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Abstract The transport of fibers by a fluid flow is investigated in transparent channels mod-
eling rock fractures: the experiments use flexible polyester thread (mean diameter 280µm)
and water or a water–polymer solution. For a channel with smooth parallel walls and a mean
aperture ā = 0.65 mm, both fiber segments of length !=20–150 mm and “continuous” fibers
longer than the channel length have been used: in both the cases, the velocity of the fibers and
its variation with distance could be accounted for while neglecting friction with the walls. For
rough self-affine walls and a continuous gradient of the local mean aperture transverse to the
flow, transport of the fibers by a water flow is only possible in the region of larger aperture
(ā ! 1.1 mm) and is of “stop and go” type at low velocities. With the polymer solution,
the fibers move faster and more continuously in high aperture regions and their interaction
with the walls is reduced; fiber transport becomes also possible in narrower regions where
irreversible pinning occurred for water. In a third rough model with parallel walls and a low
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mean aperture ā = 0.65 mm, fiber transport is only possible with the water–polymer solution.
The dynamics of fiber deformations and entanglement during pinning–depinning events and
permanent pinning is analyzed.

Keywords Fracture · Fibers · Roughness · Flow · Buckling · Pinning · polymer

1 Introduction

This article deals with the transport by a fluid flow of long, flexible fibers in a single fracture
bounded by two rough walls with a small spacing between them. In addition to its funda-
mental interest, this problem has potential applications such as the transport and filtration of
microscopic objects in small channels or slits: some examples are biological macromolecules
like actin or DNA (Lagomarsino et al. 2004), worm like micelles, nanotubes or industrial
polymers. At a much larger scale, optical fibers might also be used as in situ probes for
measuring the temperature (or other parameters) of water flows in natural rocks (Selker et al.
2006).

The transport of fibers by a fluid flow has been widely studied but for flow geometries
and fiber properties differing from this work. Many studies deal with suspensions of short
rigid fibers encountered in the manufacturing of composite and/or reinforced materials: a
great deal of experiments (Herzhaft and Guazzelli 1999) and numerical simulations (Fan
et al. 1998; Butler and Shaqfeh 2002; Saintillan et al. 2005) characterize, for instance, their
sedimentation. The orientation of the fibers in the flow of such suspensions inside slit-like
channels has also been investigated (Yasuda et al. 2002; Chiba et al. 1988).

Suspensions of flexible fibers are equally frequent in the paper pulp industry (Stockie
1998) and in biotechnology. Recent numerical simulations analyze the viscosity and normal
stresses in unbounded shear flows of these suspensions as well as their dependence on the
deformations and motion of the fibers (Yamamoto and Matsuoka 1995; Joung 2001; Tornberg
and Shelley 2004).

The case of single fibers has been often studied in 2D shear flow configurations with the
fiber in the shear plane. Since the pioneering work of Jeffery (1923) demonstrating the peri-
odic motions for rigid fibers, these studies have been extended to flexible fibers (Forgacs and
Mason 1959; Hinch 1976; Yamamoto and Matsuoka 1993; Ning and Melrose 1999). While
most papers dealt with unbounded shear flows, the influence of a wall perpendicular to the
shear plane was studied experimentally by Moses (2001) and numerically by Skjetne et al.
(1997); a “pole vaulting” effect was demonstrated for fibers close enough to the walls.

Large amplitude deformations of long filaments or flagellae are also encountered in micro-
organisms and account for their propulsion; both cases of isolated microorganisms (Taylor
1951; Purcell 1997; Lowe 2003) and of several interacting ones (Llopis et al. 2008) have
been studied. In another study, the motion of a flexible fiber in an infinite fluid is, in contrast,
driven by a body force and deformations of the fiber occur (Lagomarsino et al. 2005).

In the above studies, the flow field was either unbounded or bound by walls separated by
a distance large compared to the length of the fibers; in our experiments, this length is, in
contrast, much larger than the distance of the walls. In this case, most deformations of the
fiber and variations of its mean orientation take place in the mean plane of the fracture. The
deformations in the direction of the aperture are strongly constrained and may lead to strong
interactions with the walls. Then a key issue is whether the fibers can be transported by the
flow to the desired location or whether blockage occurs and/or the flow channels get clogged;
such blockage effects will be particularly important for rough walls.
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Fiber Transport in a Fracture Slit 391

Here, we use long flexible fibers and study experimentally their transport by a fluid flow
in transparent model fractures with either smooth or rough walls. While the former is a ref-
erence case, the geometry of the latter is close to that of encountered in natural rocks and in
materials used in civil, environmental, and petroleum engineering. A first set of experiments
(D’Angelo et al. 2009) demonstrated important qualitative differences between the propaga-
tion of fibers in models with smooth and rough walls (velocity fluctuations are much larger
in the second case). Also, replacing water by a polymer solution as the flowing fluid led to a
faster and more continuous motion of the fibers.

Here, the dynamics of the fibers is analyzed in detail on three different transparent model
fractures; spatiotemporal diagrams are used to characterize the motion of the fibers as well
as the time variations of their orientation and their deformation.

Fracture F1 has smooth walls; it is used as a reference and allows for quantitative tests of
theoretical and numerical models of the motion of fiber segments and of continuous threads
(longer than the fracture). The two other fractures have rough walls; their surfaces have a
self-affine geometry like that of real fractured rocks. In model F2, there is a small, non-zero,
angle between the mean planes of the walls, resulting in a non-zero gradient of the mean
aperture transverse to the flow; this wedge-like shape mimics the edge of many natural frac-
tures. In fracture F3, the wall geometry is the same, but the mean planes of the surfaces
are parallel; this models regions of the fracture away from the edges. Particular attention is
devoted the pinning processes observed in the rough models; they will be characterized here
quantitatively by the variation of the location and deformation of the fibers with time and the
correlation of the location of the pinning sites with the aperture.

2 Experimental and Numerical Simulation Methods

2.1 Fiber Characteristics

The experimental fibers are prepared from commercial polyester thread used for needle-
work and made of two strands twisted together. The section is not circular, and its max-
imum and minimum transverse sizes are 220 and 340µm. The density of the fiber is
ρ = 1.4 ± 0.1 × 103 kg/m3 and its lineic mass: 2.6 × 10−5 kg/m. Its bending stiffness
J (ratio of the applied bending momentum by the curvature) is of the order of 10−8 kg m3/s2

(a value similar to that reported in Habibi et al. (2007) for a comparable material). This value
has been estimated by measuring the deflection under its own weight of an horizontal fiber
segment attached at one end (Landau and Lifshitz 1986). It should be noted that the thread
has not a perfectly elastic behavior and may display a plastic deformation.

We used in the experiments fiber segments much shorter than the fracture length L as well
as “continuous” fibers longer than L; they are cut out of the same spooled polyester thread
sample. A specific procedure is used to cut the thread and keep the strands tightly twisted.
The length of the segments is 20 mm ≤ ! ≤ 150 mm while the length of the continuous fiber
is slightly larger than that of the fracture.

2.2 Model Fractures

The three models are manufactured with the technique described by Boschan et al. (2007):

– F1 has smooth parallel plane walls separated by a fixed distance ā = a(x, y) = 0.65 mm
(Fig. 1a).

– F2 has tilted rough walls (see Fig. 4).
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Fig. 1 Schematic view of the experimental models: a Fracture with flat parallel walls and b fracture with
complementary self-affine walls with a relative displacement. b. For all cells W = 90 mm, ab = 20 mm,
ae = 5 mm, le = 52 mm, lb ∼ 20 mm and L = 288 mm. Two injection systems insure that the flow is evenly
distributed along y at the top and bottom of the model

– F3 is all but similar to F2 excepted that its walls are parallel (see Fig. 6). F3 and F1
have the same mean aperture (i.e., ā = 0.65 mm).

For each model, two parallelepipedic plexiglas blocks are milled into the desired geometry
by a computer controlled machine. The two blocks are then clamped together in a position
set by the geometry of the sides of the block; these act as spacers leaving a controlled interval
between the surfaces for the fluid flow (Fig. 1).

Models F2 and F3 have complementary rough walls with a self affine geometry of expo-
nent ζ = 0.8; this value is similar to that measured on granite fractures (Boffa et al. 1998) and
in various other materials (Bouchaud 2003). The peak to peak amplitude of the roughness,
represented by the difference between the extrema of the height of the surface with respect
to the mean plane, is equal to 26 mm; this is also close to values measured on natural rock
fractures (Poon et al. 1992). The surfaces of the two walls are exactly complementary and
may be brought into perfect contact; in the models, these surfaces have both a normal dis-
placement with respect to this reference position and a relative shear one; the latter introduces
a variability of the local aperture field (Boschan et al. 2007).

The shear component of this displacement introduces local fluctuations in the aperture
field. The matching features of the roughness of the two walls do not correspond any more
to same (x, y) coordinates. Moreover, there appears a structural anisotropy normal to the
shear displacement (Gentier et al. 1997; Yeo et al. 1998). For both fractures F2 and F3,
the shear amplitude (parallel to y) is u = 0.65 mm; the resulting aperture fields have a root
mean square amplitude equal to 0.122 mm and a structural anisotropy oriented along the x
direction (see Fig. 6).

In model F3, the mean planes of the walls are parallel and at a fixed distance ā = 0.65 mm;
in model F2, there is between them a small angle mimicking the edge of natural fractures. As
a result, the average a(y) = 〈a(x, y)〉x of the aperture in the direction x of the flow decreases
across model F2 (Fig. 4c) from 1.1 mm for y = 0 to 0.8 mm for y = W (W is the width of

123



Fiber Transport in a Fracture Slit 393

the model). This wedge-like geometry of the aperture is reflected by the global color gradient
in the direction y for the maps of Fig. 4a, b.

2.3 Experimental Set-up and Procedure

The model fractures are held vertically; liquid is sucked uniformly at the bottom side at
a constant flow rate and reinjected at the top into an open bath of area 5 × 90 mm and
depth lb ∼ 20 mm covering the inlet of the model. This design allows one to introduce
the fibers in the bath through its open surface and then into the fracture. In order to ease
the injection of the fibers, the upper section has a funnel-like “Y” shape, i.e., the mean
aperture of the fracture increases with height in the top 52 mm of the model (distance le in
Figs. 1a, b). They are progressively injected from above into the fracture with no applied
tension.

The model is illuminated from behind by a light panel, and a digital camera provides
images with 1024 × 768 pixels at a rate of 30 frames per second and with an exposure time
of 1/300 s. The length of the field of view is 150 mm in the vertical direction parallel to the
flow and the top of the aperture maps is at a distance of 110 mm from the inlet.

On each picture, the location and geometry of the fiber is determined by binary
thresholding. For most experiments, the distortions of the fiber remain moderate (except
when it gets pinned) and it remains overall aligned with the direction of the flow. Then, at
each distance x from the inlet, corresponds only one point of the fiber and, therefore, only one
value of y. From these data, spatiotemporal diagrams like those displayed in Figs. 2a, 3a and
5a–c are obtained. The vertical scale corresponds to the vertical distance x , the horizontal one
to time and the color code corresponds to the coordinate y of the fiber at the corresponding
value of x . Qualitatively, these diagrams provide information on the global motion of the
fibers, on their rotation and on their deformation. For instance, diagrams made of segments
of same colors and length for all times correspond to a pure translation of the fiber in the
direction parallel to the mean flow; in contrast, color variations in the segments imply lateral
motions. Quantitatively, the velocity of segments of fibers with a finite length is determined
from the variation between two successive images of the vertical distance xm of their center
of mass to the inlet of the model. For continuous fibers, one uses instead the variation of the
distance xt of the tip of the fiber to the inlet. In both cases, the vertical velocity of the center
of mass (respectively tip) of the fiber is referred to as Vf .

2.4 Characteristics of the Fluids

Two fluids are used in these experiments. The first one is high purity water (Milli-Q grade,
Millipore) with a density ρ = 103 kg/m3 and a dynamic viscosity µ∞ ( 1 mPa s. The sec-
ond fluid is a solution of high molecular weight Scleroglucan (Sanofi Bio Industries) in water
at a concentration Cp = 1, 000 ppm. This fluid has shear thinning characteristics similar to
those of fluids used in oil recovery; the variation of its effective µ with γ̇ (D’Angelo et al.
(2007), Fig. 2) follows well the Carreau function

µ = 1

(1 + (γ̇ /γ̇0)2)
1−n

2
(µ0 − µ∞) + µ∞ (1)

with n = 0.26, µ0 = 4500 ± 340 mPa s and γ̇0 = 0.026 ± 0.004 s−1. Here, the mean flow
velocity ranges from U = 50 to 400 mm/s; so, the typical shear rate γ̇ = 6U/ā is of the order
of 1, 000 s−1, i.e., much above γ̇0. The Carreau approximation predicts an effective viscosity
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Fig. 2 a Spatiotemporal diagram of the motion of a fiber segment of length ! = 20 mm as a function of
time in model F1. Vertical scale: vertical distance x from the top inlet of the mode; color shades: transverse
coordinate y(x) of the points of the fiber (see scale at right). b Variation of the velocity Vf of the center of
mass of fiber segments of length ! = 20 mm as a function of xm: (open square) U = 100 mm/s, (open
circle) U = 150 mm/s, (open triangle) U = 290 mm/s. Dash-dotted line: maximum observed value of
Vf/U = 1.35. Inset: normalized velocity obtained from numerical simulations for a cylinder moving freely
in a parallel flow; dotted (resp. continous) lines include (resp. neglect) the influence of buoyancy
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Fig. 3 a Spatiotemporal diagram of the motion of a continuous fiber as a function of time in model F1 for
U = 120 mm/s. Vertical scale = vertical distance x from the top inlet of the model. Color shades: transverse
coordinate y(x) (see scale at right). b Variation of the normalized velocity Vf/U of the tip of the continuous
fiber as a function of the distance xt : (filled square) U = 100 mm/s, (filled circle) U = 150 mm/s, (filled
triangle) U = 290 mm/s. Dashed line shows Eq. 4 with % = 860 mm

µ = 3 mPa s (i.e., three times that of water) for U = 160 mm/s. For water, the corresponding
Reynolds number defined as Re = Uāρ/µ varies from 40 and 320. The influence of the
inertial terms will very low in the smooth models due to the quasi-parallel flow geometry
but may more substantial in the rough case, particularly when the relative variations of the
aperture (inducing velocity gradients) are large (Zimmerman et al. 2004). An alternative
value of the Reynolds number, more relevant to the estimation of the forces on the fibers, is
obtained by using the diameter of the fiber and its relative velocity with respect to the fluid;
it is however still higher than 1.
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3 Fiber Transport in a Fracture with Smooth Plane Walls

3.1 Transport of Fiber Segments

In order to separate the influence of the generic fracture geometry and of the roughness of the
walls, reference experiments were carried out in model F1 with flat smooth walls. A first set
of experiments used fiber segments of length ! ranging from 20 to 150 mm and mean fluid
velocities 50 ≤ U ≤ 400 mm/s. For each set of values of ! and U , more than 20 transport
experiments were realized. In the following, we discuss the transport of fibers with their mean
axis within ±10◦ to the direction of the flow.

In all cases, no deformation of the fibers is visible during the motion. The spatiotemporal
diagram of Fig. 2a indicates first that the velocity component along x of the ends of the fiber
remains constant along its trajectory (straight boundaries of the colored region) and that there
is only a small drift along y (slow shift of the colors). This is confirmed quantitatively by
Fig. 2b in which the normalized longitudinal velocity Vf/U of the center of mass of the fiber
is plotted as a function of its distance xm to the inlet for 3 different values of U (open symbols)
in a range of 1 to 3. Vf/U is constant with x within ±10%; its variation with U (≤ 25%) is
also too small to suggest any definite dependence in view of the intrinsic dispersion due to
the injection process and to the variability of the shape of the fiber. More generally, in other
experiments performed at different velocities and for fibers of different lengths (D’Angelo
et al. 2009), Vf/U always ranges between 1 and 1.35 (the velocity V f is therefore always
lower than the maximum value 1.5 Vf of the velocity of the fluid in the gap).

We compared these experimental observations to numerical simulations in which the fiber
is modeled as a straight rigid cylinder of similar diameter. Except for the numerical work of
Frei et al. (2000), all studies of moving cylinders in confined geometry were restricted to the
case of cylindrical objects normal to the flow (Bouard 1997; Zovatto et al. 2001; Ben Richou
et al. 2005). Finite element simulations were thus undertaken to determine the velocity Vf
of a fiber parallel to the flow; particular attention was given to the dependence of Vf on the
distance of the axis of the cylinder from the mid-plane of the fracture. Assuming that the flow
is laminar and that the influence of the ends of the cylinder is negligible, the only non-zero
component of the fluid velocity U is parallel to ex and is given by U = U (y, z)ex . In this
case, the Navier–Stokes equation reduces to a 2D Laplace equation. The latter is solved by
means of the finite element program FreeFem++ with zero velocity boundary conditions on
the lateral side plates at y = ±W/2 and on the front plates at z = ±a/2. The forces acting
on the cylinder have then been computed both when it is translating at a constant velocity
along the fracture in a stationary fluid, and when it is held fixed in a Poiseuille flow of mean
velocity U . The two solutions are then superimposed to obtain the velocity Vf of the cylinder
in a Poiseuille flow and with no applied force.

The solid line in Fig. 2c displays the variation of the normalized velocity Vf/U with the
normalized distance δ/a between the axis of the cylinder and the mid-plane of the fracture.
As δ/a increases from 0 (cylinder in the mid-plane), the normalized velocity continuously
decreases from 1.35 to a value close to 0.8 at the closest distance from the fracture walls (i.e.,
for δ/a ∼ 0.23). The density difference between the fiber and the fluid may also influence the
velocity of the fiber; the influence of this buoyancy effect on the velocity Vf/U is obtained
using the same numerical procedure as above. The dashed line in Fig. 2c corresponds to the
values obtained in this case which are, at most, 10% higher.

The comparison of these numerical simulations to the experimental data (Fig. 2b) shows
that the axis of the cylinder is likely located in the central half of the fracture aperture. The vari-
ations of the velocity Vf with the distance xm and/or the velocity U observed experimentally
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may be due to displacements of the fiber in the fracture aperture or to deviations of its shape
from a straight line.

3.2 Transport of Continuous Fibers

In the above experiments, the drag forces could be assumed to remain constant along the
relatively short fiber segments which were studied. We consider now the case of fibers with
a length larger than that of the model, lying initially on its top side, and dragged by the flow
into the fracture once its tip has been inserted inside it. These fibers are referred to in the
following as “continuous”. In this case, the flow velocity and, therefore, the drag force are
lower in the upper part of the fracture (i.e., in the upper bath and in the “Y ” shape domain
displayed in Fig. 1).

Figure 3a displays the spatiotemporal diagram of such an experiment. At a given time t ,
the color is constant along x in the colored zone, indicating that the fiber remains straight
and vertical. The color varies slightly with time which reflects a small global transverse dis-
placement. The boundary of the colored zone marks the variation of the coordinate xt of the
tip with the time t : its slope (proportional to the velocity V f of the tip) increases with xt .
This trend is confirmed quantitatively by Fig. 3b (symbols) in which the normalized velocity
Vf/U is plotted as a function of xt . In a simple model, the fiber is assumed to: (a) remain
straight and vertical so that the velocity of all its points is equal to Vf and (b) be located in
the center of the gap (this is indeed approximately the case for short fibers as shown in the
previous section). Friction of the fiber with the walls is neglected.

Under the assumption that the flow is everywhere laminar and parallel to ex the equation
of motion is linear and the local vertical force fv per unit length of the fiber in the cases
of a stationary fiber (Vf = 0, U *= 0) and of a stationary fluid (Vf *= 0, U = 0) would
respectively be proportional to U and Vf (Guyon et al. 2001). By superimposing the two
flows, one obtains in the general case:

fv = µ(c(x)U − cf (x)Vf ), (2)

in which c and cf are geometrical coefficients depending on the local width of the flow chan-
nel at the distance x , and U is the velocity in the constant aperture domain. The numerical
procedure described in the previous section has been used to determine the coefficients c and
cf at different distances x for a fiber located mid-way between the walls. The local values of
c and cf found in this way for a 0.28 mm fiber are, respectively, cf = 2.01 and c = 0.41 in
the upper bath and cf = 5.81 and c = 7.90 in the constant aperture domain (ā = 0.65 mm).
The average values in the Y-shaped funnel are cf = 2.79 and c = 1.45. The variation of the
local flow velocity with the local aperture has been taken into account in the determination
of c(x). Summing the contribution of the three zones leads to the total vertical force

Fv = µ(C(xt)U − Cf (xt)Vf ) (3)

where xt is the coordinate of the tip of the fiber and C and Cf are given by: C(xt) =
7.81xt − 6.36le + 0.41lb, C f (xt) = 5.81xt − 3.02le + 2.01lb. An additional drag force F
results from the motion of the residual length of fiber which is stored in the upper bath before
being fed into the fracture at later times. Neglecting the influence of the flow in the upper
bath on this part of the fiber, we assume that this drag force is proportional to the velocity Vf
and to the effective length % − xt − lb of this part of the fiber (% is an effective length). For
a fiber moving freely at a nearly constant velocity, the sum of all forces must be zero with:
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F + Fv = µ(C(xt)U − Cf (xt)Vf − (% − xt − lb)Vf ) = 0. The ratio Vf/U is then

Vf

U
= C(xt)

Cf (xt) + % − xt − lb
. (4)

In the previous equation, the only free parameter is %. The latter was determined by fitting
the experimental data points of Fig. 3b (dotted line). The adjustment of the data is good for
% = 860 mm, i.e., slightly more than the length of the fiber (( 600 mm). This large value
may arise from extra friction due to loops and to the contact between the fiber and the walls
in the upper bath.

The inertia of the fiber may also need to be taken into account in the acceleration phase.
The corresponding term of the equation of motion of the fiber is ma (m and a are its mass
and acceleration); it may be estimated from ma ≈ !λV 2

f /xt in which λ = 2.6×10−5 kg m−1

and ! ∼ 0.6 m; Vf ∼ 0.15 m s−1 and xt ∼ 0.2 m are the typical length and velocity of the
fiber and the distance over which it accelerates. This leads to the value ma ≈ 18 × 10−7 N
which may be compared to the typical hydrodynamic force F = CfU Lµ. Using the value
Cf ∼ 8 obtained from numerical simulations gives F ≈ 2 × 10−4 N; this is several orders
of magnitude larger than the inertial term which validates the quasi static assumption used
up to now.

4 Fiber Transport in Model Fractures with Rough Walls

The above experiments in smooth fracture models demonstrate a negligible interaction of the
fibers with the walls; in rough fractures, instead, both the random variations of the aperture
and the large out of plane deformations of the wall surfaces induce large friction forces. These
forces influence the motion of the fibers and may also deform them: we show now that these
effects depend both on the fluid velocity and on the rheological properties of the fluid.

4.1 Fiber Transport in the Wedge-Shaped Fracture (Model F2)

A first set of experiments has used water as the flowing fluid: in this case, fiber transport was
only possible in regions of aperture !1 mm, (i.e., on the left side of the maps of Fig. 4a, b).
In lower aperture regions, most fibers got pinned after a short distance. Moreover, in a few
experiments performed at high flow rates (U ≥ 250 mm/s), a loop built up downstream of
the pinning site (Fig. 4b). Then, the bottom of the loop slid sideways into a higher aperture
region and kept moving downwards toward the end of the model.

Even in the high aperture paths, the motion of the fiber is not as continuous as in the
smooth fracture as can be seen by comparing the spatiotemporal diagrams of Figs. 3a and 5a
(the latter corresponds to the same region as in Fig. 4a). This time, the motion of the tip is a
sequence of “stop” and “go” phases marked respectively by horizontal and oblique sections
of the boundary of the colored zone in Fig. 5a.

The influence of the flow velocity on this “stop” and “go” character of the motion is ana-
lyzed in Fig. 5b; it compares the variations with distance of the normalized velocity Vf/U of
the fiber tip for two different values of U . At the lower flow velocity U = 160 mm/s, the tip
velocity Vf becomes zero at each pinning point and increases sharply after the release of the
fiber to a value higher than the time average (horizontal dashed line). For U = 210 mm/s,
the variations with time of the fiber velocity with respect to the mean value are of smaller
amplitude (−100%,+50%) instead of (−100%,+150%). Also, the velocity Vf becomes
zero only once and decreases by less than 40% on other pinning sites; these are located at
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Fig. 4 a–b Snapshots of experiments in which the continuous fiber is injected in a water or polymer flow
in model F2 at different transverse distances (vertical arrows). The images of the fiber are superimposed
onto a color-coded map of the aperture field (see scale at right). Field of view: 90 × 150 mm. (see Fig. 1).
a U = 160 mm/s. Continuous line: water flow (horizontal arrows corresponds to the five locations where
the fiber was temporarily pinned during its motion); dotted line: polymer flow. b U = 250 mm/s: water flow.
c Variation of the average a(y) of the aperture along the distance x parallel to the flow as a function of the
transverse distance y

the same distances x as for U = 160 mm/s. These results demonstrate that increasing the
velocity reduces pinning effects but that they remain strong. The inertia of the fibers might
act in an opposite way by pushing them away from the streamlines and toward the walls.
This would increase the number and the influence of the contacts of the fiber with the walls;
this is not observed which implies that the inertia of the fibers does not play a dominant part.

More quantitatively, the normalized time averages of the fiber velocity Vf/U are equal
to 0.2 and 0.28 (respectively for U = 160 and 210 mm/s). Even if the influence of the low
velocities near the pinning sites is subtracted from these values, Vf/U is still only of the order
of 0.3 in both cases; this is lower by a factor of 3 than in model F1 (see Fig. 3) which confirms
the strong interaction of the fibers with the rough walls. This conclusion is supported by the
lack of systematic dependence of Vf on the distance x ; this latter effect suggests that the
influence of the inlet is screened by the friction at the walls.

The above experiments have been repeated at similar flow rates, but using the polymer
solution described in Sect. 2.4 which represents well many fluids used in practical industrial
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Fig. 5 Compared motion of continuous fibers as a function of time in model F2 for flows of water (a, b) and
of a polymer solution (c, d). a, c Spatiotemporal diagrams of the motion in x, t coordinates at U = 160 mm/s.
Color shades: transverse coordinate y(x) (see scale at right of the corresponding diagram). b, d Variation of
the normalized fiber velocity Vf/U as a function of the distance x for a same initial transverse location of
the fibers. b dotted (resp. continuous) lines: U = 160 (resp. 210) mm/s. d continuous line: U = 220 mm/s.
Dashed line: fit with Eq. 4 [% = 790 mm; cf = 0.70, c = 2.00 in the upper bath; cf = 5.71, c = 3.87 in
the region of aperture ā = 1.1 mm constant with x ; cf = 1.80, c = 2.57 in the Y-shaped funnel (averaged
values)]

applications. First, the corresponding spatiotemporal diagram (Fig. 5c) does not display the
stop and go features observed in Fig. 5a; then, the velocity Vf increases continuously with
the distance x (Fig. 5d). This variation differs from that corresponding to water (Fig. 5b); it is
more similar to that observed (still for water) in the smooth model F1 (Fig. 3b). Compared to
this latter case, the variations of the color shades indicate, however, additional deformations
and sideways motions of the fiber. More quantitatively, at long enough distances, the ratio
Vf/U for model F2 is much larger for the polymer solution than for water (Vf/U = 0.8
instead of 0.3 for xt = 250 mm). These experimental data may be fitted by the predictions
of Eq. 4 (dashed line in Fig. 5d) applied previously to the smooth fracture; the interactions
with the walls are still neglected and new coefficients c and cf are used to take into account
the different aperture distribution. The optimal value of % is now 790 mm which is similar
to that found for the smooth fracture. Finally, while the velocity of the fiber still drops when
it reaches the pinning sites observed in the experiments with water, the amplitude of the
variation is far lower.

The above results indicate that the relative influence of the friction with the walls on the
dynamics of the fiber is significantly reduced when the polymer solutions are used. This may
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reflect an enhancement of the hydrodynamic drag forces and/or a reduction of the friction
forces. As a result, the tension forces are not fully balanced by friction and propagate along
the fiber. These forces influence the shape of the fibers which is significantly straighter than
for water; this is shown in Fig. 4a, in which images obtained for flows of the two different
solutions are overlaid.

4.2 Fiber Transport in a Fracture with Rough Parallel Walls (Fracture F3)

In the case of model F2, the “wedge like” geometry allows one to test the influence of
the mean aperture ā by injecting the fiber at several transverse distances y correspond-
ing to different ā values. However, this geometry may have unwanted effects like the
sideways motions displayed in Fig. 4. Such effects are not present in model F3 which
has a constant mean aperture a = 0.65 mm. In the case of a water flow, transport of
the fiber across model F3 was not possible since it always got pinned irreversibly along
its path; this was to be expected since the mean aperture a is lower than the thresh-
old value estimated in the previous section for model F2. All fiber transport experi-
ments in model F3 were, therefore, always performed with the polymer solution discussed
above.

In Fig. 6a, snapshots of four fibers injected at different transverse distances y in model
F3 are overlaid onto the aperture map. Three of them are weakly deformed and kept moving
afterwards down to the lower end of the model. Their location is close to (but does not coin-
cide exactly with) the zone of highest aperture. The fourth fiber (at the left on the image) got
pinned as it moved out of a high aperture region into a less open one; the shape of this fiber is
also more strongly distorted than that of the others, possibly due to large velocity gradients
in the region where the fiber moves.

Overall, these experiments on model F3 demonstrate the feasibility of the transport of
the fiber in a model with parallel mean walls, even in the case of a small mean aperture (2.5
times the mean fiber diameter). This transport is, however, only possible for this value of the
aperture when the polymer solution is used as the flowing fluid. Moreover, the observations
of the shape of the fibers of their paths and of the pinning sites suggest that while the local
aperture is a key factor of the possible transport of fibers inside the fractures, it is not the only
one. The spatial gradients of the aperture (often related to the velocity gradients in the plane
of the fracture), the slopes of the individual surfaces and, possibly, the inertia of the fiber
may also play an important part.

5 Pinning–Depinning Dynamics

The experiments using models F2 and F3 have demonstrated the important influence of
pinning on the transport of the fibers in rough fractures. In this section, we investigate in
more detail the relation between the pinning sites and the local geometry of the fractures as
well as the dynamics of the pinning and depinning (if any) processes.

In the case of a fiber transported by a water flow in fracture F2, the pinning sites are
shown by horizontal arrows in Fig. 4a. It must be noted that pinning is always initiated at the
tip at the fibers. Several (but not all) pinning sites are located in regions where the aperture is
below 1 mm (yellow-green shades in Fig. 4a). This is still twice the diameter of the fiber, so
that pinning cannot result solely from a geometrical blockage in these constrictions; more-
over, the fiber was observed to cross without stopping other regions of the fracture of similar
aperture. As suggested in the previous section, the local aperture is, therefore, not the only
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Fig. 6 a Overlaid snapshots of 4 fibers injected at different transverse distances into a polymer flow inside
fracture F3 and of a map of the aperture field (mean fluid velocity U = 215 mm/s). b Snapshot of a fiber
coiled up after getting pinned inside the fracture (U = 242 mm/s). A time sequence of the coiling process is
displayed in Fig. 9. The color code is shown in the bar at the top right. Distances in the vertical x direction
are counted from the top of the model (see Fig. 1). c Variations of the aperture averaged along the distance x
parallel to the flow as a function of the transverse distance y

relevant parameter. The variations of the local aperture around the pinning points suggests
that the blockage of the fibers may result from a large local out of plane roughness of the
surfaces.

Further information on the pinning–depinning process is obtained from the deformation
of the fiber. Color variations with time and distance in Fig. 5a indicate that, in contrast to
the case of a smooth fracture (Fig. 3a), the fiber does not remain straight but buckles with
meanders of shape and location varying with time. These deformations are visualized directly
in Fig. 7a–d. During the pinning event, the tip of the fiber remains motionless while three
bumps appear behind it; their amplitude increases with time while they propagate toward the
tip. The deformation of the rear part of the fiber is much weaker but, in some cases, it slips
sideways.

An important feature is the fact that the deformation does not extend along the whole
fiber but is, instead, localized in a few bumps behind the pinning site. This observation has
analogies with the build up of circular coils after a vertical flexible rope moving downwards
has reached an horizontal solid plane (Habibi et al. 2007). We investigated whether this effect
was due to the roughness of the walls by realizing an additional model experiment. A fiber
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hangs below a cylindrical vertical rod inside a cell with flat walls similar to Fracture 1, but
with a larger aperture a = 5 mm. When the fluid is at rest, the fiber is flat and vertical. Then
an upwards flow is induced and the end of the rod acts as a pinning site. Figure7e, f show
that the geometry of the deformation of the fiber is very similar to that observed in the rough
fracture. Meanders appear close to the pinning point, while the rest of the fiber has a lower
curvature. The similar results obtained in the two cases imply that the wall roughness has not
a major influence on the geometry of the distortions of the fiber due to pinning.

In order to understand better the mechanism of these distortions, the experimental find-
ings will now be compared to the model case in which the fiber is considered as an ideal
homogeneous elastic rod. The rod is initially straight and vertical with a fixed lower end and
a free upper one. The force per unit length fv on the rod is assumed to be constant along its
length and to result solely from the hydrodynamic forces; since the rod is fixed, Vf = 0 so
that from Eq. 2 fv = µc(x)U . Assuming that the initial buckling deformation is localized
to a segment of length Lm right above the fixed end point, the minimum value of Lm for
observing buckling induced by the hydrodynamic forces along it is from (Timoshenko and
Gere 1962)

Lm ( 2
(

J
fv

)1/3

, (5)

in which J is the bending stiffness of the fiber, J ≈ 10−8 kg m3s−2 (see Sect. 2.1). The
value of Lm has been computed for the experiment of Fig. 7 with c = 3.87, determined as
in Sect. 3.2 but for a local aperture a = 1.1mm. One obtains Lm ∼ 50 mm. This is of the
order of the curvature observed experimentally at the onset of buckling (see data points at
the shorter times in Fig. 7d). Actually, the buckling process is also modified by the complex
structure of the flow field and by the influence of hydrodynamic forces perpendicular to the
fiber (Ben Richou et al. 2005). Another important factor is the deformation of the fiber in
the direction perpendicular to the mean plane of the fracture and which results from the
out-of-plane curvature of the wall surfaces. Due to the elasticity of the fiber, this will change
the number of contact points and the corresponding local friction forces with the walls and,
therefore, influence the pinning–depinning process.

The dynamics of the deformation is characterized quantitatively by the variations with
time of the radius of curvature |R| at the points of maximum curvature and of their distance
δx to the tip of the fiber (Fig. 7d): the radii |R| decrease strongly with time while the veloc-
ities dδx/dt of all three corresponding points are similar and of the order of 10 mm/s (i.e.,
much lower than the fluid velocity ( 160 mm/s). The deformation is stronger for the two
first bumps with a radius of curvature of the order of 9.5 mm when depinning occurs. Similar
scenarios are observed at all flow rates and in all injection configurations for which pinning
takes place but the characteristic time scales may vary.

In the above experiments using a pure water flow, the transport of the fibers was only
possible in the high aperture regions of the wedged fracture F2. In the case of the poly-
mer solution, the motion of the fiber is generally continuous in these regions; pinning only
occurred in lower aperture parts of model F2. Like for water, bumps appear on the fibers
when they get pinned and they move toward the tip as they develop. Their amplitude and
curvature are, however, significantly larger than for water. For this fluid which is charac-
terized by an effective viscosity µ ∼ 3 mPas, Eq. 5 provides a value Lm ∼ 30 mm lower
than for water. This trend is consistent with the qualitative comparison between Figs. 7c
and 8c.
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Fig. 7 a–c Fiber geometry at different times during the fifth pinning event in Fig. 4a (lowest horizontal
arrow). The leftmost (respectively rightmost) picture displays the shape of the fiber immediately after pinning
(respectively before depinning). Time lapse between pictures: 0.166 s (a–b) and 0.333 s (b–c); total duration
of trapping event: 1 s. Arrows: location of points of maximum curvature referred to as 0, 1, and 2. d Curvature
of the fiber at these 3 points as a function of time. Inset: vertical distances δx between these 3 points and
the fiber tip as a function of time. Symbols for point 0: (open circle, filled circle); for point 1: (open square,
filled square) and for point 2: (open triangle,filled triangle).e, f View at two different times of an experiment
in a cell with smooth plane parallel walls. The fiber is attached to the end of a 1 mm diameter rod (vertical
gray rectangle). Flow is upwards but the pictures have been flipped upside down to make comparisons with
Figs. 7a–c easier

Another feature reflecting these larger deformations is the appearance of overhangs before
depinning takes place (see Fig. 8a–d and inset of Fig. 8e). Also, the variation of the radius
of curvature with time displayed in Fig. 8e) is more complex than for the water flow and not
always monotonous. This reflects the interaction between the different loops. The radii of
curvature of loops 1 and 2 reach values of (2 mm or even less. This is lower than the radius
of loop 0 and much lower than the radii observed with water (see Fig. 7d).
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Fig. 8 a–d Fiber geometry at different times during a pinning event for a polymer flow (U = 230 mm/s) in
the low aperture part of fracture F2. Leftmost (respectively rightmost) pictures: views of the fiber 0.1 s after
pinning (respectively just before depinning). Points 0, 1, and 2 and the corresponding symbols in the graph
are defined as in Fig. 7. e Variation with time of the radius of the fiber at the three maximum curvature points
designated by arrows in curve (d). Inset: time variation of the vertical distances δx between these three points
and the fiber tip

These larger deformations may result first from the occurrence of pinning in narrower
parts of the wedge than for water; at these locations, the depinning energies may, therefore,
be expected to be higher. Also, the distances δx vary faster with time in the case of the poly-
mer solution (compare insets of Figs. 7d and 8e). In agreement with previous observations
reported in Sect. 4.1, this suggests that the hydrodynamic forces experienced by the fiber are
larger for these solutions.

6 Irreversible Pinning and Fiber Entanglement

In the previous section, pinning events of finite duration were discussed. Irreversible pinning
is also frequent, for instance in the narrow parts of fracture F3; the fiber generally becomes
entangled around the pinning site and intertwined loops build up. Such a configuration is
displayed in Fig. 6b and corresponds to pinning in a narrow zone (yellow shade region near
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Fig. 9 Geometry of the fiber at different times during the build-up of a coil for the flow of a polymer solution
in fracture F3 (see Fig. 6b). Times elapsed after pinning are respectively 0.63, 1.13, 1.3, and 1.8 s. (from left
to right)

the top of the coil). At first, the fiber is deformed as in the case of transient pinning shown
in Figs. 7 and 8. Then, bump 1 overtakes the pinned tip so that a loop appears at the right
and moves downwards (Fig. 9a). Simultaneously, parts of the fiber located farther upstream
move leftwards and build up a second, closed, loop (arrow in Fig. 9). This implies that, close
to the pinning site, friction forces of the fiber with the walls are large enough to prevent the
motion of the tip. Meanwhile, the parts of the fiber initially upstream from the tip are dragged
downwards by the hydrodynamic forces and keep moving so that loops and deformations
easily build-up. Finally, as the loops move down, they get locked on the pinning site and
dangle on both sides (Fig. 9c). This further reduces the tension on the upstream fiber sections
and new loops start to appear (Fig. 9d). The final interlocking of the fiber strands results in a
strong blockage. The fiber cannot be released by increasing the velocity but only by pulling
it upwards.

7 Conclusion

This work has determined important features and requirements for the transport of flexible
fibers through fractures. First, the transport of fibers by a flowing fluid in fractures with a
small mean aperture and with very rough walls of self-affine geometry has been shown to
be possible. However, while, in smooth fractures, the friction of the fibers with the walls is
negligible and does not influence their motion, its influence is much stronger for rough walls;
this often results in pinning and blockage or in a jerky progression instead of a continuous
one.

The aperture of the fracture (or, rather, its ratio to the fiber diameter) is, of course, a key
factor but other geometrical parameters may be relevant. In the wedge-shaped rough model
F2, fiber transport is, as expected, easier in parts of the wedge where the mean aperture is
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large (typ. ! 1mm); however, pinning may still occur in the more open regions. In the rough
fracture F3 with parallel walls, although of same roughness, the transport of the fiber is also
easier in high permeability regions. However, the trajectory of the fibers does not coincide
fully with the paths of highest aperture while pinning does not always take place at minimal
aperture points. Other geometrical factors such as the local curvature of the walls and the
spatial gradients of the aperture must be taken into account. Fiber transport is improved at
higher flow velocities; stop-and-go motions may be turned into more continuous displace-
ments at larger flow rates, although the velocity still decreases in the vicinity of the pinning
sites.

Another key result is the enhancement of the mobility of the fibers when water is replaced
by a polymer solution. Then, fibers can propagate along the full length of rough fractures
of mean aperture only twice the fiber diameter; they also can access narrow regions where
they would get stuck with water. At a same flow velocity, the motion of the fiber is faster
and more continuous than for water; the effects of the friction with the walls are strongly
reduced and the features of the propagation become comparable to those obtained for smooth
walls. These results have important practical implications due to the widespread use of such
solutions in many industrial processes. A first possible explanation is an increase of the drag
forces due to the higher viscosity of these solutions, particularly at low shear rates. Lubri-
cation forces due to this higher viscosity may also prevent the fibers from getting in contact
with the walls and, therefore, reduce the friction. However, additional studies are needed
in order to separate these effects from those of the variation of the viscosity with the shear
rate; the latter may, for instance, influence the localization of the fiber inside the gap also
plays a part in these results. Quantitative computations of the forces on fibers performed
for Newtonian flows in smooth fractures will also have to be extended to shear-thinning
fluids.

Finally, fibers often become deformed during their transit through rough fractures while
they retain their shape in the smooth model. These deformations are particularly frequent
and large during pinning events. Then upstream parts of the fibers are kept in motion by
hydrodynamic forces, while the tip is blocked. For transient pinning, the amplitude of the
deformations of the fiber increases with time until the front tip is released and is larger for the
polymer solution. Then, the fiber recovers roughly its initial shape. For permanent pinning,
the amplitude of the deformations increases further until loops appear and pile up on the
pinning site, finally leading to entanglement. Due to visualization constraints, the present
experimental set-up does not allow for studying 3D phenomena such as out-of-plane defor-
mations of the fibers. These should play an important part in the transport and pinning of
the fibers; experimental set-ups with simpler geometries allowing for visualizations from
different sides will be necessary to investigate these problems.

The present experiments have determined several key characteristics of fiber transport
in single fractures and of its dependence on the flexibility of the fibers, the characteristics
of the fluid and the configuration of the aperture field. However, further work is needed to
characterize more quantitatively the influence of these parameters. The velocity of fibers of
different lengths in a water-flow has, for instance, been predicted for a smooth fracture but the
case of rough fractures and/or shear thinning flows remains open. Another important issue
is the transfer of fibers from one fracture to another in a fracture network.
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