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A robust and precise viscometer using the forces exerted by a laminar flow inside a small duct is
presented: the force is measured on a long cylindrical sensor dipped into the flow. Two devices of
respective volumes 1.4 and 0.031 ml have been realized, demonstrating that the technique is usable
with small fluid volumes. Several Newtonian and non-Newtonian fluids have been tested at shear
rates ranging from 0.3 to 10 s−1 for the first device and from 85 to 2550 s−1 for the second one. For
Newtonian fluids, of viscosities ranging from 10−3 to 0.1 Pa s, the linear response of the device has
been verified and a 90% agreement with the values provided by commercial rheometers is obtained.
For non-Newtonian polymer solutions, the variation of the force with the flow velocity allows one to
determine the dependence of the viscosity on the shear rate. Two shear thinning polymer solutions
with a power law behavior at intermediate shear rates have been investigated and their rheological
parameters have been determined. © 2011 American Institute of Physics. [doi:10.1063/1.3556445]

I. INTRODUCTION

Measuring the viscosity of biological or chemical fluids
is a key issue in many fields ranging from medicine and food
processing to the chemical and manufacturing industries.1

The viscosity reflects the resistance of a fluid to flow under an
applied shear stress and many different types of viscometers
have been developed to achieve this measurement. They may
be classified in four main families: capillary viscometers,2–4

rotational or sliding viscometers,5, 6 falling spheres7, 8 or slen-
der objects,9 and vibrational viscometers.10

In the present study, a viscometer based on the mea-
surement of the friction force exerted by a flowing fluid is
presented. This technique is found to be suitable for rapidly
measuring the viscosity of samples of small volume with a
precision similar to that of classical rheometers. Moreover,
the device is easy to manufacture, it has no moving parts, and
its response does not vary critically with a small misalign-
ment: the technique is, thus, inexpensive and easy to imple-
ment. To our knowledge, similar techniques have only be en-
visioned for high viscosity fluids flowing in a pipe.11 In these
cases, a fixed blade transducer coupled to a shaft-like probe
is immersed in the flowing fluid and the value of the force on
the blade is used to determine the fluid viscosity.

Recent progress in the technology of force sensors has
allowed us to extend this approach to fluids of low viscosity.
In the present system, the probe is a cylindrical object located
on the axis of a circular duct used as the flow channel so that
the local shear rate on the whole lateral surface of the probe
is constant. Unlike for sliding or rotating plate rheometers,5 a
precise coincidence of the probe axis with that of the duct is
not required.

The force F applied by the fluid on the object has been
measured at different flow rates. For laminar flows of Newto-
nian fluids, F is related to the mean flow velocity U by the
relation

F = μλ lo U, (1)

where μ is the dynamical viscosity, lo is the length of the
cylinder inside the flow and λ is a geometrical parameter. Un-
like methods using falling objects, these measurements do not
require corrections as long as the flow is controlled by viscous
forces:12 we demonstrate below that this is achieved practi-
cally by using Reynolds numbers Re ≤ 50.

In Sec. II, the measurement devices and the viscosity
measurement procedure are presented. The technique has
been extended to non-Newtonian fluids. Section III B de-
scribes the inversion method allowing one to determine the
rheological curves in this latter case. In Sec. IV, the results
of the viscosity measurements are compared quantitatively to
those obtained with standard rotating viscometers.

II. EXPERIMENTAL SETUP AND PROCEDURE

The viscometer is displayed schematically in Fig. 1. Two
devices have been built and their characteristics are listed in
Table I. Device A is large enough so that handling is easy
and the control of the experimental conditions is optimal: in
this case, a few milliliters of fluid are needed to measure the
viscosity. For device B, this volume has been further reduced
by a factor of 50.

Both devices consist of a cylindrical duct of radius R and
length L inside which a small cylinder is inserted. The ducts
are drilled into a PMMA bar with a tolerance of ±0.05 mm:
they are vertical with the open side at the top. In order to re-
duce the unwanted motions of the fluid in the measurement
region, the radius of these ducts is increased to 20 mm at their
top. This creates a 10 mm deep bath into which the fluid is
injected through a small lateral hole: the size of this bath has
been chosen to minimize the effect of this transverse flow on
the inner cylindrical probe. The latter is attached to a force
sensor located above the bath. In the duct, fluid flows either
from the top toward the bottom (corresponding to a traction
force on the sensor) or from the bottom toward the top (com-
pression force).
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FIG. 1. Schematic view of the experimental viscometer.

For device A, the cylindrical probe is a stainless steel rod
of radius 0.55 mm. It is attached by a flexible thread to a hook
located under a SartoriusTM CP225D scale. The probe hangs
freely with its lower part inside the flow duct. The scale allows
one to measure forces ranging from 0.1 μN to 0.8 N.

For device B, the probe is a glass fiber of radius 70 μm
glued to the tip of a MEMS force sensor. The measurement
range of this sensor is 1–2500 μN.

The Newtonian fluids are either pure water or water–
glycerol mixtures with a relative mass concentration of glyc-
erol ranging from 0% (pure water) to 85%. Tests were also
performed with shear thinning solutions: these are composed
of 250 and 1000 ppm of high molecular weight scleroglucan
in high purity water (Millipore-Milli-Q grade). Scleroglucan
is a polysaccharide provided here by Sanofi BioindustriesTM.
The solution is protected from bacterial contamination by
adding 0.2 g/l of NaN3.

The density ρ of the solutions and their temperature T
are measured after each series of experiments by means of an
Anton PaarTM 35 N densimeter.

The flow duct and connecting tubes are first filled with
the fluid and all trapped air bubbles are removed from the
system. The flow rate is then increased by steps from Q = 0
up to the chosen maximum flow rate and is then reduced back
to zero in the same way.

Figure 2 displays the corresponding variation as a func-
tion of time measured by the MEMS sensor of device B. The
nonzero mean value reflects the weight of the probe and the
zero-shift of the sensor. Each step lasts from a few seconds
(a minimum of 10 s is required so that the measurement stabi-
lizes at a near constant value) up to a few minutes. The cycle is
repeated (twice in Fig. 2) in order to check the reproducibility
of the measurements. The inlet and the outlet of the conduit

TABLE I. Characteristic parameters of the experimental devices. R, L, and
V: radius, length, and volume of the cylindrical duct; rp and lo: radius and
immersed length of the probe; Q: flow rate; γ̇ : shear rate (see Fig. 1).

R L V rp lo Q γ̇

(mm) (mm) (mm3) (mm) (mm) (ml/min) (s−1)

A 5 90 1400 0.55 60–80 3–30 0.1–3
B 0.5 40 31 0.07 13–57 0.5–15 85–2550
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FIG. 2. Variation as a function of time of the force measured in device B
during two cycles of stepwise variations of the flow rate.

were connected to a PharmaciaTM double syringe pump: one
of the syringes injects the fluid at the inlet while the other one
sucks its excess at the other end of the duct. The oscillations
on each plateau are induced by this pump. Gear or peristaltic
pumps have also been used successfully.

The transverse location of the probe may be adjusted by
micrometric screws so that its axis and that of the duct roughly
coincide. The influence of this adjustment is characterized in
Fig. 3. It displays the theoretical variation of the normalized
measured force F(δr/R)/F(0) on the cylindrical probe as a
function of the normalized offset δr/R between its axis and
that of the duct. The data plotted in Fig. 3 were obtained us-
ing finite element simulations (see Refs. 12 and 13 for de-
tails). They demonstrate that an offset δr = R/4 only induces
a 10% variation of the measured force. This small influence of
the offset is in agreement with the results from Ref. 12. This
demonstrates the robustness of the reading of the viscometer
with respect to small misalignments.

III. ANALYSIS OF THE EXPERIMENTAL DATA

A. Newtonian fluids

After each experiment, the mean and the standard de-
viation of the value of the force F on each plateau are
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FIG. 3. Variation of the normalized force F(δr/R)/F(0) on the probe as
a function of the normalized transverse offset δr/R for device A (rp/R =
0.11). Vertical dotted line corresponds to the distance δr for which the probe
and the cylindrical duct wall are in contact.
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FIG. 4. Variation of the force on the cylindrical probe as a function of the
mean velocity U of a water flow. (a) (•): device A (0 ≤ Re ≤ 60); solid line:
linear regression on all data of slope 0.715 g s−1. (b) (◦): device B (0 ≤ Re
≤ 200); solid line: linear regression on the first five points of slope 0.80 g s−1.

computed. Figures 4(a)–4(b) display the variation of this
mean value as a function of the corresponding mean flow ve-
locity U = Q/S for two of the experiments performed with
pure water [S = π (R2 − r2

p) is the flow section]. Although,
with the present protocol, each data point may be determined
several times during one experiment, only data corresponding
to one cycle are shown. Figure 4(a) displays data obtained us-
ing device A; the flow in the duct is either upward (U > 0)
or downward (U < 0). The force F varies linearly with U ,
at least up to |U | � 5 × 10−3 m s−1; this velocity corresponds
to a Reynolds number Re = 2ρ|U |R/μ � 50 (ρ is the fluid
density). Moreover, the slope is the same for positive and neg-
ative values of U . Therefore, here, the direction of the flow
does not affect the measurement.

Figure 4(b) displays data obtained using device B: the
range of flow rates investigated is the same as for device A
but the corresponding flow velocities are higher due to the
smaller section of the sensor. At first, the force increases lin-
early with the velocity up to 0.05 m s−1: the corresponding
Reynolds number Re = 50 is of the order of the maximum
value reached with device A for which the variation of F with
U was also linear. At higher velocities (i.e., for Re > 50), one
observes an increasing deviation from the linear variation: this
nonlinearity may be accounted for by the development of in-
ertial effects in the flow.12

In the following, only measurements performed in the
laminar viscous regime at Reynolds numbers Re ≤ 50 will
be discussed. In this regime, the ratio of the force by the fluid

velocity [see Eq. (1)] is the product of the immersed length
lo by the fluid viscosity μ and by a geometrical parameter λ.
Here, we use, therefore, the constant value of this ratio F/U
to determine the fluid viscosity from the relation

μ = F

λ lo U
. (2)

Practically, μ is determined either by measuring a single cou-
ple of values (F, U ) or by performing a linear regression over
a set of different measurements of (F, U ) (see Sec. IV A be-
low). In both cases, however, the value of the geometrical co-
efficient λ is required in order to use Eq. (2).

A first approach is to determine the value of λ (or rather
of λ lo) through a calibration measurement (or a set of mea-
surements) using a fluid of known viscosity μo. Then, the un-
known viscosity μ of the fluid of interest is related to μo by

μ

μo
= (F/U )

(F/U )o
. (3)

The parameter λ may also be estimated analytically by
computing numerically the total force induced by the fluid
flow on the inner cylinder. A first component of this force is
the viscous shear stress force Fs

Fs =
∫ ∫

S
σ .n d S = lo [

∮
C

σ .n d�] (4)

in which σ is the viscous shear stress tensor which is assumed
to be constant along the length lo; n the unit vector normal
to the external lateral surface S and C the curve bounding a
section of the cylinder normal to the axis.

A second component is the pressure force Fp created by
the difference between the pressures at the ends of the cylin-
der: assuming that the pressure gradient ∂p/∂z induced by the
flow is also constant over the length lo leads to

Fp = −loπr2
p

∂p

∂z
. (5)

In order to compute the viscous shear stress and the
pressure gradient ∂p/∂z, we assume (in line with the previ-
ous simplifications) that the fluid velocity V is everywhere
parallel to z and that V = v(r )ez due to the rotational and
translational symmetries of the system. The governing equa-
tion of the flow reduces then to the simple 1D differential
equation:14

− ∂p

∂z
+ μ

r

∂

∂r

(
r
∂v(r )

∂r

)
= 0. (6)

In which ∂p/∂z is constant with both z and r . This equation
can be solved analytically for zero slip boundary conditions
at the surface of the cylinders. After computing the total flow
rate in the gap between the coaxial cylinders, the profile v(r )
may be related to the mean velocity U by

v(r ) = −2U
[
(1 − ε2) ln

(
r
R

) + ln(ε)
(

r2

R2 − 1
)]

(1 + ε2) ln(ε) + (1 − ε2)
, (7)

in which ε = rp/R and U is the mean flow velocity.
The gradient ∂p/∂z is then computed from U by means

of Eq. (6) and Fp is obtained from Eq. (5). Using Eq. (4), Fs
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can be related to v(r ) by Fs = μπd lo ∂v(r )/∂r |r=rp . Com-
puting the total force F by summing Fs and Fp provides from
Eq. (2) the respective values λ = 9.9 and 12.2 for devices A
and B.

Using in Eq. (2) the value of λ corresponding to the de-
vice of interest gives the viscosity μ once the ratio F/U
and the length lo have been measured experimentally. For
instance, the value F/U = 0.715 g s−1 determined by a lin-
ear regression on the data of Fig. 4 leads to μ = 0.96
± 0.03 mPa s for lo = 75 mm and λ = 9.9: this is only
slightly higher than the value μ = 0.94 mPa s of the viscos-
ity of water at the same temperature (T = 22.6◦C) quoted in
Ref. 15.

Systematic measurements of the viscosity of different
Newtonian fluids by this and other techniques are discussed
and compared in Sec. IV A below. We describe now the pro-
cedure developed for determining the rheological characteris-
tics of non-Newtonian fluids.

B. Non-Newtonian fluids

Figure 5 shows that, unlike for Newtonian fluids, the
force varies nonlinearly with the mean velocity U for the
polymer solutions. This deviation reflects the variation of
the viscosity with the shear rate: the velocity is indeed too low
for inertia effects to appear and they would induce an upward
curvature of the curve [see Fig. 4(b)] and not downward as
here. The slower increase of the force with U suggests, from
Eq. (2), that the apparent viscosity decreases with U : this is in
agreement with the shear thinning properties reported in the
literature16 for such solutions.

In order to characterize quantitatively the rheological
properties of the fluid, the variation of F with U must be
translated into a rheological characteristic relating the appar-
ent viscosity μ to γ̇ . For this purpose we developed first a
procedure for computing the variation of F vs U for any
chosen rheological curve μ = f (γ̇ ), characterized by a set of
parameters (two in the present case) depending on the rheo-
logical model selected. Like in the Newtonian case, the force
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FIG. 5. Variation of the force F as a function of the mean flow velocity U
for a 250 ppm polymer solution flowing in device A. (�) and (◦): measure-
ments obtained for two consecutive tests. Solid line: best theoretical fit of
the experimental data in the case of a power law rheological characteristic
μ = kγ̇ α .

F is determined by means of Eqs. (4) and (5). This requires
the determination of the pressure and velocity fields between
two coaxial cylinders for any specific rheological law f (γ̇ ): it
must be noted that the function f (γ̇ ) only exists for isotropic
and nonthixotropic fluids which will be assumed to be the
case in the following. Then, the Newtonian equation of mo-
tion (6) must be replaced by the more general form

∂p

∂z
= 1

r

∂

∂r
(r σz(r )) = 1

r

∂

∂r
(r γ̇ f (γ̇ )) (8)

in which σz(r ) is the z component of the shear stress on a
surface normal to r and γ̇ = ∂v(r )/∂r . The pressure gradient
∂p/∂z is independent of r and z as for Newtonian fluids.

For non-Newtonian fluids, this equation cannot generally
be solved analytically; for a given value of ∂p/∂z, v(r ), and
σz(r ) are computed by a numerical integration of Eq. (8) with
zero velocity boundary conditions at the walls. An implicit
Runge–Kutta method implemented in MATLAB is used for
that purpose. The mean velocity U is then determined by av-
eraging over the tube section and the corresponding total force
F on the probe is computed by means of Eqs. (4) and (5).

For a chosen mean velocity U , the value of ∂p/∂z is
adjusted iteratively until the numerical value Unum coincides
with U . By repeating this procedure, one obtains a force–
velocity relation F(U )num to be compared with the experi-
mental one.

The whole process is then iterated while adjusting the
parameters of the rheological model by a least mean square
method until F(U )num coincides with the measured variation.

IV. EXPERIMENTAL RESULTS

A. Newtonian fluids

The viscosity of different Newtonian water–glycerol
mixtures has been determined by means of the procedure de-
scribed in Sec. III A.

In this case, it is possible to determine the viscosity μ

by measuring the force F at a single flow velocity U . Then
μ is given by the relation μ = F/(λ lo U ) discussed above.
Figure 6 displays the variation with the shear rate γ̇ of the
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FIG. 6. Viscosity of pure water (T = 22.6 ◦C) measured using different de-
vices. (•): device A; (+): Contraves-Low-shear-30 rotating viscometer. Dot-
ted line: value from Ref. 15; Dashed dotted line, value obtained from a linear
regression on the data of device A at different flow rates.
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values of the viscosity μ obtained in this way for the less
viscous fluid studied (i.e., pure water): no systematic trend
of variation with γ̇ is visible. Reference measurements were
obtained using a Low Shear-30 rheometer: both sets of val-
ues are compatible within their standard deviation. Other
reference measurements were performed using an MCR501
Anton Paar rheometer: these latter data displayed an unphys-
ical divergence of the measured viscosity at low shear rates
and were therefore discarded. However, for the more viscous
fluids (μ � 10 mPa s) to be discussed below, the values mea-
sured by this apparatus are independent of the shear rate and
will therefore be reported.

The graph also displays as an horizontal line the viscosity
value μ = 0.96 ± 0.03 mPa s obtained from a linear regres-
sion over the full set of experimental data points in Sec. III A
(as mentioned above, it is equal within 2% to the published
value μ = 0.94 mPa s from Ref. 15).

Still for Newtonian fluids, the influence of the viscosity
on the measurement has been investigated by using water–
glycerol solutions with different concentrations. In this case,
and in order to improve the precision several measurements
are performed for each solution at different mean velocities
U . The ratio a = F/U is determined by performing a lin-
ear regression F = aU on the sets of values of (F, U ) and
the experimental viscosity is finally computed by means of
Eq. (2). The viscosities obtained in this way are plotted in
Fig. 7 together with values from Ref. 17. Most experimen-
tal values are close to the theoretical curve: the small devia-
tions observed likely arise from the small differences between
the actual temperature and the fixed value T = 22.6◦C corre-
sponding to the continuous curve.

The accuracy of the measurements has then been char-
acterized quantitatively by computing the relative deviation
(μmes − μref)/μref of the measured viscosities μmes from pub-
lished reference data. This time, μref corresponds to the same
temperature as the measurement: this removes the small devi-
ations in Fig. 7 due to temperature variations.

This relative deviation is displayed in Fig. 8 as a func-
tion of the mass concentration for measurements obtained
with both devices A and B (circles and triangles in Fig. 8)
and with two commercial rheometers (diamonds and crosses).
At all glycerol concentrations, the values of the ratio (μmes

− μref)/μref are found to be distributed equally above and
below zero with a maximum deviation of the order of 10%.
There is no visible trend in the distribution implying that there
is no global variation of the deviation with the concentration.
A similar distribution is also observed for the values measured
by the two commercial rheometers at concentrations above
50%.

Two experimental measurements performed using device
B display, however, a much stronger deviation of the order
of 40%. In these cases the fluid was flowing upward while
no such effect was observed for downward flows. These two
results may be accounted for by the buckling of the probe
cylinder under the compressive stress induced by the upward
flow of the fluid.

In the geometry considered, (i.e., one end fixed and the
other free to move laterally), buckling takes place if the hydro-
dynamic force μλloU becomes larger than the critical value

1
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P
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s)

806040200
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FIG. 7. Variation of the dynamic viscosity μ as a function of the relative
mass concentration of glycerol for water–glycerol solutions. Values obtained
using (•): device A; (◦): device B. Solid line: values from Ref. 17 for T
= 22.6 ◦C.

Fc = π2 E I/(2lo)2, in which E is the value of Young’s mod-
ulus for the probe (here a glass fiber) and I is the moment of
inertia of its section (for a cylinder it is I = πr4

p/8 in which
rp is the radius of the probe).18 Young’s modulus has been
determined for the probe by measuring its deflection under
its own weight: the value E = 39 GPa found in this way is
close to that usually reported for glass (�70 GPa). For a fluid
of viscosity of 0.01 Pa s and a probe of length lo = 57 mm,
buckling should, therefore, occur for a fluid velocity of the
order of 5.10−3 m s−1: this is close to the value corresponding
to the anomalous data in the present experiments.

B. Non-Newtonian fluids

1. Characterization using commercial rheometers

For non-Newtonian solutions the fluid viscosity varies
with the shear rate. Figures 9 and 10 display the rheological

Glycerol concentration (%)
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μ r
ef

 (%
)

–40

–30

–20

–10

0

10

20

30

40

806040200

FIG. 8. Variations of the relative differences (μmes − μref)/μref between the
measured viscosity μmes and the values from Ref. 17 at the same temperature
as a function of the mass concentration of glycerol. (•): device A; (◦): device
B; (+) Contraves Low Shear-30 rotating viscometer; (♦): MCR501 Anton
Paar rheometer with a double gap Couette assembly (only for μ � 10mPa s).
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FIG. 9. Log–log plot of the dynamic viscosity μ of a 250 ppm scleroglucan
solution at 23.6 ◦C as a function of γ̇ : (+) Low Shear-30 rheometer; ♦: Anton
Paar MCR501 rheometer with double gap assembly. Solid and dotted lines:
rheological laws using fitted parameter values listed in Table II. Inset: lin–log
plot of the same data.

characteristic curves of the two polymer solutions used in the
present study as measured using the Low Shear-30 and Anton
Paar rheometers. At shear rates below 100 s−1, the polymer
solutions display a shear thinning behavior which is well ad-
justed in the most of the range of values of γ̇ by the power
law variation

μ = kγ̇ −α. (9)

The corresponding values of the rheological parameters k and
α fitted are listed in Table II. At higher shear rates, the vis-
cosity of the solutions tends toward a constant value μ∞ of
the same order of magnitude. The higher value of μ∞ mea-
sured in the cone-plate (CP) configuration of the Anton Paar
rheometer [(�) in Fig. 10] likely reflects an additional dissipa-
tion due to the appearance of an hydrodynamic instability: it
has, therefore, been discarded. At very low flow rates, the vis-
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FIG. 10. Log–log plot of the dynamic viscosity μ of a 1000 ppm scleroglu-
can solution at 23.6 ◦C as a function of γ̇ . The solid and dotted lines have
the same meaning as in Fig. 9. (�) [respectively, (♦)] : Anton Paar MCR501
rheometer respectively in the cone-plate and double gap configuration. Inset:
lin–log plot of the same data.

TABLE II. Rheological parameters of scleroglucan solutions obtained with
the Low Shear-30 rheometer (LS), the Anton Paar MCR 501 using the
double-gap (MCR – DG) and cone-plate (MCR – CP) assemblies with vis-
cosimeters A and B.

Polymer Concentration Apparatus k α μ∞
(ppm) (mPa s)
250 LS 0.018 0.41

MCR – DG 0.019 0.43 1.6 ± 0.1
A 0.019 0.49
B 1.5 ± 0.1

1000 MCR – DG 2.7 ± 0.2
MCR – CP 0.32 0.80

A 0.38 0.81
B 2.8 ± 0.1

cosity should also reach another constant Newtonian plateau:
the corresponding values of γ̇ are, however, below the range
of the present experiments.

2. Measurements using devices A and B

In the range of values of U used here, measurements us-
ing device A have been found to correspond to the power law
variation regime (γ̇ was always lower than 100 s−1) because
of its relatively large size. Data obtained using device B cor-
respond instead to the upper shear rate regime in which the
viscosity has the constant value μ∞: the values of γ̇ are in-
deed higher for this device because of its smaller size. Two
different methods have, therefore, been used to analyze the
data from devices A and B and obtain the values of μ and γ̇

corresponding to the measurements.
For device B, μ∞ is determined from the couples of

data (F, U ) by means of the linear regression procedure of
Sec. III A for Newtonian fluids. The values of μ∞ obtained
in this way are plotted as horizontal dotted lines in Figs. 9
and 10 and listed in Table II. These values are very similar
to those given by the Anton Paar rheometer using the double
gap (DG) assembly (as mentioned above, the measurements
of μ∞ in the CP geometry are not valid). In the shear thinning
regime at lower values of γ̇ , configuration DG is usable for
the 250 ppm solution; for the 1000 ppm solution, the viscos-
ity becomes too high and the cone plate assembly CP gives
better results.

For device A, the procedure described in Sec. III B has
been used for determining the rheological curve from the
force measurements. The rheological parameters k and α are
then determined by adjusting their values so that the experi-
mental force variation F(U ) is well fitted by that computed
numerically. The solid lines in Fig. 5 corresponds to the op-
timal fits obtained by this technique for F(U ) and the corre-
sponding values of k and α are listed in Table II.

The rheological curves determined in this way for the two
polymer concentrations are superimposed in Figs. 9 and 10
over the data from the commercial rheometers: the different
sets of values agree to within 10%.

The same procedure might be applied using any usual
rheological characteristic (i.e., Carreau or Cross functions,
truncated power law . . .).
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V. DISCUSSION AND CONCLUSION

In this paper, we have described a new device allowing
for the quantitative characterization of the rheological proper-
ties of fluids from the value of the force exerted by a flow on
a cylindrical probe.

For Newtonian water–glycerol solutions of viscosities μ

ranging from 10−3 to 0.1 mPa s, the measured value of μ is
almost constant with the shear rate γ̇ ; even using a single
measurement, the accuracy is similar to that of much more
complex and costly commercial rheometers.

The technique also allows one to determine the rheologi-
cal characteristic curve of non-Newtonian fluids: this has been
shown by measurements of this curve for two water–polymer
(scleroglucan) solutions of different concentrations. The rheo-
logical parameters determined from the variations of the force
with γ̇ at intermediate and high values correspond well to
those obtained using commercial rheometers.

Compared to such rheometers, the present device does
not include elements with a tight machining tolerance, and
due to the reduced influence of the positioning of the probe,
the setup does not require a very careful alignment or a spe-
cific maintenance. Because of its relative simplicity, the tech-
nique is adaptable to an industrial environment (and possibly
to in-line continuous measurements) and is not restricted to
laboratory applications. In addition, the present device is easy
to manufacture and (except for the force sensor) inexpensive.
Some parts (such as the duct or the probe) may, therefore, be
disposed of after each use so that the technique is suitable
for medical applications or for the measurement of reactive
fluids.

For a given flow velocity, the force measured on the probe
is not influenced by scale reduction (provided that the ra-
tio rp/R is kept constant). Hence, in spite of a scale reduc-
tion by a factor 10 between devices A and B, the force mea-
sured by the sensor are in the same range (i.e., between 1 and
1000 μN). In device B the measurement volume has been re-
duced to 0.03 ml: this suggests possible applications to vis-
cosity measurements in microfluidic apparatus.

In this respect, further miniaturization of the device and
a comparison of its performance to that of other techniques

developed in micro or nanofluidics5, 19, 20 will represent an im-
portant challenge.
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