geometry of the
front is determined by image analysis). For each fracture, two such comple-
mentary surfaces are realized and match perfectly when brought in contact: in
the model, both a spacing normal to the mean fracture surface and a relative
lateral shift ~u are introduced in order to create a mismatch and to obtain a
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variable aperture field [13].
While the surfaces are isotropic, previous laboratory measurements and nu-
merical investigations [14–18] show that the lateral shift introduces an anisotropy
of the permeability which is higher in the direction perpendicular to ~u. More
precisely, flow channels perpendicular to ~u and with a length similar to the
model appear as shown in a previous work [19]. As a result, for flow perpendic-
ular to ~u, the overall geometry of the displacement front of a fluid by another
of same rheological properties is well reproduced by modelling the fracture as
a set of parallel ducts with an hydraulic aperture constant along the flow [19]:
the present work deals exclusively with this configuration.

The fluids used here display at low shear rates (γ̇ < γ̇0) a“plateau” domain in
which they behave as Newtonian fluids of constant viscosity η0 while, at higher
shear rates γ̇ > γ̇c, η decreases with γ̇ following a power law of exponent 1−n.
Comparing the velocity contrasts between the different flow paths in the two
regimes allows one therefore to estimate the influence of the rheology since
the velocity contrasts should be enhanced in the shear thinning case. Finally,
an analytical model predicting the influence of the parameters η0, γ̇0 and n on
the variation of the fluid velocity fluctuations with γ̇ is derived and compared
to experimental observations.

2 Experimental procedure

2.1 Characteristics of the model fracture

The model fracture is made of two complementary rough self-affine surfaces
without contact points: both surfaces are obtained from a transparent ma-
terial by means of a milling machine and their size is 85 mm × 171 mm.
A detailed description of the procedure is given in [18]: a self-affine surface
h(x, y) is first generated numerically using the mid-point algorithm [20] with
a self-affine exponent ζ = 0.8 as observed in many materials [9]. A second
surface, complementary from the first one, is generated and then shifted nu-
merically parallel to its mean plane by 0.33 mm. The milling tool is computer
controlled and a complex tortuous path may be imposed to obtain the self-
affine geometry. Moreover, the borders of two parallel sides of the surfaces rise
above the rough surface: they are designed so that, when clamped against the
matching border of the other surface, there is a void space in the remaining
area. The mean planes of the facing surfaces are parallel outside these borders
with a mean distance: ē = 0.77 mm.
The local aperture e(x, y) at a location (x, y) in the fracture plane may be
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predicted from the mathematical surface h(x, y) by the relation:

e(x, y) = h(x, y) − h(x, y + u) + ē, (2)

where u is the lateral shift. Figure 1 shows the aperture field of the fracture

Fig. 1. Upper figure, gray scale representation of the aperture field. Field of view:
85 mm × 171 mm. Aperture field - mean value: ē = 〈e(x, y)〉(x,y) = 0.77 mm; and

the aperture fluctuation: σe = 〈(e(x, y) − ē)2〉
1/2
(x,y) = 0.1 mm. Shift amplitude:

u = 0.33 mm (oriented vertically on figure). In the present work, flow is parallel
to x direction (horizontal on the figure). Lower image: binarized aperture field with
a threshold value equal to the mean aperture (0.77 mm).

considered in this work: the binarized image (lower part of Fig.1) displays a
clear anisotropy and a large correlation length perpendicular to the shift ~u.
Quantitatively, this effect may be characterized by the following correlation
function, also called semivariance [21]:

Γ(~δ) = 〈(e(~r) − e(~r + ~δ))2〉, (3)

measuring the spatial correlation of the aperture field between two points sep-
arated by a lag vector ~δ. Orientations of ~δ perpendicular (x − direction) and
parallel (y − direction) to the shift are of special interest. Figure 2 displays

Fig. 2. Variation of normalized semivariograms, Γ/(2σ2
e) as a function of lag distance

||~δ|| (mm) for the aperture field displayed in Fig. 1. Dotted line: correlation along
the direction y of the shear. Solid line: correlation along the perpendicular direction
x (parallel to the flow in the rest of the paper).

variations of the semivariance in both directions. When the lag modulus ||~δ|| is
larger than the correlation length of the aperture field, one expects Γ to reach
a constant value equal to 2σ2

e , where σ2
e = 〈e(x, y)− ē〉2 is the variance of the

aperture. The semivariance Γ reaches this limit, but in a very different way for
the two orientations of ~δ. In the direction y parallel to the shift, Γ becomes of
the order of (and sometimes larger than) 2σ2

e for ||~δ|| > 8 mm. In the perpen-
dicular direction x, Γ never exceeds the saturation value and slowly increases
towards it: these differences reflect the large scale anisotropic structure of the
aperture field. They can be characterized by defining a correlation length as
the distance at which Γ/(2σ2

e) is equal to 0.5: this length is respectively of the
order of 0.25 and 0.5 mm in the parallel and perpendicular directions.
Semivariograms have been computed on surface maps of epoxy casts of a
fractured granite sample in a previous work [19] and display similar features:
moreover, normalized curves Γ/(2σ2

e) corresponding to different values of u
displayed a universal variation as a function of the normalized lag δ/u. This
suggests that results obtained in the present work might be extrapolated to
other values of u.
Finally it should be noted that the ratio S of the standard deviation of the
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aperture σe to the mean aperture ē is only of 0.13 (Fig. 1). This implies,
as discussed by [22], that the fracture can be considered as ”hydraulically”
smooth with relatively small velocity contrasts between and along flow lines.
This keeps the trajectories of the preferential flow channels relatively straight
and simplifies subsequent analysis.

2.2 Experimental set-up and procedures

The plexiglas model fracture is held vertically in a fixed position between a
light panel and a 12 bits digital CCD camera with a high stability and dy-
namical range. Flow is induced by sucking a dyed solution from the top side
while the lower side is slightly dipped into a bath containing a clear fluid. An
appropriate calibration, described in reference [18], allows one to obtain from
all pictures of each experiment the corresponding concentration map c(x, y, t).
Here, we focus on the geometry of the isoconcentration front c/c0 = 0.5 which
is determined by thresholding the concentration maps and which depends
strongly on the heterogeneity of the flow field.

2.3 Rheological characteristics of shear-thinning solutions

Fig. 3. Variation of the effective viscosity η of the polymer solutions as a function
of the shear rate γ̇ for two water-polymer solutions of different concentrations: 500
ppm (�) and 1000 ppm (◦). Dashed lines: Carreau functions corresponding to the
sets of parameters of Table 1; continuous lines: truncated power law approximation
corresponding to a = ∞ in Eq. (4).

In this work, we used shear thinning polymer solutions, more specifically
water-scleroglucan solutions; they have been characterized using a Contraves

LS30 Couette rheometer for shear rates γ̇ ranging from 0.016 s−1 up to 87
s−1. Two different polymer concentrations equal to 500 ppm and 1000 ppm
have been used. The rheological properties of the dyed and transparent solu-
tions have been verified to be constant with time within experimental error
over 3 days; the variation of the effective viscosity η as a function of the shear
rate γ̇ is displayed in Figure 3. The variation of η with γ̇ is well adjusted by
the Yasuda-Carreau function (dashed line):

η =
1

(1 + ( γ̇
γ̇0

)a)
1−n

a

(η0 − η∞) + η∞. (4)

The values of the corresponding rheological parameters for the polymer solu-
tions characterized in the present work are listed in Table 1. η∞ is too low to
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be determined within the available range of shear rates (γ̇ ≤ 87 s−1) and it has
been taken equal to the viscosity of the solvent (i.e. water). In Eq. (4), γ̇0 cor-
responds to a crossover between two behaviors. On the one hand, for γ̇ < γ̇0,
the viscosity η tends towards the limiting value η0, and the fluid behaves as a
Newtonian fluid. On the other hand, if γ̇ > γ̇0, the viscosity follows a power
law variation reflecting its shear thinning characteristics with η ∝ γ̇(n−1). For

Polymer Conc. n γ̇0 η0 a

ppm s−1 mPa.s

1000 0.26 ± 0.02 0.026 ± 0.004 4490 ± 400 2

500 0.38 ± 0.04 0.077 ± 0.02 410 ± 40 2

Table 1
Rheological parameters of scleroglucan solutions used in the flow experiments.

each experiment, the flow rate is kept constant at a value between 0.01 ml/min
and 5 ml/min (corresponding mean flow velocities: 0.0003 mm.s−1 ≤ v ≤ 0.14
mm.s−1). Under such conditions, the typical shear rate at the surface of the
fracture walls γ̇ = 6v/ē (see Sec. 4.1) ranges between 2.5 10−3 s−1 and 1.1
s−1. The latter value is far below the shear rate corresponding to the second
Newtonian plateau (η = η∞) and this limit will not be considered in this work.
On the contrary, the lowest values of the typical shear rate are much lower
than γ̇0: the Newtonian “plateau” in the rheological curves may therefore have
a crucial influence of the flow properties.

In order to obtain a simple expression accounting for the effect of the fluid
rheology on the velocity fluctuations, the rheological law of the fluids is ap-
proximated in section 4 by a truncated power law which corresponds to the
limiting form of Eq. 4 for a = ∞ (continuous line in Figure 3). When γ̇ < γ̇0,
the viscosity η(γ̇) is considered as constant and equal to η0; for γ̇ > γ̇0, η(γ̇)
is assumed to follow a power law η(γ̇) = mγ̇n−1 in which m = η0/γ̇0

n−1. The
parameters n, γ̇0 and η0 are obtained from Tab.1. While this expression does
not reproduce accurately viscosity variations in the transition zone, it captures
well the essential features of the rheology of the fluid at low and high shear
rates. Its key feature is to allow for analytical computations of the effect of
the fluid rheology on the velocity fluctuations: this allowed us to demonstrate
the enhancement of the channeling effects for shear thinning solutions which
is the topic of the present work.
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Fig. 4. Maps of the relative concentration C(x, y, t) and corresponding displacement
fronts (in white) at three different flow rates. (a) Q = 0.01ml/min (v̄/vc ≃ 1); (b)
Q = 0.1ml/min (v̄/vc ≃ 10); (c) Q = 1ml/min (v̄/vc ≃ 100). The velocity vc

corresponds to the transition between Newtonian like (v < vc) and shear thinning
(v > vc) flows (see Sec. 4). Polymer concentration: 1000 ppm. Pure injected fluid
appears in white and displaced fluid in black. x scale: distance from left side of
model; y scale: distance from injection line. Correlation length of aperture field in
the direction parallel (resp. perpendicular) to the flow (as defined in section 2.1) =
0.5 (resp.) 0.25mm; amplitude of the relative shift of the walls (see orientation on
Figure): u = 0.33mm.

3 Flow velocity dependence of front geometry

The distribution of the two fluids during the displacement depends signifi-
cantly on the flow rate: this is observed clearly in Figure 4 which displays
three maps of the relative concentration C (in gray levels) corresponding to
different flow rates (increasing from (a) to (c)) and to similar injected volumes
(in all cases, the polymer concentration is equal to 1000 ppm). The geometry of
the mixing zone will be characterized in the following by that of the displace-
ment front (white lines) assumed here to coincide with the isoconcentration
line C(x, y, t) = 0.5. Two important features of the displacement front have
been observed: (a) its geometry depends on the flow rate Q, and (b) its width
parallel to the flow increases linearly with the distance from the injection side.
The first point is illustrated by Figure 4 which displays three iso-concentration
fronts overlaid on the corresponding concentration maps and measured during
fluid displacements at three different flow rates, but for a same polymer con-
centration (1000 ppm): the front width parallel to the flow direction is clearly
larger at the highest flow rate.
The broadening of the displacement front may be characterized quantitatively
from the variation of the mean square front width, σx(t) = 〈(x(t)− x̄(t))2〉1/2,
as a function of the mean distance x̄(t) of the front from the injection side
(Figure 5). For all values of Q, σx(t) increases linearly with x̄(t). In the next
section, this will be shown to result directly from the underlying channelized
structure of the aperture field. The width of the front after a transit time t cor-
responds then directly to the product t∆v where ∆v is the velocity difference
between the different channels (the transverse exchange between channels is
too small to allow one to reach a diffusive spreading regime).
At all distances, the width σx(t) increases with the flow rate Q but with a
particularly sharp variation between Q = 0.1 ml/min and Q = 0.5 ml/min.
It will be seen that, at this transition flow-rate, the shear rate at the fracture
walls becomes of the order of γ̇0 (the threshold value above which the fluids
display shear thinning characteristics).

7
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Fig. 5. Variation of the mean front width σx(t) = 〈(x(t) − x̄(t))2〉1/2 as a function
of the mean distance x̄(t) from the inlet side of the model. Polymer concentration:
1000 ppm. Flow rates: Q = (△)2.0,(+) 0.5, (◦) 0.1, (2) 0.02 ml/min.

4 Modelization

4.1 Flow between parallel plates with a constant gap

We compute the flow of the polymer solutions between parallel plates using
the same approach as in reference [23]. The relation between the longitudinal
pressure drop and the velocity profile in the gap is obtained by using the trun-
cated power law model discussed in section 2.3. The flow field is unidirectional
and parallel to x so that vx(z) is the only non zero velocity component. The
strain rate is given by: γ̇(z) = dvx/dz.
At low pressure gradients, the fluids behave like a Newtonian fluid with a
constant viscosity η0 and the resulting velocity profile is parabolic and sym-
metrical between the walls. Then, the shear rate is zero half way between the
fracture walls and reaches a maximum at their surface where γ̇ = 6v/e (e is
the distance between the plates). This value of γ̇ is proportional to the mean
flow velocity or, equivalently, to the pressure drop.
As the flow rate keeps increasing, γ̇ becomes larger than γ̇0 and the non New-
tonian characteristics of the fluid modify the velocity profile. The mean flow
velocity vc corresponding to the transition between the two regimes satisfies:
vc = eγ̇0/6 and the corresponding pressure gradient is: ∇Pc = 2η0γ̇0/e.
As v increases above vc, the layer where the shear rate is higher than γ̇0 be-
comes thicker and the velocity profile vx(z) is no longer parabolic: the full ex-
pression may be derived analytically and is given in Eq. (5) of reference [23].
The mean velocity, v, can then be computed by integrating vx(z) over the
fracture gap, leading to:

v =
e2

12(2n + 1)η0
∇P.

[

(1 − n)(
∇P

∇Pc
)−3 + 3n(

∇P

∇Pc
)

1−n

n

]

. (5)

We consider now the case of shear thinning fluids such that n > 0 and
(1 − n)/n > −1. Then, the leading term in Eq.(5) is (∇P/∇Pc)

(1−n)/n and,
therefore, when ∇P >> ∇Pc, Eq. (5) becomes:

v ≃
e2

12

(

∇P

ηeff

)
1

n

, (6)

where ηeff = η0 (2γ̇0/e)
1−n ((2n + 1)/3n)n. This is similar to the generalized

version of Darcy’s law often applied to the flow of non Newtonian and, more
specifically, to power law fluids in porous media [24,26,27].
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4.2 Flow in rough fractures

In this part, we focus on the variations of the velocity in the plane (x, y) of the
fracture and we assume therefore a two-dimensional flow field ~v(x, y) equal to
the average of the fluid velocity profile over the gap with ~v(x, y) = 〈~v(x, y, z)〉z.
The development with time of the front (represented by the isoconcentration
lines c/c0 = 0.5) will now be analyzed by assuming that its points move at the
local flow velocity ~v(x, y) and an analytical model predicting the global front
width will be developed.
This model is based on the results of a previous work [19] demonstrating that,
in such systems, the aperture field is structured into channels perpendicular to
the lateral shift ~u of the surfaces. For a mean flow parallel to these channels, the
paths of the tracer particles have a weak tortuosity; also, the velocity variations
along these paths are small compared to the velocity contrasts between the
different channels. Under these assumptions, the velocity of a particle located
at a distance y, perpendicular to the mean velocity, satisfies:

~v(x, y) ≈ v(y)~ex, (7)

where ~ex is the unit vector parallel to the mean flow. Note also that, in the
geometry discussed in this section, there are no contact points between the
walls of the fractures: this avoids to take into account the large tortuosity of
the flow lines in their vicinity.
If the fluid is Newtonian with a constant viscosity, then, for each channel, the
velocity is related to the pressure gradient ∇P by relation (6) with n = 1;
e is now an equivalent (or hydraulic) aperture associated to each channel
and noted e(y) and the equation represents the classical linear equivalent of
Darcy’s law for fractures. Previous studies have shown that, for relatively small
aperture fluctuations, this hydraulic aperture is well approximated by the ge-
ometrical aperture [5,22]: this suggests that e(y)2 can be taken equal to the
mean of the average of the square of the local apertures along the direction
x i.e. e(y)2 = 〈e(x, y)2〉x. The validity of this assumption has been tested
numerically previously for a similar geometry [19] in the case of a Newtonian
fluid: these simulations used the lattice Boltzmann method to determine the
2D front geometry at all times: except for fine scale details, the profile x(y, t)
of the distance of the front from the inlet at a given time t follows very closely
the variations of e(y)2.
For a power law fluid such that n < 1, the velocity satisfies the non linear
generalized relation (6). We seek now to generalize to this case the relation
between the front geometry and the aperture variation established for the
Newtonian fluids: the aperture field is still assumed to be strongly correlated
in the flow direction, allowing one to consider the fracture as a set of parallel
ducts.
We consider particles starting at t = 0 from the inlet of the model at differ-
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ent transverse distances y and moving at different velocities v(y). Then the
distance x of the particles from the inlet at time t after the injection satisfies
x(y, t) = v(y)t so that the mean distance of the front from the inlet side is
x̄(t) = 〈v(y)〉yt = v̄t and:

x(y, t)

x̄(t)
=

v(y)

v̄
. (8)

Moreover, the mean square deviation σx(t) = 〈(x(y, t)− x̄)2〉1/2 should satisfy:
σx(t) = σvt where σv is the mean square deviation of the velocities in individual
channels from their mean value v̄. Combining the previous relations leads to:

σx(t)

x̄(t)
=

σv

v̄
. (9)

This equation shows that there is a direct relation between the front geome-
try and the variations of the velocity from one channel to another: for power
law fluids, the latter are related to the variations of the hydraulic aperture by
Eq. (6). In order to estimate these variations, we introduce a modified reduced
aperture deviation Sh defined as the ratio between the standard deviation of
the hydraulic aperture e(y) to its mean. The parameter Sh is equivalent to
the reduced aperture deviation S defined in section 2.1 but the geometrical
aperture is replaced by the hydraulic one. Here, we are interested in weakly
fluctuating systems, i.e. for which both S and Sh are small compared to one.
In addition, the hydraulic aperture e(y) is observed to follow a Gaussian dis-
tribution. Moreover, Eq. (6) shows that, for a given pressure gradient ∇P ,
v scales as en+1/n : together with the above assumptions, this leads to the
following relation between the reduced velocity fluctuations σv/v̄ and Sh:

σv

v̄
=

n + 1

n
Sh. (10)

Combining Eqs. (9) and (10), leads to:

σx(t)

x̄(t)
=

n + 1

n
Sh. (11)

5 Quantitative comparison between the experiments and the model

In the present experiments, the polymer solutions are expected to behave like
Newtonian fluids as long as the shear rate γ̇ is everywhere lower than the
critical value γ̇0 (see Table 1). As the flow rate increases, the critical shear
rate γ̇0 is first reached at the wall of the fracture where γ̇ is highest. If the
fracture is modeled as two parallel plates separated by the mean aperture ē,
then γ̇ = γ̇0 at the walls when the mean flow velocity is vc = ēγ̇0/6. Above
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Fig. 6. Experimental variation of the ratio σv/v̄ = σx/x̄ in the model fracture
(Sh ≃ 0.02) as a function of the normalized mean velocity v̄/vc for shear thinning
solutions of concentrations 1000 ppm (◦) and 500 ppm (2). Horizontal dotted lines:
theoretical values of σv/v̄ computed from Eq.(11) for a Newtonian fluid (n = 1)
and for 500 ppm (resp. 1000 ppm) polymer solutions (n = 0.38, resp. 0.26). Solid
and dashed lines: variations of σv/v̄ a as function of v̄/vc computed by integrating
Eq. (5).

this velocity, the shear thinning properties of the fluids influence the flow and
enhance the velocity fluctuations.

Fig. 6 displays the experimental variations of the normalized velocity fluctu-
ations (equal to the normalized front width σx(t)/x̄(t)) as a function of the
reduced velocity v̄/vc for both polymer solutions. The values predicted by
Eq. (11) for a Newtonian fluid (n = 1) and for power law fluids with the same
index as the two solutions are also plotted.
For v̄/vc < 1 the experimental values are similar for both solutions and close
to the theoretical prediction for n = 1 (horizontal dashed line). For v̄/vc ≫ 1,
σx(t)/x̄ tends toward values of the order of those predicted by Eq. (11) and
increasing with the polymer concentration.
Eq. (11) provides therefore a good estimate of the velocity fluctuation inside
the fracture both for low, i.e. v̄/vc < 1, and high flow rates corresponding
to v̄/vc >> 1. The increase of σx(t)/x̄ between the Newtonian and shear
thinning regimes and also, at high velocities, with the polymer concentration
confirms the enhancement of the velocity contrasts between the channels for
shear-thinning fluids.
Between the limiting values v̄/vc < 1 and v̄/vc ≫ 1, fluid velocity variations
within the fracture may be estimated by applying Eq.(5) in each channel (as-
sumed to be of constant hydraulic aperture): this equation takes into account
the coexistence in the fracture gap of layers where the fluid has Newtonian and
non Newtonian properties. The normalized velocity fluctuations σv/v̄ obtained
by these computation are displayed in Fig. 6 for the two polymer concentra-
tions together with the experimental variations of the normalized front width
σx(t)/x̄(t).
In agreement with the theoretical curves, σx(t)/x̄(t) starts to increase when
the velocity v̄ becomes larger than vc (v̄/vc > 1) for both polymer solutions.
However, although the limiting value for v̄/vc ≫ 1 is the same as predicted,
the increase of σx(t)/x̄(t) above vc is slower than expected: actually, the the-
oretical predictions represent an upper bound for the observations.
This difference may be due in part to the use of a simplified model of the rhe-
ological curve which displays a sharper transition than the actual one between
the Newtonian and shear thinning regimes: this will, in turn, smoothen the
variation of σx/x̄. Numerical computations using a = 2 instead of a = ∞ in
Eq. (4) will be necessary to estimate the magnitude of this effect. Also, the
aperture of the parallel channels introduced in the model is assumed to be
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constant: this also leads to a transition between the Newtonian and power law
regimes which is faster than the actual one.
A step further in the interpretation is the comparison of the experimental
shape of the fronts with that estimated from the channel model. In section 4.2,
the normalized distance x(y, t)/x̄(t) of the front from the inlet has been pre-
dicted to be equal to v(y)/v̄ (see Eq. 8). An experimental front profile normal-
ized in this way is plotted in Fig. 7 as a function of the transverse distance y
together with the variation of the theoretical normalized velocity v(y)/v̄. The
velocity v(y) is estimated from Eq. 6 in which the aperture e is replaced by
the mean value e(y) defined in section 4.2.
The most remarkable observation is the fact that both the experimental and
theoretical fronts have not only the same width but also nearly the same ge-
ometry. These results are very similar to those of numerical simulations for
Newtonian fluids [19]: they demonstrate the validity of the generalization in
Eq. (6) to non Newtonian fluid. Fine scale details predicted by the theoretical
model are however not observed in the experimental front: this difference may
be due in part to viscous drag forces between parallel layers of fluid moving
at different velocities in the fracture plane. These forces may smoothen the
local velocity gradients and rub out small scale features of the front without
changing the large scale velocity variations: this results in a bumpy front with
a typical width of the structures of the order of 10 mm. This latter value is
of the order of the correlation length in the direction perpendicular to the
channels.

Fig. 7. Thick solid line: experimental normalized front profile x(y, t)/x̄(t) as a func-
tion of the transverse distance y (mm) for v̄/vc = 200 for a 1000 ppm shear thinning
polymer solution. Dotted line: theoretical variation of the normalized velocity v(y)/v̄
in the parallel flow channel model. The front is displayed just before the displacing
fluid starts to flow out of the fracture. Dashed lines: characteristic deviations of the
distance x(y) from its mean value x̄.

6 Discussion and conclusions

In the present work the enhancement of velocity fluctuations for shear thin-
ning fluids has been studied in a single fracture with rough, self-affine walls.
The two wall surfaces are perfectly matched and are positioned with both a
normal and a lateral shift. This results in an anisotropic aperture field well
characterized quantitatively by the semivariograms of the aperture both in
the direction of the shift and perpendicular to it. The characteristics of these
semivariograms are in agreement with previous experimental measurements
on granite samples [19]. Parallel to the shift, the correlation length of the
aperture field (as defined is Sec. 2.1) is equal to 0.25 mm and the correlation
cancels out (i.e. Γ/(2σ2

a) becomes equal to 1) at a distance of the order of
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10 mm. In the other direction, the correlation length is higher (0.5 mm) and
some correlation subsists over the full fracture length.
This observation has allowed us to model the fracture as a set of parallel ducts
perpendicular to the shift and with an hydraulic aperture constant along their
length. These assumptions lead to specific predictions on the dependence of
the width and of the geometry of the front on the velocity of the fluid and its
rheology: these predictions deal with the case of a mean flow parallel to the
channels which was the configuration used in the present experiments. This
model generalizes a previous one developed for Newtonian fluids and which
has been validated by numerical simulations [19].
The variation of the front width with the velocity could first be predicted. At
low flow rates, the viscosity of the solutions is constant (Newtonian “plateau”)
but non Newtonian effects become important for faster flows: this results in
an increase of the velocity fluctuations -and of the front width. This variation
occurs when the shear rate at the fracture wall becomes larger γ̇0, i.e. the
shear rate corresponding to the crossover between the Newtonian plateau and
the power law regimes: γ̇0 is reached for a mean flow velocity vc = ēγ̇0/6. At
still higher flow velocities of the order of 100× vc, both the normalized veloc-
ity fluctuations and the normalized front width reach a new constant value
with a good agreement between the experimental results and the theoretical
expectations.
These results validate the prediction of an enhancement of velocity contrasts
for shear thinning channelized flows in fractures. The experimental increase
of the front width with the mean velocity v right above the threshold value vc

is however slower than the predictions. The origin of this discrepancy might
be investigated by using a more refined theory taking into account both the
full rheological characteristics of the fluid (in the present work, the rheology
is approximated by a truncated power law) and the aperture variations along
the flow.
Another possible origin of the difference is viscoelasticity effects. These are
related to the value of the Deborah number defined as the ratio between the
typical relaxation time of the polymer λ and a time characterizing the flow
field. For a dilute polymer solution, the relaxation time may τ be estimated
as the inverse of the value of the shear rate γ̇0 corresponding to the upper
limit of the Newtonian plateau. This leads to respective values τ = 38 s and
τ = 13 s for the 1000 and 500 ppm solutions (a relaxation time τ ≃ 10 s of
the same order of magnitude, although lower has been obtained for 1000 ppm
scleroglucan solutions from G′ and G” measurements [28] ) In the present
geometry, the characteristic time associated to the flow field may be taken
equal to the transit time over the correlation length of the aperture in the
direction the flow: this length has been taken equal in Section 2.1 to the value
δc ≃ 0.5 mm of the lag distance for which the normalized correlation function
Γ/(2σ2

e) is equal to 0.5 (See Figure 2). Note that this length is also of the order
of magnitude of the shear displacement (u = 0.33 mm).
The Deborah number is therefore taken equal to De = v/γ̇0δc in which v is the
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mean fluid velocity. The relation vc = γ̇0ē/6 leads then to De ∼ (ē/(6δc)(v/vc)
or De ∼ 0.25v/vc. In the present work, the ratio v/vc ranges from 1 to 300 so
that De is larger than 1, except at the lowest flow rates: viscoelastic effects
may therefore be important. As a result, the adjustment to aperture varia-
tions along the flow of the fluid velocity profiles (and more specifically of the
fraction of the aperture corresponding to a shear thinning behaviour) may be
incomplete. The spatial fluctuations of the apparent viscosity (and therefore
of the velocity) will then be smaller than expected from the model.
The theoretical model also allows one to predict the geometry of the experi-
mental front down to length scales of the order of 10 mm. Future work should
investigate the influence of transverse velocity gradients on the shape of the
front for different types of fluids.
The results obtained in the present work demonstrate therefore clearly that
approaches developed to analyze channelized Newtonian flows in fractures can
be generalized to non Newtonian fluids and allow to predict, for instance, the
variation of the velocity contrasts with the rheology.
Numerical studies in 2D networks [26,27] had similarly shown that the flow
of shear thinning fluids is localized in a smaller number of preferential paths
than for Newtonian ones. It has been suggested that these effects might ac-
count for the enhancement of the effective hydraulic conductivity for such
fluids mentioned in the introduction: the results obtained in the present pa-
per may therefore be usefully applicable to the numerical simulation of non
Newtonian flows in fracture networks.
A number of questions remain however open and need to be considered in
future studies. First, in the models used here, the roughness of the fracture
surface is smaller than the mean aperture width: this corresponds for instance
to the propagation of a hydraulic fracture when its aperture is kept large com-
pared to the roughness by the hydraulic pressure. The results will however not
be valid in the frequent cases in which contact points are present in the frac-
ture [29].
Then, the present experiments have been realized with a mean flow parallel
to the channels created by the relative shift of the wall surfaces. It will be im-
portant to compare these results with the case of flow perpendicular to these
channels: velocity fluctuations in the directions parallel and perpendicular to
the flow should then be significantly different from those in the present exper-
iments. Eq. (5) should, for instance, be modified.
Finally, this work deals with relatively short path lengths such that transverse
exchange between channels may be considered as negligible: the results ob-
tained may therefore be different for longer path lengths. It is also possible
that the spatial correlation of the velocity field will eventually decay at very
long distances although this has not been observed in our experimental model.
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FIGURE CAPTIONS

Fig.1. Upper figure, gray scale representation of the aperture field. Field of
view: 85 mm×171 mm. Aperture field - mean value: ē = 〈e(x, y)〉(x,y) = 0.77

mm; and the aperture fluctuation: σe = 〈(e(x, y) − ē)2〉
1/2
(x,y) = 0.1 mm. Shift

amplitude: u = 0.33 mm (oriented vertically on figure). In the present work,
flow is parallel to x direction (horizontal on the figure). Lower image: binarized
aperture field with a threshold value equal to the mean aperture (0.77 mm).

Fig.2. Semivariograms normalized by 2σ2
e as a function of lag distance ||~δ||

(mm) for the aperture field displayed in Fig. 1. Dotted line: correlation along
the direction y of the shear. Solid line: correlation along the perpendicular
direction x (parallel to the flow in the rest of the paper).

Fig.3. Variation of the effective viscosity η of the polymer solutions as a func-
tion of the shear rate γ̇ for two water-polymer solutions of different concen-
trations: 500 ppm (�) and 1000 ppm (◦). Dashed lines: Carreau functions
corresponding to the sets of parameters of Table 1; continuous lines: trun-
cated power law approximation corresponding to a = ∞ in Eq. (4).

Fig.4. Maps of the relative concentration C(x, y, t) and corresponding dis-
placement fronts (in white) at three different flow rates. (a) Q = 0.01 ml/min
(v̄/vc ≃ 1); (b) Q = 0.1 ml/min (v̄/vc ≃ 10; (c) Q = 1 ml/min (v̄/vc ≃ 100).
The velocity vc corresponds to the transition between Newtonian like (v < vc)
and shear thinning (v > vc) flows (see Sec. 4). Polymer concentration: 1000
ppm. Pure injected fluid appears in white and displaced fluid in black. x scale:
distance from left side of model; y scale: distance from injection line. Corre-
lation length of aperture field in the direction parallel (resp. perpendicular)
to the flow (as defined in section 2.1) = 0.5 (resp.) 0.25 mm; amplitude of the
relative shift of the walls (see orientation on Figure): u = 0.33 mm.

Fig.5. Variation of the mean front width σx(t) = 〈(x(t)− x̄(t))2〉1/2 as a func-
tion of the mean distance x̄(t) from the inlet side of the model. Polymer
concentration: 1000 ppm. Flow rates: Q = (△)2.0,(+) 0.5, (◦) 0.1, (2) 0.02
ml/min.

Fig.6. Experimental variation of the ratio σv/v̄ = σx/x̄ in the model fracture
(Sh ≃ 0.02) as a function of the normalized mean velocity v̄/vc for shear
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thinning solutions of concentrations 1000 ppm (◦) and 500 ppm (2). Horizontal
dotted lines: theoretical values of σv/v̄ computed from Eq.(11) for a Newtonian
fluid (n = 1) and for 500 ppm (resp. 1000 ppm) polymer solutions (n = 0.38,
resp. 0.26). Solid and dashed lines: variations of σv/v̄ a as function of v̄/vc

computed by integrating Eq. (5).

Fig.7. Thick solid line: experimental normalized front profile x(y, t)/x̄(t) as a
function of the transverse distance y (mm) for v̄/vc = 200 for a 1000 ppm shear
thinning polymer solution. Dotted line: theoretical variation of the normalized
velocity v(y)/v̄ in the parallel flow channel model. The front is displayed just
before the displacing fluid starts to flow out of the fracture. Dashed lines:
characteristic deviations of the distance x(y) from its mean value x̄.

19



Page 20 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

TABLE

Polymer Conc. n γ̇0 η0

ppm s−1 mPa.s

1000 0.26 ± 0.02 0.026 ± 0.004 4490 ± 342

500 0.38 ± 0.04 0.077 ± 0.018 410 ± 33

Table I: Rheological parameters of scleroglucan solutions used in the flow
experiments.
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