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Influence of the disorder on solute dispersion in a flow channel
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Abstract. Solute dispersion is studied experimentally in periodic or disordered arrays of beads in a capillary
tube. Dispersion is measured from light absorption variations near the outlet following a steplike injection
of dye at the inlet. Visualizations using dye and pure glycerol are also performed in similar geometries.
Taylor dispersion is dominant both in an empty tube and for a periodic array of beads: the dispersivity
ld increases with the Péclet number Pe respectively as Pe and Pe0.82 and is larger by a factor of 8 in the
second case. In a disordered packing of smaller beads (1/3 of the tube diameter) geometrical dispersion
associated to the disorder of the flow field is dominant with a constant value of ld reached at high Péclet
numbers. The minimum dispersivity is slightly higher than in homogeneous nonconsolidated packings of
small grains, likely due to wall effects. In a weakly disordered packing with the same beads as in the
periodic configuration, ld is up to 20 times lower than in the latter and varies as Peγ with γ = 0.5 or =0.69
(depending on the fluid viscosity). A simple model accounting for this latter result is suggested.

PACS. 47.56.+r Flows through porous media – 05.60.Cd Classical transport

1 Introduction

1.1 Objectives of the paper

Tracer and solute dispersion in fluid flows is a widespread
process in science and engineering. It is encountered in
many applications to analytical chemistry and hydrology
as well as environmental, civil and petroleum engineer-
ing [1–4]. Understanding dispersion is also important fun-
damentally, due to its relation with statistical physics [5].
In simple systems with correlation lengths of the velocities
of solute particles small compared to the sample size, the
variation in the flow direction x of the concentration C of
a passive solute (averaged in the other directions) satisfies
the convection-diffusion equation (1)

∂C

∂t
+ U

∂C

∂x
= D

∂2C

∂x2
. (1)

Here, U is the flow velocity and D is the longitudinal
macroscopic dispersion coefficient. Longitudinal molecu-
lar diffusion has a large direct influence on D only if the
Péclet number:

Pe =
U"

Dm
(2)

is less than 1 (" is a characteristic length of the flow field
and Dm is the molecular diffusion coefficient). We are in-
terested here only in the opposite limit Pe > 1 for which,
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generally, D ! Dm. The variation of D with Pe depends
then on the structure of the flow field: variation laws may
range from D ∝ Pe for geometrical dispersion in homoge-
neous random porous media to D ∝ Pe2 for Taylor dis-
persion in capillary tubes (these mechanisms are discussed
in the next Sect. 1.2).

In other systems, non trivial variations of D with ex-
ponents intermediate between 1 and 2 have been observed
or predicted. Examples are networks of channels similar
to those encountered in microfluidics [6,7] and fractures
with rough walls [8–11].

The objective of the present work is to suggest expla-
nations for these latter behaviours: more specifically, we
seek to demonstrate on simple model systems the tran-
sition between Taylor and geometrical dispersion as the
disorder of the flow channels increases. Practically, the
dispersion of dye is analyzed in flows through long trans-
parent capillary tubes packed with spherical beads.

Different ordered and disordered layouts and different
bead to tube diameter ratios are considered: depending
on these parameters, a variety of dispersion regimes is ob-
served ranging from geometrical to Taylor dispersion and
including intermediate regimes.

1.2 Key dispersion mechanisms

Solute dispersion results from the combined effects of
molecular diffusion and of the heterogeneity of fluid
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velocities both across and/or along streamlines. At large
Péclet numbers Pe, longitudinal molecular diffusion par-
allel to the flow is negligible but transverse diffusion may
retain a significant influence by inducing solute exchange
between streamlines with different velocities.

A first limiting case is geometrical dispersion encoun-
tered in simple porous media such as macroscopically ho-
mogeneous random packings of beads. In this case, the
magnitude and orientation of the local flow velocity dis-
play random variations with a correlation length of the
order of the bead diameter d [12,15] while the stream
tubes get frequently split. The path of the solute particles
can then be viewed as a sequence of random steps, each
with a duration τ ∼ d/U , superimposed on a drift at the
mean velocity U: the corresponding dispersion coefficient
is D $ d2/τ ∼ Ud and the dispersivity is ld = D/U ∼ d.
As a result, the ratio D/Dm should satisfy:

D

Dm
∼ Pe (3)

(the characteristic length scale " is taken equal to d in
Eq. (2)). Experimentally, for an homogeneous packing of
beads with a narrow distribution of the diameter d, the
dispersivity ld first reaches a minimum value ld $ 0.6 d
for Pe $ 10, increases then approximately as Pe0.2 and
becomes constant for Pe ≥ 1000 with ld $ 2d [16]. These
deviations from the expected law ld $ cst. may result
from different mechanisms, often predicting logarithmic
corrections to the value of ld: examples of such effects
are the influence of mass boundary layers near the pore
walls [17–19], stagnation points [20] or slow flow chan-
nels [21].

In the second limiting case of Taylor dispersion in
a capillary tube of diameter a [22,23], the flow field is
a deterministic Poiseuille parallel flow profile. The ve-
locity difference between the wall and axis of the tube
stretches the solute front and creates radial concentra-
tion gradients which are balanced by transverse molecular
diffusion over the tube section: the corresponding diffu-
sion time τ ∼ a2/Dm represents the characteristic time
for the decorrelation of the solute velocity. The longitu-
dinal dispersion coefficient D ∼ U2τ scales therefore as
D/Dm ∝ Pe2 with Pe = Ua/Dm (taking this time " = a
in Eq. (2)). More quantitatively, and for arbitrary values
of Pe, one has [23]:

D

Dm
= 1 +

Pe2

192
, (4)

or, equivalently:

ld
a

=
1

Pe
+

Pe

192
. (5)

The respective additional terms 1 and 1/Pe correspond to
longitudinal molecular diffusion and, as mentioned above,
are only significant for Pe < 1. The same expression is
valid for flow between two parallel planes, replacing the
coefficient 192 by 210. A related configuration is that of
fractures with two rough walls; dispersion is influenced

in addition in this case by local aperture variations and
inertial effects (for Re > 1) so that the variation of D with
Pe may be more complex [11].

The same Taylor mechanism is also dominant in peri-
odic 2D or 3D porous media [24,25] such as ordered 3D
sphere packings [26] or periodic networks of channels [6]
but only for flow parallel to a crystallographic axis. In this
case, the stream tubes are periodic while, as for Taylor dis-
persion, solute can only move across streamlines through
molecular diffusion. Due to the periodicity of the lattice
in the directions transverse to the flow, the local flow field
is the same as in a single channel of varying cross section
parallel to the mean flow and with periodic boundary con-
ditions on the sides: the resulting dispersion coefficient is
then proportional to Pe2.

The present work deals only with disorder at the pore
scale and with short correlation lengths: in the models
which are studied, dispersion results therefore solely from
a combination of the geometrical and Taylor mechanisms.
The effects of large scale heterogeneities or of a broad
distribution of pore sizes have not been studied.

2 Description of experiments and data
analysis

2.1 Experimental set-up and procedure

The experimental models used here closely resemble that
used by Baudet and coworkers [27]. In this latter work, so-
lute dispersion was measured in a long capillary tube filled
with monodisperse beads and with a tube/bead diameter
ratio a/d $ 1.25. The layout of the beads was either peri-
odic or disordered. The first configuration was achieved by
adding one by one beads in an horizontal capillary tube.
Finally, one ends up with a line of beads, each of them
being in contact with its two neighbors and with the tube
wall. The second layout is obtained by tilting the capil-
lary tubes while filling them. The beads fall then on top of
each other and slide often sideways, resulting in a denser
packing. The final packing is random and beads are added
in the tube until it is entirely filled.

In this work, the inner diameter of the capillary tube is
a = 3.1±0.1 mm, its length is 1500 mm and well calibrated
stainless steel spheres of diameter d = 2.54 ± 0.02 mm
are used. In addition to these two bead packs, two more
configurations were used (see Fig. 1). The first one uses the
same tube but empty. In the last one, the diameter of the
beads is d = 1± 0.01 mm, i.e. three time smaller than the
tube diameter, leading to a larger tube-to-particle ratio. In
order to clarify the present paper, the following convention
is used:

– (E) Empty channel : the capillary tube does not con-
tain any beads (a = 3.1 mm).

– (O) Ordered channel : the tube contains a periodic line
of beads touching each other (a/d = 1.22).

– (DI) Disordered channel I : the beads are still touch-
ing each other but build up a disordered array
(a/d = 1.22).
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Fig. 1. Flow geometries used in the experiments. From top
to bottom: Empty Channel - Ordered Channel - Disordered
Channel I - Disordered Channel II.

– (DII) Disordered channel II : the arrangement is of
the same type as (DI) but the diameter of the beads
is smaller with d = 1 ± 0.01 mm. (a/d = 3.1).

In configurations (O) and (DI), the diameter of the
spheres is slightly smaller than the tube diameter
(d = 2.54 ± 0.02 mm). In configuration (DII), the diam-
eter of the beads is three times smaller than that of the
tube (d = 1 ± 0.01 mm).

Originally, one end of the capillary tube is connected
to a syringe pump allowing to establish a stationary flow
of the transparent fluid through the channel: A valve al-
lows to switch the injection to a dyed solution of identical
properties. Fluid flowing out of the other end of the tube
is weighed by computer controlled scales, allowing to mea-
sure the flow rate throughout the experiment.

The fluids used are solutions of either 10% or 70%
of glycerol in water and their dynamic viscosities µ are
respectively 1.3 mPa.s and 23 mPa.s (at 20 ◦C). Water
Blue dye at a concentration of 0.05 g/l is added to one of
the solutions: It has been selected because it is chemically
stable and does not modify the rheological properties of
the solution. The molecular diffusion coefficient Dm of the
dye was determined through independent Taylor disper-
sion measurements performed in a vertical teflon capillary
tube. One obtains in this way Dm = 6.5×10−4 mm2/s for
the 10% glycerol solution; for the 70% solution, the value
Dm = 3.25 × 10−5 mm2/s is deduced from the value for
the first solution by the Stokes-Einstein relation [28].

In the following, the mean flow velocity U is char-
acterized by the Péclet number Pe defined by taking
" = a in equation (2) for configurations (O), (DI) and
(E) (Pe = Ua/Dm) and " = d (Pe = Ud/Dm) in con-
figuration (DII). In the present experiments, Pe ranges
from 50 to 104 for the 10% glycerol solution but reaches
1.4× 105 for 70% glycerol solutions. In all the studies the
Reynolds number is less than 10: Under such conditions,
the flow can be considered as stationary [12].

In this work, the variation of the solute concentration
at the outlet with time, known as the breakthrough curve,
is determined from light absorption by the dye. The mea-
surement is realized over a square window of size 0.3 mm2

located at 1450 mm from the injection, close to the outlet
and immediately downstream of the last bead of the bed.
In order to reduce optical distorsion induced by the tube
curvature, the measurement section is enclosed within a
transparent plexiglas cell with flat parallel walls. The cell
is originally filled with glycerol, a fluid with a refractive
index close to that of the tube. The section of the tube
inside this cell is inserted between a light panel and a 4096
gray levels CCD camera (Roper Coolsnap CF). The set-up
is illuminated by a fluorescent tube placed on the opposite
side from the camera and excited at a high frequency to
reduce fluctuations.

For each experiment, 2000 images are recorded by
a computer connected to the camera at time intervals
ranging from 1 to 30 s depending on the flow rate. Dye
concentration values are determined quantitatively using
calibration measurements realized independently with the
experimental tube saturated with dye solutions of different
known concentrations. Finally, drifts of the light intensity
are measured in a region of interest outside the tube; these
measurements are then used during the analysis of the im-
ages to compensate for the effect of these variations on the
transmitted light intensity in the experimental section.

Using this experimental procedure, breakthrough
curves were measured for different flow velocities and for
different bead layouts. The results of these global mea-
surements are given and discussed in Section 3. Moreover,
in order to improve interpretations of the breakthrough
curves, visualizations were realized independently at a lo-
cal scale in a similar configuration. In these latter experi-
ments, a transparent tube of a = 8 mm inner diameter is
filled with glass beads of diameters 6, 3 or 2 mm. These
beads were chosen so that the corresponding tube/bead
diameter ratio is respectively 1.33, 2.67 and 4, close to
the values used in the dispersion experiment. Originally,
the model is saturated with glycerol (viscosity $1 Pa.s)
which is displaced by the same fluid but dyed. Using a
fluid with such a high viscosity (and therefore a low diffu-
sion coefficient) allows one to observe and separate clearly
the various flow paths at low Reynolds numbers inside the
sample.

Before describing in detail the various dispersive
regimes observed for the different bead layouts, the next
section describes the methods used to determine the dis-
persion coefficients from the breakthrough curves.

2.2 Analysis of the experimental curves

Figure 2 displays a typical breakthrough curve obtained
after a stepwise injection of the dyed fluid; asymmetrical
curves were also obtained and their analysis will be dis-
cussed later. Under such initial conditions, and if the con-
centration satisfies the classical convection-diffusion equa-
tion given by equation (1), the concentration variation at



270 The European Physical Journal Applied Physics

1.0

0.5

0

C/C0

15x10 31050
Time (sec)

Fig. 2. Continuous line: typical dye concentration variation
as a function of time for a type DI− array and for Pe = 930
(continuous line). Dotted line: curve fitted with a variation
from equation (6). The experimental and fitted curves almost
completely coincide but for a small separation in the top center
of the figure.

the outlet is given by:

C(L, t)
C0

=
1
2
(1 − erf

L − Ut√
4D t

). (6)

Where, C0 is the dye concentration in the displacing fluid,
L the distance between the measurement section and the
injection point, D is the longitudinal dispersion coefficient,
U is the mean flow velocity. Figure (2) shows the fit of the
breakthrough curve by the function given by equation (6)
where the only adjustable parameter is D. The two curves
are almost undistinguishable, indicating that the disper-
sion process is Fickian and that the classical convection-
diffusion equation (1) is satisfied.

This good agreement was to be expected for the
disordered models. The tube length represents at least
600 bead diameters (for the largest beads) and is therefore
much larger than the correlation length of the velocity
field which is of a few bead diameters: the conditions for
obtaining a diffusive spreading are therefore met. For the
empty tube (E), the correlation length of the velocity
field is equal to the tube length: the classical condition
for reaching a Gaussian Taylor dispersion regime is that
the mean transit time τt along the tube must be larger
than the transverse diffusion time. These issues have been
studied in detail by several authors [13,14] and a usual
practical condition is τt ! a2/16Dm in which a is the
diameter. In the present case, this leads to τt > 1000 s.
This condition is fulfilled in the present experiments for
which the minimum transit time is of the order of 5000 s.
Yet, in the (O) configuration and for fairly high velocities
U , one observes at long times (as can be seen in Fig. 3)
a “tail” effect and equation (1) is no more verified. This
results from the large diffusive exchange time between the
slow and fast part of the flow sections which is not short
enough compared to the transit time along the sample
(see Sect. 3.2).

In this case, the experimental breakthrough curves are
well fitted by solutions of the classical Coats-Smith capac-
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40x10 33020100
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Experimental data
Fit with Eq. (6)
Coats-Smith model 

Fig. 3. (×): experimental dye concentration variation as a
function of time for an ordered O−type array of 2.54 mm di-
ameter beads and for Pe = 1000. Dotted (resp. continuous)
lines: Gaussian (resp. Coats-Smith) fits.

itive model [29]: it assumes zero flow regions (representing
a fraction 1−f of the total volume exchanging solute with
flowing zones (fraction f of the volume) through an expo-
nential process with a characteristic exchange time Tf .
The model uses 4 fitting parameters: f , Tf , the mean ve-
locity U and a parameter Df characterizing dispersion in
the flowing regions. Let us call x the distance from the
inlet at which the concentration variation is measured: if
the medium does not display large scale heterogeneities
with a characteristic size of the order of or larger than x,
then the fitting parameters are independent of x. If this
distance x is such that t ≤ Tf , the concentration variation
curves display a long time “tail” with a characteristic re-
laxation time directly related to Tf and the curves cannot
be fitted by variations from equation (6). At long distances
such that t ! Tf , on the contrary, the concentration vari-
ation curves are well fitted by using equation (6) and the
corresponding “asymptotic” dispersion coefficient Das can
be shown to satisfy the relation [29,30]:

Das

Dm
=

D

Dm
+ (1 − f)2

U2Tf

Dm
, (7)

The Coats-Smith procedure is valid because the (O) con-
figuration is periodic and no additional heterogeneity is
added if the length is increased, Das represents then the
value of the dispersion coefficient that would be measured
for a model of larger length containing an identical peri-
odic array of the same beads. In the following, the dis-
persivity ld is taken equal to Das/U only for experiments
in the (O) configuration. In the other configurations, D
is obtained simply by fitting the experimental curves to
equation (6).

3 Experimental results

Figure 4 displays variations of the dispersivity ld as a func-
tion of the Péclet number measured for the different chan-
nel configurations used in the present work. Note that all
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Fig. 4. Variation of the dispersivity ld as a function of the
Péclet number: (!) DII−array; (◦, •) DI− array respectively
for solutions of 10% and 70% glycerol in water; (") E− chan-
nel; (#) O− channel (in this latter case ld = Das/U).

the experiments were carried out twice: first, the dyed fluid
was injected to displace the clear solution flowing initially
in the model at the same flow rate. After the model has
been completely saturated with the dyed fluid, it is dis-
placed in a second experiment by the clear fluid, still at
the same flow rate. The dispersion coefficient was found
to be identical in the two experiments, implying that no
instabilities modified the flow.

3.1 Empty tube (E-Channel)

In the case of an empty tube, all the experimental disper-
sion curves are well adjusted by the concentration vari-
ation given by equation (6). The corresponding disper-
sivities ld are plotted in Figure 4 in log-log coordinates:
for Pe ≥ 100, the data points (") fall on a straight line
of slope 1, indicating that ld ∝ Pe. This is in agree-
ment with equation (5) which predicts, in this range of
Péclet numbers, a linear variation of ld with Pe (the lin-
ear term is at least 50 times larger than the Pe−1 one).
Using a linear regression on the experimental values of ld,
equation (5) provides an estimation of the tube diame-
ter: aeff $ 3± 0.2 mm. This effective value coincides very
well with the actual diameter of the tube (3.1 ± 0.1 mm)
which confirms (as expected) that Taylor dispersion is the
dominant mechanism in the empty tube.

3.2 Ordered array of beads (O-Channel)

Dispersivity ld values obtained for the ordered array of
beads by means of the Coats-Smith model are plotted in
Figure 4. For Pe ≤ 2500, ld varies with Pe following a
power law : ld ∼ aeff Peγ (straight line in log-log coordi-
nates). From a regression over the experimental data, one
obtains aeff $ 0.6 mm and γ = 0.85 ± 0.2: this value is
compatible with a Taylor dispersion mechanism for which
γ = 1 (as above, the Pe−1 term in Eq. (5) is negligible). It

(a)

(b)

Fig. 5. Miscible displacement of pure by dyed glycerol in an
ordered array of beads inside a capillary tube: (a) side view
(b) top view (bead diameter: d = 6 mm; tube diameter: a =
8 mm).

is to be noted that the value of aeff is of the order of the
distance between the top of the beads and the upper tube
wall: this distance represents an effective aperture for the
Taylor process, possibly because the transverse diffusion
time which control the dispersivity value is lower in the
regions where the flow section is smallest.

These results agree therefore with the expectations
that, in this channel, fluid particles follow periodic stream-
lines determined by the structure of the bead packing: as
in the capillary tubes, the molecules of dye can only ex-
plore the section of the flow channel through molecular
diffusion resulting from Brownian motion (see Fig. 5).

An important feature is the fact that the experimental
values of ld which vary from 40 mm to 400 mm are about
8 times larger than for the empty capillary tube at a same
mean flow velocity. This cannot be explained by the par-
tial filling up of the flow channel by the beads. On the
opposite, since these reduce the effective aperture of the
flow channels, ld should drop off following equation (5)
which is not observed.

Globally, the values obtained are in qualitative agree-
ment with reference [24] which predicts an enhancement
of dispersion with a large Taylor-like component in 3D
periodic media for flow parallel to a crystal axis; similar
results have also been reported in other works on periodic
2D and 3D systems [6,25].

Direct visualizations realized in a similar periodic ge-
ometry (Fig. 5), but with larger beads, complement use-
fully these results: pure glycerol is used to visualize clearly
the boundaries between fluids by removing the influence
of molecular diffusion.

In this figure, one observes that the dyed fluid displays
a tongue like structure and wraps around the beads. This
shape shows that the streamlines are mostly oriented in
the flow direction with tiny undulations induced by the
beads. Two very important points are that no splitting
of the displacement front is observed and that the dyed
fluid does not flow at early times into the narrow space
between the beads: mass transfer between the two regions
thus only occurs through molecular diffusion which ex-
plains the “tail” observed in the breakthrough curves at
high flow velocities. Finally, the tongue-like structure re-
veals the strong velocity contrast between the fluid flow on
the side of the beads and above them. The velocity gradi-
ent stretches the front of dye resulting in a concentration



272 The European Physical Journal Applied Physics

gradient which, in turn, gets smoothed by a transverse
diffusive flux.

All ingredients of a Taylor like dispersion regime are
thus present. Yet, because of the beads, the diffusive flux
path is more tortuous than in an empty capillary tube: so-
lute has to flow around the beads to reach the outlet of the
tube. The time needed to homogenize the dye concentra-
tion in the tube section is thus longer, resulting in a higher
dispersivity; also, dye needs to diffuse across the full di-
ameter of the tube (from the bottom to the top channel)
rather than only across the radius as in the empty tube so
that the characteristic diffusion time is four times larger.

At the highest flow velocities, the variation of ld levels
off and starts to decrease. A possible explanation is the
fact that, in this range of Pe values, the Reynolds num-
ber becomes higher than 1 (Re > 5): recirculation and/or
secondary flows may then develop and induce a more effi-
cient transverse mixing than molecular diffusion. This will
shorten the transverse exchange and this new value should
replace the characteristic transverse molecular diffusion
time a2/Dm in the computation leading to equation (5).
The dispersivity ld would therefore be reduced at high Pe
values as observed experimentally.

3.3 Disordered array of small beads (DII-array)

For a disordered array of 1 mm diameter beads inside the
tube, the dispersivity ld increases slowly as a function of
Pe before reaching a constant value of the order of 3 mm
for Pe $ 600. This constant limiting value of ld implies
that geometrical dispersion associated with the random
velocity variations from one pore to the next is dominant.
This is not surprising since, in such geometries, the corre-
lation length of the velocities of fluid particles along their
path is too short for Taylor dispersion to develop. Dis-
persion characteristics of such arrays are then comparable
to those of non homogeneous nonconsolidated packings of
monodisperse grains [16,31]: in this latter case, the value
of ld for Péclet numbers (based on the grain size) of the
order of 1000 is $2d. In Figure 4, the value of ld for a sim-
ilar Péclet number (Pe = 3000 when based on the tube
diameter) is ld = 3 mm or about three times the bead
diameter i.e. only 50% higher. The variations of ld with
Pe are qualitatively also very similar in both cases with
a slow increase up to Pe $ 1000 and a constant value at
higher velocities.

Visualizations realized with d = 2 and 3 mm beads
inside a tube of diameter a = 8 mm (Figs. 6a–b) com-
plement these results. Figure 6a demonstrates clearly the
many divisions of the front of injected fluid after moving
through several pores and the rather uniform distribution
of the invading fluid across the flow section: for the less vis-
cous fluids used in our dispersion experiments, transverse
molecular diffusion would mix quickly these thin filaments
with the surrounding fluid, leading to the Gaussian dis-
persion observed for the DII− array. In samples with such
small a/d ratios, some wall effects and perturbations of the
packing structure are probably present [32]: they likely ac-
count for the 50% increase of the values of ld/d compared

(a)

(b)

Fig. 6. Miscible displacements of pure glycerol by dyed glyc-
erol saturating disordered glass beads packings inside a a =
8 mm diameter capillary tube. Bead diameter: (a) d = 2 mm –
(b) d = 3 mm. The tube/particle diameter ratio is respectively
4 and 2.66.

to those reported in reference [16] for much larger a/d val-
ues. However, from this relatively small variation of ld/d
together with the fact that no clear preferential flow is vis-
ible near the tube walls, we can conclude that confinement
effects do not influence crucially the dispersion process.

Another potential problem is the appearance of a lo-
cal order of the monodisperse beads in sample DII. The
circular geometry is not favourable, particularly for such
a low a/d ratio since the beads would build up hexagonal
or cubic lattices. It is however possible that, for some val-
ues of the ratio a/d pathological features of the structure
appear: this is for instance the case in the packing shown
in Figure 6b and corresponding to a/D = 2.66 in which
flow is strongly channelized in the center of the column.
Such a flow structure would give rise to early first arrival
times in the dispersion curves and is also easily detectable
in the visualizations. No such effects are visible either in
the picture of Figure 6a or in the concentration variation
curves observed for sample (DII). One concludes therefore
that packings with carefully chosen low values of the ratio
a/d may display dispersion characteristics quite similar to
those obtained for much larger values of a/d.

3.4 Disordered array of large beads (DI-array)

In this case (see Fig. 1), the beads have the same diameter
as in the periodic O− channel (i.e. d = 2.54 mm), but the
packing is now weakly disordered (ie the beads are slightly
displaced laterally at random from the location they would
have in a periodic row). The experiments were performed
using the two water-glycerol solutions containing either
10% or 70% of glycerol in weight. As for the DII array
and in contrast with the ordered one, all breakthrough
curves are well adjusted by equation (6) allowing for the
determination of D for the various flow conditions. The
Figure 4 shows the dispersivity ld = D/U as a function
of the Péclet number for the two solutions used in the
experiments.

Clearly, the dispersivity ld and Pe have a power law
relationship. Fitting the variation of ld with Pe to aeff Peγ

gives respectively for the 10% and 70% glycerol solutions
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(b)

(a)

Fig. 7. Views at different times of the miscible displacement
front of pure by dyed glycerol in a disordered channel: the
diameter of the beads is d = 6 mm and the diameter of the
tube a = 8 mm. The tube-to-particle ratio is 1.33.

γ = 0.52 ± 0.01, aeff $ 0.2 mm and γ = 0.69 ± 0.04,
aeff $ 0.04 mm. One observes that aeff and γ are only
slightly different for the two solutions despite a ratio of
20 between the viscosities. One notices that the values
of ld for a given Péclet number are much lower for the
disordered array than for the periodic one (by a factor of
15 (resp. 40) at low (resp. high) Pe values) although the
bead and tube diameters are identical. Also, at low Péclet
numbers, ld becomes of the order of the bead size and gets
close to the dispersivity observed for the DII array.

An important feature is the fact that the exponent γ
characterizing the variation of ld with Pe is of the order
of 0.5 (for the 10% solution) and of 0.69 for the other
solution (at slightly higher Péclet numbers). These ex-
ponents are intermediate between the values 0.82 ± 0.2
for the periodic array and 1 for the empty tube and the
value 0 (constant ld) for the disordered packing of smaller
beads: This implies that the dispersion mechanism is inter-
mediate between Taylor and geometrical dispersion corre-
sponding respectively to the first and second cases. This
result was also observed by Baudet et al. [27] but remained
unexplained.

As in the previous sections, visualizations on a larger
system with the same d/D ratio help understand the dis-
persion mechanisms. The visualizations of Figure 7a–b
show that the dyed fluid is mostly split into two streaks
located near the walls. This localization likely reflects an
increase of the porosity near the walls [32]; moreover, the
low value of the tube/bead diameter ratio (of the order
of 1) breaks the angular isotropy of the porous struc-
ture and concentrates the flow paths in a few (here 2)
channels. Magnico [15] estimated that, at low Reynolds
numbers, a fluid layer of thickness of the order of d/4 ap-
pears, inside which fluid flow is purely longitudinal and
tangential with no radial component. At first, one expects
therefore radial exchange between the dye streaks, clearly
visible on Figure 7a, and the remaining pore space to be
mostly diffusional. Yet, as can be seen in Figure 7b, struc-
tural heterogeneity resulting from displaced beads splits
the streaks into filaments parallel to the mean flow [12];
the number of filaments increases then along the flow path
and their size decreases. These filaments persist over dis-
tances significantly larger than the bead diameter so that
molecular diffusion may spread the filaments over trans-

verse distances of the order of their size. This gives rise to
Taylor-like dispersion so that the global dispersion results
from the combined influences of geometrical and Taylor
dispersions. Such an influence of the flow channelization
on dispersion was recently reported by Bruderer et al. [6]
in 2D networks.

3.5 Qualitative model of different power law variations

A qualitative argument helps understand how one can
reach such power law variations of ld ∝ Peγ (0 < γ < 1)
under the combined influence of the disorder of the flow
field and of transverse molecular diffusion. Assume that
the front gets divided into streaks of width ax decreasing
with the distance x parallel to the flow as ax ∼ d1+βx−β

(the d term allows to have the right dimensionality for the
equation). By generalizing the Taylor argument, the tran-
sition to diffusive spreading should occur when the trans-
verse molecular diffusion time τdiff across the distance ax

is of the order of the mean transit time L/U with:

τdiff ∼ a2
x

Dm
∼ x

U
. (8)

Replacing ax by its expression provides the distance at
which the transition should take place:

xtrans ∼ d(
Ud

Dm
)1/(1+2β) ∼ dPe1/(1+2β). (9)

With, as usual, Pe = Ud/Dm. As in Taylor dispersion,
xtrans, represents the characteristic decorrelation distance
of the velocity of solute particles and we assume therefore
that D ∼ Uxtrans leading to

Deff ∼ UdPe1/(1+2β) (10)

or
Deff

Dm
∼ Pe

2+2β
1+2β . (11)

For β = 0 (no geometrical variation of the width of the fil-
ament with distance), one retrieves Taylor dispersion with
DTaylor ∼ a2U2/Dm and, for β = ∞ (fast decorrelation),
one obtains geometrical dispersion with Dgeom ∼ dU (the
exponent γ defined previously should then be related to β
by γ = 1/(1 + 2β)). In the present case, the experimental
result D ∝ Pe3/2 implies that β = 1/2. Therefore, the
experimental observations on DI− may be accounted for
by assuming a combination of the influences of transverse
molecular diffusion and of the geometrical disorder of the
packing with, for the latter, a rate of division of the dye
streaks intermediate between those observed in a packing
of small beads and in a capillary tube.

4 Conclusion

To conclude, despite its simple structure (a long tube
filled up with beads), the experimental system studied
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in the present work displays a broad variety of dispersion
regimes. While wall effects control the classical Taylor dis-
persion in the empty tube, the structure and geometry of
the bead packings filling the tube play a dominant part
in all other cases. More specifically, both the degree of
disorder of the layout of the beads and the ratio of their
diameter to that of the tube are observed to influence the
dispersion characteristics.

The results obtained may be particularly useful to un-
derstand flow and solute transport in such systems as frac-
tures with rough walls, networks of flow channels in mi-
crofluidic applications, flow devices used in hydrodynamic
separation or periodic or near periodic porous media. One
observes for instance dispersivity variations with interme-
diate power laws similar to those presented here in weakly
disordered 2D networks of channels [7].

First, Taylor dispersion has been observed for a peri-
odic bead array inside a tube of slightly larger diameter
than the beads, like in the empty tube but with a sig-
nificantly increased dispersion coefficient. With the same
beads inside the same tube, but packed in a weakly dis-
ordered array, the dispersivity ld is strongly reduced and
the exponent γ characterizing the variation of ld with Pe
decreases from almost 1 to 0.5. This variation reflects the
reduced persistence length of solute streaks due to their
getting repeatedly split as they move along the tube (this
length remains however much larger than the bead diam-
eter). A simple model assuming a power law reduction of
the width of the streaks of dye with distance allows to re-
produce this variation of ld with Pe. When the ratio of the
tube and particle diameters is increased by using beads of
smaller diameter, the dispersion coefficient varies with the
Péclet number as D ∝ Pe for Pe > 600. This reflects
a geometrical dispersion regime with a still shorter per-
sistence length of the dye streaks reflecting a correlation
length of the flow field of the order of the bead size.

More observations of the flow and concentration fields
at the local scale (using for instance matched index fluids)
are needed to explain quantitatively these results. The in-
crease of the dispersivity for the periodic array compared
to the empty tube and the decorrelation of the motions
of the fluid particles in the disordered arrays for small
tube/particle diameter ratios are two particularly impor-
tant issues.
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