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Passive tracer dispersion in oscillating Poiseuille liquid flows of zero net velocity
is studied experimentally in a Hele-Shaw cell and numerically by 2D simulations:
this study is particularly focused on the time dependence and local properties of
the dispersion. The dispersion mechanism is found to be controlled by the ratio
τm/T of the molecular diffusion time across the gap and the oscillation period (when
molecular diffusion parallel to the flow is negligible). The 2D numerical simulations
complement the experiments by providing the local concentration c(x, z, t) at a given
distance z from the cell walls (instead of only the average over z). Above a time
lapse scaling like τm, the variation of c with the distance x along the flow becomes
a Gaussian of width constant with z while the mean distance x̄ may depend both
on z and t. For τm/T . 2, the front spreads through Taylor-like dispersion and the
normalized dispersivity scales as τm/T . The front oscillates parallel to the flow
with an amplitude constant across the gap; its width increases monotonically at a
rate modulated at twice the flow frequency, due to variations of the instantaneous
dispersivity. For τm/T & 20, the molecular diffusion distance during a period of the
flow is smaller than the gap and the normalized dispersivity scales as (τm/T)−1. The
oscillations of the different points of the front follow the local fluid velocity: this
produces a reversible modulation of the global front width at twice the flow frequency
and in quadrature with that in the Taylor-like regime. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4932302]

I. INTRODUCTION

The dispersion of miscible solutes or tracers in parallel or quasi-parallel laminar flows is of
interest in many applications like chemical engineering, microfluidics, chromatography, or separa-
tion and has been extensively studied in the case of stationary flows since the classical pioneering
papers of Taylor1 and Aris.2 In such flows, the so-called Taylor dispersion corresponds to a balance
between molecular diffusion across the flow lines and the convective spreading of the tracer due to
velocity gradients transverse to the main flow; the corresponding dispersion coefficient is propor-
tional to the square of the characteristic velocity U unlike for 3D random porous media for which
geometrical dispersion proportional to U is dominant. For a flow between two parallel planes (spac-
ing H), Taylor dispersion is the relevant mechanism provided the Péclet number Pe = UH/Dm is

a)Electronic mail: lucreroht@gmail.com
b)Electronic mail: auradou@fast.u-psud.fr
c)Electronic mail: hulin@fast.u-psud.fr
d)Electronic mail: salin@fast.u-psud.fr
e)Electronic mail: ricardochertcoff@gmail.com
f)Electronic mail: i.ippolito@conicet.gov.ar

1070-6631/2015/27(10)/103602/17/$30.00 27, 103602-1 ©2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  129.175.97.14 On: Wed, 07 Oct 2015 16:36:11

http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
http://dx.doi.org/10.1063/1.4932302
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:lucreroht@gmail.com
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:auradou@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:hulin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:salin@fast.u-psud.fr
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:ricardochertcoff@gmail.com
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
mailto:i.ippolito@conicet.gov.ar
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4932302&domain=pdf&date_stamp=2015-10-07


103602-2 Roht et al. Phys. Fluids 27, 103602 (2015)

larger than ≃30 (Dm is the molecular diffusivity); at lower Péclet numbers, pure molecular diffusion
is dominant.

Fewer research has been devoted to dispersion in pure (zero mean velocity) oscillatory flows.
These are however of significant interest in such applications as pulmonary ventilation flows or
flows induced by surface waves (for instance, in shallow water in estuaries). On the fundamental
side, pure oscillating flows raise important questions in relation to the well known reversibility of
the flow fields at low Reynolds numbers when the mean flow is reversed: can this reversibility result
in a very low instantaneous dispersion after an integral number of oscillations of the flow velocity?
Does spreading remain diffusive?

In a pioneering work, Aris3 applied his method of moments to longitudinal dispersion induced
by a pulsating viscous flow in an infinite tube, but with a nonzero time averaged velocity. The
transition between the irreversible and reversible regimes in Taylor dispersion was studied experi-
mentally4 by means of a step-like point injection of tracer at the center of two parallel square plates
(spacing H) followed by a reversal of the flow after a preselected variable time. This same problem
was investigated theoretically5 by an irreversible thermodynamics approach. These studies demon-
strated the major influence of the ratio τm/T of the characteristic time τm = H2/Dm for molec-
ular diffusion between the plates to the interval T between the beginning of the injection and its
reversal: there is indeed a transition from irreversibility to partial reversibility as τm/T increases. For
oscillating flows, τm/T will also be a key parameter (T is this time the period of the oscillations).

Watson6 discussed theoretically tracer diffusion for pure oscillating flows in a circular tube or
between parallel plates: he determined the relevant characteristic numbers of the problem and pre-
dicted the value of the macroscopic diffusion coefficient after a stationary diffusive regime has been
reached. Experimental verifications of these predictions were reported by Joshi et al.7 and Kurzweg
et al.8,9 for oscillating gas flows in circular tubes with a nonzero mean velocity. These latter works
are concerned with the macroscopic effective diffusivity averaged over the whole flow section and
measured after a stationary diffusive regime is reached. Regarding this last point, several authors
considered the variation with time of the dispersion and not just its asymptotic value at long times.
Holley et al.10 showed that, in estuaries, the effective diffusion coefficient is strongly reduced when
the width reaches about 200 m, which also is the case for many waterways: a possible explanation
is the partial reversibility of dispersion in oscillating flows at high enough frequencies. Chatwin11

demonstrated the occurrence of second harmonics of the flow frequency in the time dependence of
the dispersion. He also suggested that, in the case of blood flow, there might be a transition from
Taylor to partly reversible dispersion for vessels of internal diameter larger than about 2 mm. Ya-
suda12 studied dispersion when an oscillatory boundary layer is present: he compared the results to
those obtained for a steady flow and explained why, in the oscillatory case, the apparent dispersion
coefficient may appear to decrease when the flow is reversed.13,14 For turbulent flows, some results
obtained for laminar flows may be transposed by replacing the molecular diffusion coefficient by the
eddy diffusivity.15,16

The above works on oscillatory flows are mostly concerned with the regimes achieved at long
times and, in all cases, with the macroscopic dispersion (averaged over the gap of the flow channel).
They do not provide information on the local mechanisms of this type of dispersion and its partial
reversibility. The objective of the present paper is, therefore, to relate the variations with time of
the local concentration to those of the global dispersion. For this purpose, we study experimentally
and numerically at both the macroscopic and local scales the different diffusive spreading regimes
in oscillating flows between parallel plane walls and determine their domains of existence and their
time dependence.

We discuss first experiments performed in a Hele-Shaw (HS) geometry by optical measure-
ments of the average of the concentration of a dye tracer over the gap of the cell. We study whether
the spreading of the tracer is diffusive and the variation of the corresponding macroscopic diffusion
coefficient D∥ with the amplitude and frequency of the oscillations for fluids of different viscosities:
these variations can be collapsed onto a single master curve by using proper dimensionless variables
such as the ratio τm/T .

Numerical 2D Monte Carlo simulations in a parallel plate geometry allow us to study the
spatial distribution of the tracer in the gap of the cell and its dependence on time. More specifically,
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we compare in both regimes the variation with time of the first and second moment of the local
concentration distribution along the flow at different distances from the walls. Another important
issue is the time necessary to achieve diffusive spreading and its relation to the characteristic diffu-
sion time. In the Appendix, we show that the analytical results of Chatwin11 and Watson6 can be
adapted to the present configuration and provide a basis of comparison for both the experimental
and numerical results obtained at the macroscopic scale.

II. EXPERIMENTAL SETUP AND PROCEDURE

The fluid flows inside a Hele-Shaw cell (Figs. 1(a) and 1(b)) made of two transparent glass
plates (400 × 70 × 10 mm) separated by a Mylar sheet of appropriate geometry providing a gap of
thickness H = 0.4 ± 0.02 mm with an internal width of 50 mm in its parallel part.

For short periods T , the flow is generated by applying an oscillating motion to the piston of a
syringe by means of a rotating crank driving a rod and hooked up through a 1/40 reduction gear to
a dc motor rotating at a constant rate: the corresponding range of T values is 2 ≤ T ≤ 80 s. Longer
periods (25 ≤ T ≤ 250 s) are obtained by means of a programmable syringe pump (Harvard type
22): the sine wave time dependence of the flow rate is approximated by a variation by discrete
steps of minimum individual duration 0.7 s (each period T of variation contains therefore at least 35
points and the flow rate never goes to zero). We checked that this discretization does not perturb the
dispersion process by comparing results obtained in the range of T values where both devices can be
used: the results obtained are indeed identical within experimental error (see Fig. 5 below).

The fluids used in the experiments are aqueous solutions of glycerol at concentrations equal
to 21% and 50% with respective viscosities of 1.8 and 6 mPa s (at 20 ◦C). All the experiments
were performed at a constant temperature of 20 ◦C. Water Blue dye17 at a concentration of 2.0 g/l
is added to one of the solutions as a passive tracer. The molecular diffusion coefficient Dm of
the dye, as determined through independent measurements and results from the literature,18,19 is
Dm = 4.05 × 10−4 mm2/s for the 21% glycerol solution.

The cell is illuminated from below and the concentration field C(x, y, t) is determined from
images acquired by a digital CCD camera placed above the setup (Roper Coolsnap FX): C(x, y, t) is
the average, over the gap H of the cell, of the local concentration c(x, y, z, t). Each image contains
1300 × 140 pixels with a depth of 12 bits. The field of view is 289 × 31 mm and the resolution is
4.5 pixels/mm. For each experiment, 650 images are acquired at time intervals from 0.2 to 12.5 s.

Prior to each experiment, reference images are obtained with the cell saturated by the trans-
parent solution and, then, by the pure dyed one (dye concentration Co). For each experimental
image, the intensity IC(x, y) of the transmitted light measured for each pixel of coordinates (x, y) is
then converted into the corresponding concentration C(x, y, t) with the help of the reference images
and of a calibration curve.19–21 This curve relates the relative concentration of dye C/Co to the

FIG. 1. Schematic views of the cell and of the experimental setup. (a) Side view of the global experimental setup; (b) top
view of the Hele Shaw cell.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  129.175.97.14 On: Wed, 07 Oct 2015 16:36:11



103602-4 Roht et al. Phys. Fluids 27, 103602 (2015)

FIG. 2. Left: Images of the cell and corresponding tracer concentration map after image processing (a) at to = 0 (b) at
t1= 300 s. The fluid oscillates with a period T = 9 s and an amplitude (averaged over the gap) A= 2 mm. Right: Profiles of
the variation of the concentration C(x, yo, t) with the distance x− xo to the initial location of the front at the same time t as
the facing image and at a same transverse distance yo = 15 mm. Fits by Eq. (3) are superimposed as continuous lines onto
the experimental curves (xo(t1)= 157 mm and ∆x2(t1)= 55 mm2).

relative optical absorbance of the model,

A(C)
A(Co) =

ln⟨It/IC⟩x, y
ln⟨It/ICo⟩x, y

, (1)

where ⟨It/IC⟩x, y and ⟨It/ICo⟩x, y are the spatial averages of the ratios of the transmitted intensity
when the model is saturated by the transparent solution (no dye) and by solutions of respec-
tive concentrations C or Co. This ratio is determined through independent measurements for
different concentrations C (constant in the model) ranging from 0.1 to 2 g/l. The relation between
A(C)/A(Co) and C/Co is then approximated by a third order polynomial using coefficients deter-
mined by a fit to the calibration data; these coefficients are assumed to remain the same at the local
scale for determining the relative concentration C(x, y)/Co.

At the beginning of the experiment (t = 0), each half of the cell length is saturated with one
of the fluids with a sharp relative concentration variation at the front (Fig. 2(a)): this is obtained by
injecting simultaneously the two fluids at the ends M and P of the cell and letting them flow out
together on the two side ports N and N ′ in the middle (Fig. 1). The initial front coincides with the
line N N ′. The side ports are then shut off and the injection device is connected to the inlet M . The
variations of the flow rate are monitored from the variations of the weight of a beaker connected to
the outlet P which are well fitted by a sine wave. This measurement, together with the area of the
cell section, gives the amplitude A (averaged over the gap) of the displacement of the fluid in the
constant width part of the cell: the values in the present work range from A = 2 to 6 mm. Images
of the cell are then acquired at regular intervals. Assuming that the mean displacement of the fluid
varies as A sin(ωt) with ω = 2 π/T , the average fluid velocity satisfies

⟨vx(z, t)⟩z = ω A cos (ω t) = U cos (ω t) . (2)

In the following, U = ωA = 2π A/T is used as the characteristic velocity of the problem. Since, due
to the oscillations, the average displacement of the fluid is zero, the total travelled distance xtr is
characterized here by the integral of the absolute value |dx̄/dt | of the front velocity between times 0
and t; for an integral number N of periods, xtr = 4N A.

III. EXPERIMENTAL RESULTS

A. Time dependence of the mean front profile

Figures 2(a) and 2(b) display experimental maps of the normalized dye concentration
C(x − xo)/Co at times to = 0 and t1 = 300 s (Co is the concentration of the pure dyed solution); the
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width of the front is clearly larger in the latter case. Here and below, we use x − xo as the horizontal
scale (the initial location xo of the front is indeed the physically relevant origin of the coordinate x).

Profiles of C(x, yo)/Co corresponding to the same times as in Figs. 2(a) and 2(b) and to
y = yo = 15 mm are plotted in Figs. 2(c) and 2(d): curve (d) is well fitted by the error-like function
(continuous black line),

C(x, yo) = 1
2


1 − erf

*..
,

x − x̄(yo, t)
2∆x2(yo, t)

+//
-


. (3)

This fit provides the values of the mean coordinate of the front x̄ and its mean square width ∆x2.
This procedure is preferred to a direct computation from the experimental curves because it is less
sensitive to noise and to small variations of the measured values corresponding to C = 0 and Co far
from the front.

Figures 3(a) and 3(b) display spatiotemporal diagrams of the respective variations of x̄(y, t) −
xo and ∆x2(y, t); x̄(y, t) oscillates with time at the frequency of the oscillations of the flow (alternate
light and dark stripes) and is practically independent of y , as shown by the very good overlay of the
5 different local profiles in Fig. 3(c) and the perfectly vertical patterns in Fig. 3(a). This shows that
the average over z of the component vx of the flow velocity is constant with y .

The mean square width ∆x2 increases globally linearly with time at all distances y (Fig. 3(d))
and the slope of the local profiles is equal to that of the global one to within 10%. Front spreading
in the direction x of the flow is therefore globally diffusive and can be described by the coefficient
D∥ = (1/2)d∆x2/dt. An additional modulation at half the period T of the flow is superimposed onto
this linear trend (continuous global curve in Fig. 3(d)); this modulation is more clear and is visible
during a longer time on the global profile than on the local ones (the period is rather T than T/2 in
some areas as shown by the distribution/length of the vertical stripes in Fig. 3(b)). This may reflect
dye exchange due to secondary flow components in the y direction.

In the following, we use a 1D description leaving aside the variations with y and study the
properties of the averages over y of x̄(t) and ∆x2(t); their variations during one period T are

FIG. 3. (a) and (b) Spatiotemporal diagrams of (a) the mean distance x̄(y, t)− xo (grayscale) and (b) the width ∆x2(y, t)
(grayscale) of the front as a function of the time t (horizontal scale) and of the transverse distance y (vertical scale); (c) and
(d) Variations with time, for the same experiment as graphs (a) and (b), of x̄(t) and ∆x2 averaged over the full width of the
cell (continuous line) and over 5 sets of 10 adjacent lines centered respectively at y = 2.5, 10, 17.5, 25, and 32.5 mm (dotted
lines); T = 250 s, A= 3.5 mm.
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FIG. 4. Variations of the mean square width ∆x2 of the front and of the mean distance x̄. Main graphs: variation of ∆x2 as
a function of the travelled distance xtr (continuous line) and linear fit of this variation (dashed line). Insets: variations as a
function of time of x̄ (curved dotted line), ∆x2 (continuous line), and linear fit (dashed line); vertical dotted lines: extrema of
x̄. (a) T = 250 s, A= 3.5 mm; (b) T = 33 s, A= 5 mm. H = 0.4 mm, τm = 395 s.

compared in the insets of Fig. 4(c) for T = 250 and T = 33 s. Like in Figs. 3(c) and 3(d), the
variation of x̄(t) is sinusoidal of period T and that of ∆x2(t) combines a global linear increasing
trend and a periodic variation of period T/2.

For T = 250 s (a), ∆x2 increases continuously, but at a varying rate going to zero, like the
velocity, at the extremal values of x̄(t) (vertical dotted lines in the inset). The modulation is less
apparent and the linear trend is more clear when ∆x2 is plotted (main graph) as a function of the
travelled distance xtr.

For T = 33 s (b), ∆x2 decreases instead when the flow direction is reversed before increasing
again (inset). This modulation at twice the frequency of the flow is, this time, also very visible in the
variation of ∆x2 with xtr (main graph in Fig. 4(b)). Experimental, numerical, and analytical results
on the amplitude and phase of these modulations will be discussed in Sec. V B (see Fig. 13).

These results show that tracer spreading is fully irreversible for oscillations of large periods
T (it always increases with time), but partly reversible for shorter periods T (it decreases during a
fraction of the period). Over time lapses longer than T , ∆x2 increases linearly in both regimes both
with time and xtr which demonstrates the diffusive character of the spreading. As pointed above,
the corresponding 1D diffusion coefficient is equal to D∥ = ∆(∆x2)/(2∆t), (∆(∆x2) is the variation
during a time lapse ∆t ≫ T).

B. Dimensionless variables characterizing the front diffusion

Assume, in an homogeneous medium, a uniform flow of velocity U parallel to x and an initial
macroscopic concentration C(x,0) of the tracer independent of y; C(x, t) will remain constant with
y at all times and satisfies the 1D Gaussian dispersion relation,

∂C
∂t
= U

∂C
∂x
+ D∥

∂2C
∂x2 . (4)

For a constant mean flow velocity ⟨vx⟩z = U, solutions of this equation are given by Eq. (3) with
x̄ = Ut and ∆x2 = 2D∥ t.

In the case of a stationary plane Poiseuille flow of velocity vx(z) = (3U/2)(1 − 4z2/H2) be-
tween parallel plates (spacing H), front spreading becomes diffusive at the macroscopic scale for
t ≫ τm (τm = H2/Dm). Then, the concentration C(x, t) satisfies Eq. (4) and the coefficient D∥ is
given by1,2

D∥ =
U2 H2

210 Dm
+ Dm =

U2 τm
210

+ Dm. (5)
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Eq. (5) is a macroscopic relation and C(x, t) is the average of the local microscopic concentration
c(x, z, t) over the distance z inside the cell gap; the local concentration c(x, z, t) satisfies instead the
local microscopic equation,

∂c
∂t
= vx(z) ∂c

∂x
+ Dm∆c. (6)

The term proportional to U2 in Eq. (5) corresponds to Taylor dispersion already mentioned in
Sec. I. Physically, it represents the diffusion coefficient associated to a random walk with individual
steps of duration ∼τm and velocity ∼U: the transverse diffusion time τm characterizes indeed the
Lagrangian decorrelation of the velocity of the tracer particles as they diffuse across the streamlines.
The term Dm of Eq. (5) corresponds to pure molecular diffusion parallel to the flow. The ratio of the
first and second term is Pe2/210 in which the Péclet number is Pe = UH/Dm: the influence of pure
molecular diffusion is therefore only significant at low Péclet numbers (typically below 30).

In the present experiments, for very large oscillation periods such that T & τm, we can assume
that Eq. (5) is satisfied for a velocity U(t) = ⟨vx(z, t)⟩z equal to U cos(ω t) (Eq. (2)). The mean
square width of the front satisfies the relation d∆x2/dt = 2 D∥(U(t)) which, using Eqs. (2) and (5)
and integrating with respect to time, leads to

∆x2(t)
A2 =

π

210
τm
T

(sin (2ω t) + 2ω t) + 2 t
τm

(
H
A

)2

. (7)

This result agrees with the predictions of Refs. 6 and 11 (see Eq. (A9)). The last term on the right
corresponds to pure molecular diffusion and the others to Taylor dispersion. This expression pre-
dicts variations of ∆x2(t) with time that are globally linear with a modulation of the slope at a fre-
quency equal to twice that of the flow; this slope is always positive and has a minimum close to zero
for t/T = n/2 + 1/4. All these features are visible on the experimental curve of Fig. 4(a) (inset).

The mean global dispersion coefficient D∥ given by the linear increasing trend of Eq. (7) over
time lapses ∆t ≫ T is

D∥ =
π2A2 τm

105 T2 + Dm. (8)

The normalized dispersivity lD/A = D∥/U A has then the dimensionless form,

lD
A
=

π

210
τm
T
+

1
2π

(
H
A

)2 T
τm

. (9)

The second, pure molecular diffusion term is only important at very low Péclet numbers UH/Dm

and we show in Sec. IV that it is negligible in the present experiments. Eq. (9) involves then only the
dimensionless variables lD/A = D/(U A) and t/τm.

C. Experimental variation and scaling law for the dimensionless dispersivity

The experimental values of lD/A = D∥/U A are plotted in Fig. 5 as a function of τm/T . We note
first the good collapse of the different experimental points for all values of A, µ, and T : this confirms
the relevance of the choice of dimensionless variables. Data points in the range 25 ≤ τm/T ≤ 80
correspond to both setups used to generate the oscillating flows; they coincide within experimental
error for same τm/T values which shows that the variation of the flow rate of the programmable
pump by discrete steps does not influence dispersion.

For τm/T ≤ 3, the trend of the data is compatible with the variation lD/A ∝ τm/T predicted
by Eq. (9) for the Taylor dispersion regime. When τm/T increases, lD/A reaches a maximum and
decreases then roughly as (τm/T)−1 for τm/T ≥ 15 (dashed line).

This latter scaling law can be retrieved as follows. Consider a half-period T/2 during which
the flow keeps the same orientation (Fig. 6); the characteristic diffusion distance of tracer particles
along z is ∆zd ∼ (DmT)1/2 ≪ H . The corresponding spreading |∆xc | of the front due to the ve-
locity gradient ∂vx/∂z may be estimated by |∆xc | ∼ |∆zd(∂vx/∂z)T | ∼ (DmT)1/2UT/H . In Taylor
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FIG. 5. Experimental variation in log-log coordinates of the normalized dispersivity lD/A as a function of the normalized
inverse oscillation period τm/T for different oscillation amplitudes and fluid viscosities. µ = 1.8 Pa. s: (▼) A= 3.5 mm; (N)
A= 5 mm; (•): A= 6 mm. (■): µ = 6 Pa. s, A= 5 mm. Continuous line: predictions from Ref. 6 (see the Appendix); dotted
line: prediction from Eq. (9); dashed line: slope −1.

dispersion at a constant flow, the transition from convective to macroscopically diffusive spreading
takes place at a time of the order of τm representing the characteristic Lagrangian decorrelation
time (see Sec. III B). For τm/T & 20, τm must be replaced by T (decorrelation is induced in this
case by the flow reversal instead of molecular diffusion across the gap H). We must have then
also |∆xc | ≃ (D∥T)1/2. Equating the two expressions of |∆xc | and taking again A ∼ UT lead to the
scaling relations,

D∥
Dm
∼

(
A
H

)2

(10)

or

lD
A
∼

(
τm
T

)−1
. (11)

Eq. (11) predicts well the experimental variation for τm/T & 15 (Fig. 5). Analytical results from
Ref. 6 (see the Appendix) are also plotted in Fig. 5 (continuous line): the transition between the
limiting regimes occurs at the same value of τm/T as experimentally. The experimental and analyt-
ical values of lD/A are similar for 8 ≤ τm/T ≤ 50; the experimental values are slightly larger above
and below this range; this may be due to the variations of the distribution of the tracer in the y
direction observed in Figs. 3(b)-3(d).

FIG. 6. Schematic view of the fluid velocity field vx(z) and of the motion of the tracer particles. ∆zD: transverse diffusion
distance during a half-period T /2; ∆xc: corresponding spreading distance resulting from the velocity gradient ∂vx/∂z.
Numerical Monte Carlo simulation: M (t) and M (t +δt) respective locations of a tracer particle at times t and t +δt ;
lconv= deterministic convective displacement during one time step δt ; ldif = diffusive displacement during one time step
resulting from the Brownian motion. At the right: numbering of the different slices used in the simulations.
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IV. 2D MONTE CARLO SIMULATIONS OF DISPERSION IN OSCILLATING FLOWS
BETWEEN PARALLEL PLATES

A. Physical hypothesis and procedure of the Monte Carlo simulation

Both the experiments and the analytical predictions6,11 deal with averages of the concentration
over the gap: this is adequate in low frequency regimes (τm/T . 1), for which the concentration
distribution in the gap is homogenized by molecular diffusion at all times during the period T , but
not in the high frequency one. Numerical simulations are needed to visualize the distribution of
the “tracer particles” inside the gap and determine the variations of dispersion with the distance
z: this allows us to understand the local mechanisms of the dispersion process. These simulations
determine, in addition, the time necessary to reach a stationary dispersion regime, as well as the
prefactors in the expression of the dispersivity. Here, we use Monte Carlo simulations considering
a set of “particles” moving independently under the combined effects of convection and molecular
diffusion.22

In oscillating flows between parallel solid walls, there appears near each wall, at high frequen-
cies, a viscous boundary layer corresponding to a transition between a region of velocity constant
with z in the center part of the gap and a zero velocity at the walls.23,24 The thickness δν of this layer
increases at low frequencies with δν = (νT/π)1/2 so that

δν
H
=


T
τm

ν

πDm
, (12)

where δν becomes therefore of the order of H if τm/T ≃ ν/3Dm. For periods T large compared to
this limiting value, this oscillating velocity boundary layer does not exist any more and one recovers
the Poiseuille profile with a parabolic velocity variation with distance in the gap. In the present
work, ν/πDm is of the order of 1000 for the less viscous solution and still larger for the higher
viscosity one; the maximum value of τm/T is 1000, so that δν/H > 1 and the velocity profile may be
assumed to be a Poiseuille one.

At t = 0, all particles are released on the line x = 0 and are distributed uniformly in the gap.
This corresponds to a pulse injection of the tracer instead of a step-like one in the experiments but
profiles corresponding to a step-like injection might also be used. The location of all particles is
updated after each time step (duration δt). The new location OM(t + δt) is related to the previous
one OM(t) by (Fig. 6)

OM(t + δt) = OM(t) + δlconv + δldif = vδt +


6Dmδt u. (13)

δlconv corresponds to the convection at the instantaneous Poiseuille flow velocity v(z, t) parallel to
the axis x and δldif to the random Brownian motion due to molecular diffusion.22 The orientation of
the unit vector u is distributed uniformly in all directions and varies at random from one particle or
one time step to another. The time step δt is selected for a given value of Dm so that the last term
ldif on the right side of Eq. (13) is small compared to H (the numerical results were checked to be
robust with respect to this choice). Zero flux boundary conditions on the upper and lower surfaces
of the cell are implemented by reflecting on the walls particles moving outside the fluid volume.
The sequence of convective and diffusive displacements is repeated for a minimum of 30 periods
in order to check the stationarity of the spreading process (generally a smaller number of periods is
displayed for better visibility).

At each time step, we compute, from the distribution of the particles (Figs. 9(a) and 9(b)), the
histograms of their coordinates x (Figs. 9(c) and 9(d)). These histograms are either computed for all
particles (upper curves) or separately for 10 different slices of thickness ∆y = a/10; the two histo-
grams corresponding to same absolute values of |y | are then combined with indices i (Fig. 6). The
global mean square width ∆x2 and mean distance x̄ are determined by fitting the global histogram
by the Gaussian law,

P(x) = C
2π∆x2

e
− (x − x̄)2

2∆x2 , (14)
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FIG. 7. Variation of ∆x2 (main graph and inset) and x̄ (inset) with the travelled distance xtr (main graph) and with time
(inset) for the distribution of particles in 2D numerical simulations. Thick black lines: widths of histograms computed over
the gap of thickness H of the cell. Thinner grey lines: widths of histograms computed over 5 pairs of slices of index i

increasing from the lower to the upper grey curves (Fig. 7(b)). Dashed line: linear fit for the variation of ∆x2 with time;
curved dotted line: variation of x̄; vertical dotted lines: extrema of x̄. (a) T = 500 s, τm/T = 0.8; (b) T = 6.66 s, τm/T = 60;
(a) and (b): A= 20 mm, Dm = 4 10−4 mm2 s−1.

in which C is a constant; this method is used for consistency with the analysis of the experimental
results and in order to reduce the influence of the noise in the histograms.

B. Numerical results for global dispersion characteristics

The variations of x̄ are displayed in Figs. 7(a) and 7(b) (insets) and 11(a) and 11(b) (black lines)
for two values of τm/T corresponding to the two different dispersion regimes discussed above. Like
in the experiments (insets of Figs. 4(a) and 4(b)), x̄ oscillates at the frequency of the flow with an
amplitude close to A: this variation and those x̄i for individual slices are discussed in Sec. V.

The variations of ∆x2 with xtr and t are shown in Figs. 7(a) and 7(b) and display the same
features as the experimental curves of Figs. 4(a) and 4(b). In the Taylor regime (case (a) with
τm/T = 0.8), dispersion always increases with time and the variation levels off when the flow veloc-
ity goes to zero (inset of Fig. 7(a)). In the partly reversible dispersion regime, ∆x2 decreases instead
when the flow direction changes (inset of Fig. 7(b)). These features are interpreted in Sec. V B. The
variation of ∆x2 with xtr displays only a weak modulation in the first regime but a clear one in the
second. Over time lapses≫ T , ∆x2 increases linearly with time: a linear regression provides, like in
the experiments, D∥ and lD.

Figure 8 compares, for three values of A/H , the variations of lD/A with τm/T obtained in this
way (open symbols) to analytical results from Ref. 6 (continuous lines). The numerical values corre-
sponding to different amplitudes A collapse perfectly for τm/T ≥ 1 (like for the experimental data)
and there is a perfect agreement between these values and the predictions from Ref. 6 (continuous
lines).

FIG. 8. Numerical and analytical variations of the normalized dispersivity lD/A with the ratio τm/T for different
oscillation amplitudes. Numerical simulations (open symbols): (�) A= 2.25 mm (A/H = 5.6); (◦) A= 6 mm (A/H = 15);
(△) A= 20 mm (A/H = 50); H = 0.4 mm, Dm = 4×10−4 mm2 s−1. Continuous line: predictions from Ref. 6. Dotted lines
ld/A∝τm/T or (τm/T )−1.
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At the lowest values of τm/T , the numerical/analytical variations corresponding to different
values of A/H do not coincide any more. This range corresponds to low velocities for which pure
longitudinal molecular diffusion is dominant (this domain was not explored in the experiments).
Eq. (9) reduces then to ld/A = (T/2πτm)(H/A)2. In this regime, lD/A is therefore proportional to
(τm/T)−1 and to (A/H)−2 (see Fig. 8). The transition between the pure molecular diffusion and Tay-
lor regimes takes place when the two terms of Eq. (9) are equal, i.e., for τm/T = (H/A)(√105/π):
the value of τm/T at the transition varies then as H/A (Fig. 8).

For τm/T ≃ 2, the value of ld/A for A/H = 5.6 still falls on the common trend corresponding
to Taylor dispersion: since these are the lowest values of τm/T and A/H in our experiments, this
justifies, a posteriori, the hypothesis of a negligible longitudinal molecular diffusion.

We explain now the above results (particularly regarding the oscillations of the dispersion)
by comparing the motion and dispersion of tracer particles in several slices at different transverse
distances z.

V. SPATIAL VARIATION IN THE GAP OF THE TRACER DISPERSION
AND MEAN VELOCITY

A. Global trend of front-width time variation at different locations in the gap

As a first step, we compare the variations of the dispersion in the different slices over time
lapses that are long compared to the period T and for an integer (or half-integer) number of oscilla-
tions: this removes asymmetries induced by the fluid displacement (see Figs. 10(a)-10(c)). Figs. 9(a)
and 9(b) display distributions in the partial reversibility regime (τm/T = 200) at two different times
equal, respectively, to 0.04 τm and 0.3 τm (i.e., 8T and 60T).

At the shorter time, the distribution of the coordinates x of the particles is broader near the
walls than in the middle of the gap: this agrees with the discussion of Sec. III C since the velocity
gradients are larger near the walls. This is confirmed by comparing the local histograms of the
values of x (lower curves in Fig. 9(c)): they are narrower for slice 0 in the middle of the gap
(black curve) than for slice 4 near the walls (grey curve). As a result, the global distribution (upper
black curve) is not well fitted by a Gaussian variation (dotted line). At the longer time, instead,
the histograms corresponding to the different slices nearly coincide and both the local and global
histograms are Gaussian (Figs. 9(b)-9(d)).

FIG. 9. ((a) and (b)) Distribution of the tracer particles in the gap between the cell walls after two different numbers
of oscillations N = 7.5 (a) and N = 60 (b). τm/T = 200; A= 20 mm; H = 0.4 mm; Dm = 4 10−4 mm2 s−1. ((c) and (d))
Corresponding histograms of the number of particles as a function of the distance x, in the whole gap (upper black curve)
and in slices 0 (lower black curve) and 4 (grey curve) (see Fig. 6). Dotted lines are Gaussian fits.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  129.175.97.14 On: Wed, 07 Oct 2015 16:36:11



103602-12 Roht et al. Phys. Fluids 27, 103602 (2015)

This explains the variations of ∆x2 with xtr for different slices in Fig. 7(b): while ∆x2 is initially
much larger near the walls (like in Figs. 9(a)-9(c)), the variations of ∆x2 for the different slices
become then linear and parallel so that their relative difference gets small (Figs. 9(b)-9(d)). The
transition towards the linear regime occurs after a time t ∼ τm/4, roughly independent of τm/T
for τm/T & 20. The relevance of τm as the proper characteristic time is checked by increasing Dm

which reduces, as expected, the transition time by the same factor.
In the Taylor-like regime (τm/T . 2), the distributions of the particles in all slices become

Gaussian and identical after a time t ≪ T (they look then like those of Figs. 9(b)-9(d)): this accounts
for the overlap, in Fig. 7(a), of the curves corresponding to different slices.

B. Global and local oscillations of x̄ and ∆x2

Figure 10 compares, in the two spreading regimes, the distributions of the tracer particles at
three times corresponding to an integer number of periods ((b) and (e)) and to a quarter of period
before ((a) and (d)) and after ((c) and (f)); the fluid displacement is therefore extremal for ((a),
(c), (d), and (f)). For τm/T = 60 (partial reversibility regime) ((a)-(c)), the local width ∆x f of the
“cloud” of particles is the same at all distances z and increases very little from (a) to (c); the global
width is instead larger in cases (a) and (c) than in case (b) by an amount ∆xc and appears to follow
the local displacement of the fluid (zero at the walls). For τm/T = 0.8 (Taylor-like regime) ((d)-(f)),
there is no such distortion of the geometry of the front (and no additional “convective” increase ∆xc

of its width): it remains straight and follows the “global” oscillations of the fluid at the average of its
velocity over the gap.

Quantitatively, Figs. 11(a) and 11(b) compare the variations with time of the mean displace-
ments x̄(t) and x̄i(t) in the full gap and in each slice i for these two same values of τm/T .

For τm/T = 0.8 (Taylor-like regime) (a), the variation with time of the global mean distance
x̄(t) and those of x̄i(t) coincide perfectly visually for all slices. The amplitude of these oscillations
is constant with time and identical to better than 1%; the phase shift with respect to the oscillations
of the fluid is zero within measurement error (.3◦). For τm/T = 60 (partial reversibility regime) (b),
the oscillations reach a constant amplitude after a time of the order of τm/10. Unlike for the Taylor
regime, the amplitudes of the local displacements x̄i differ from x̄ and decrease as one moves away

FIG. 10. Distribution of the particles in the gap at three different times for τm/T = 60 ((a)–(c)) and τm/T = 0.8 ((d)–(f)):
(a) t = 19.75T ; (b) t = 20T ; (c) t = 20.25T ; (d) t = 4.75T ; (e) t = 5T ; (f) t = 5.25T . A= 20 mm; H = 0.4 mm; Dm

= 4.05 10−4 mm2 s−1.
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FIG. 11. Superimposed time variations of the mean displacements x̄(t) (black lines) in the whole gap and x̄ i(t) (grey lines) in
slice i. (a) τm/T = 0.8, T = 500 s; (b) τm/T = 60, T = 6.66 s; (a) and (b): A= 20 mm; H = 0.4 mm; Dm = 4 10−4 mm2 s−1.

from the center of the gap (from slice 0 to slice 4). For all slices and for x̄(t), the phase shift of x̄ and
x̄i with respect to the oscillations of the fluid is zero within experimental error, except for the slice
nearest to the walls for which the phase lag is ≃16◦.

The two regimes and the transition between them are characterized quantitatively by Fig. 12
displaying the variations of the normalized amplitudes x̄/A and x̄i/A as a function of τm/T . The
transition takes place essentially over the same range of values 2 ≤ τm/T ≤ 20 as for lD/A in Fig. 5.

In the Taylor regime, for τm/T ≤ 1, all the values of x̄/A and x̄i/A are equal to 1 showing
that all parts of the front move at the mean velocity ⟨vx(z)⟩z of the fluid (corresponding to the
displacement A) and not at the local velocity vx(z).

In the partial reversibility regime, for τm/T ≥ 20, x̄/A remains equal to 1 but the local displace-
ments x̄i decrease with the distance z of the slice i from the center of the gap: this variation
corresponds to that of the local amplitude A(z) of the displacement of the fluid which is proportional
to the local fluid velocity and satisfies

A(z) = 3A
2

(
1 − 4

z2

H2

)
. (15)

The horizontal dotted lines correspond to the normalized averages ⟨A(z)⟩i/A of this amplitude over
the range of z values occupied by each slice: these averages are practically equal to the correspond-
ing values of x̄i in the limit of large ratios τm/T (except for slice 4 for which these values coincide
only for τm/T & 100). For instance, for slice 0, x̄0 = 3A/2 which corresponds to a displacement at
the maximum velocity of the Poiseuille profile. Therefore, in this regime, the local motion of the
front at a given distance z follows exactly the local displacement of the fluid.

FIG. 12. Variations as a function of τm/T of the normalized amplitudes x̄/A and x̄ i/A of the oscillations x̄(t) and x̄ i(t) of
the mean displacement of the tracer respectively in the full gap (▽) and in the slices i (�, △, ×, ♦, ◦). Dotted horizontal lines:
normalized amplitude Ai of fluid displacement averaged over the corresponding slice. Continuous (dashed) lines: qualitative
trends of global (local) the variations. A= 20 mm; H = 0.4 mm; Dm = 4 10−4 mm2 s−1.
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These different results will allow us to explain the oscillations with time (or xtr) of the global
mean square width ∆x2 at twice the frequency of the flow observed experimentally (Fig. 4) and
numerically (Fig. 7).

We have determined, from the numerical simulations, the normalized amplitude ∆x2
osc/A2 of

these oscillations and their phase shift ∆ϕ with respect to sin(2ω t) (the mean fluid displacement is
A sin(ω t)). These values are plotted as a function of τm/T in Fig. 13 ((+) symbols): this variation is
in excellent agreement with the predictions obtained in the Appendix with the approach of Ref. 11
(continuous line). The experimental measurements also follow the same variation in the range
investigated (△ symbols).

In Fig. 13(b), the transition between the Taylor and partial reversibility regimes is marked by a
variation of the phase by π/2. Moreover, while the amplitude of the oscillations is proportional to
τm/T in the first case, it is about constant in the second.

In the Taylor-like regime (τm/T . 2), the variation of ∆x2 with time results exclusively from
the variations of Taylor dispersion with those of the flow velocity: it satisfies Eq. (7) as shown
in Sec. III C. The values of ∆x2i follow exactly the same variation in all individual slices: this is
due to the constant amplitude and phase of the oscillations of x̄i: D∥ is therefore the same for all
individual slices, which explains why all the corresponding curves in Fig. 7(a) coincide. Eq. (7)
predicts a normalized amplitude of the oscillations proportional to τm/T and a phase ∆ϕ = 0, both in
agreement, for τm/T ≤ 2, with the variations displayed in Figs. 13(a) and 13(b).

In the partial reversibility regime (τm/T > 20), Eq. (10) shows that D∥/Dm no longer depends
on the velocity. The mechanism discussed above for the Taylor-like regime no longer contributes
therefore to the oscillations of ∆x2/A2: they are due, in this case, to the periodic distortions of the
geometry of the front which, as shown above, follows the local motion of the fluid. The correspond-
ing contribution ∆xc to the front width is purely convective and reversible with respect to a change
of the flow direction: this mechanism does not influence, therefore, the global increase of ∆x2 over
time lapses≫ T . The latter is purely due to the diffusive component estimated in Sec. III B.

Assume that the local mean displacement x̄(z, t) of the tracer is equal to the displacement
A(z) sin(ωt) of the fluid (Eq. (15)); the variation of ∆x2 with time in the partial reversibility regime
will satisfy

∆x2(t) = �⟨A2(z)⟩z − ⟨A(z)⟩2
z

�
sin2(ω t). (16)

Then,

∆x2(t)
A2 =

1
5

sin2(ω t) = 1
10

(1 − cos (2ω t)) . (17)

Eq. (17) predicts a phase shift ∆ϕ = π/2 and an amplitude constant with τm/T with a value in
agreement with the high frequency limit of the curves in Fig. 13 (see Eq. (A11)).

FIG. 13. Variations with τm/T of the peak to peak normalized amplitude ∆x2osc/A
2 (a) and phase ∆ϕ (b) of the oscillations

of period T /2 of ∆x2. The phase reference for ∆ϕ is the oscillations of the liquid. (+) symbols: values computed from the
numerical simulations; △: experimental values; continuous lines: variations predicted analytically by adapting the results of
Ref. 11 (see the Appendix); dotted line: variation of the amplitude from Eqs. (7) and (17).
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As shown by Fig. 7, the values ∆x2
i
/A2 for individual slices do not display oscillations like

those of ∆x2/A2, or much weaker ones: this is due to the variations with z of the local displacement
x(z) which are much smaller across single slices than across the whole gap.

VI. CONCLUSION

The present experiments and simulations have demonstrated that, except at low Péclet num-
bers (Pe . 30), the stationary regimes of dispersion in oscillating flows between parallel walls are
controlled by the ratio τm/T (transverse diffusion time/oscillating period): this ratio takes care of the
influences of the different characteristic lengths (A and H), of T and of Dm. While, for τm/T . 2,
one has a Taylor-like dispersion with a front width increasing monotonously with time, a new
regime appears above τm/T ≃ 20: spreading remains diffusive but is partly reversible during the
oscillations. In this latter case, the normalized dispersivity lD/A decreases as (τm/T)−1 instead of
increasing like (τm/T). The time necessary for achieving a Gaussian spreading with a local front
width ∆x2 uniform across the cell gap remains proportional to the diffusion time τm across it.

The physical origin of these differences is that, when τm/T . 2, the characteristic velocity
contrast determining the amount of spreading is the mean velocity; if τm/T & 20, it is instead the
velocity difference ∂vx/∂z between points separated by the distance ∆z ∼ (DmT)1/2 across which
the tracer diffuses during the period T . In both regimes, the variation with time of the mean square
width ∆x2 of the diffusion front has an oscillatory component of frequency twice that of the flow
oscillations: its origin is however different in the two cases.

For τm/T . 2, the oscillations are due to the modulation of the instantaneous dispersion coeffi-
cient which is proportional to the square of the velocity: such oscillations are in phase with the abso-
lute value of the fluid displacement and increase linearly with τm/T . Moreover, all parts of the front
oscillate at the same velocity independent of z and the front remains flat during the oscillations.

For τm/T & 20, D∥ is independent of the velocity and ∆x2 oscillates because of the periodic
stretching of the front by the oscillating Poiseuille velocity profile in the gap: the location x(z) of
the local center of gravity of the tracer follows indeed the oscillations of the local fluid velocity
vx(z, t). These two different mechanisms result in a π/2 phase shift between the oscillations in the
two regimes. Still for τm/T & 20, the oscillatory convective component of the variation of ∆x2 with
the time t is reversible and does not contribute to the globally linear increase of ∆x2 with t.

For still higher values of τm/T , when the ratio τν/T becomes large compared to one, one must
take into account the influence of the oscillating boundary layers near the walls. This regime was
not studied in the present work which deals with dispersion in liquids, for which the Schmidt
number ν/Dm is large; such effects occur also generally only at high frequencies.

In addition to applications to heat and solute exchange in natural and industrial oscillating
flows, such processes suggest an interesting alternative method for measuring molecular diffusion
coefficients: using oscillatory flows allows indeed to achieve large travelled lengths (and therefore
large font widths ∆x2) without requiring very long tubes.

An interesting extension of the present study is the influence of a nonzero mean flow: as this
flow component increases, one may expect a transition from the dispersion regimes discussed here
towards classical Taylor dispersion. In addition to τm/T , an important characteristic parameter will
likely be the ratio of the oscillation amplitude A and of the path length due to the mean flow during a
period T .
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APPENDIX: ANALYTICAL PREDICTION OF THE GLOBAL DISPERSION COEFFICIENT

In order to predict, in the whole range of values of τm/T of the present work, the macroscopic
dispersion for an oscillating flow in a HS cell, we use the results of Watson6 on the average diffusion
coefficient D∥ in the HS geometry; we also extend to this geometry the work of Chatwin11 on
the time dependence of the diffusion coefficient in a tube or an estuary (shear flow). Chatwin was
actually aware of Watson’s work on the average macroscopic diffusion coefficient D∥ which was
published seven years later.

In the 2D geometry of Fig. 6, we assume that the flow is generated by a harmonic pressure
gradient −G cos(ωt) in the x direction giving rise to a velocity vx(z, t) = ℜ( f (z)eiωt) along the x
axis in which f (z) is given by the Navier-Stokes equation,

iω f =
G
ρ
+ ν

d2 f
dz2 , (A1)

where ρ is the fluid density, ν its kinematic viscosity, and f = 0 on the boundary. The local concen-
tration of contaminant c(x, z, t) is governed by Eq. (6) with impermeable boundary conditions
leading to a solution of the form c(x, z, t) = −γx +ℜ(γg(z, t)eiωt) such that

iωg − f = Dm
d2g

dz2 , (A2)

where γ is a constant and dg/dz = 0 on the boundaries. We determine the dispersion coefficient D∥1

by upscaling Eq. (6) to Eq. (4), i.e., we compute the rate of flux of the contaminant across a x plane.
D∥ is then the coefficient of −∂C/∂x where C = c is the average of c across the gap H ,

D∥ = Dm +


ℜ( f (z)eiωt)ℜ((g(z) − g)eiωt)d(z/H). (A3)

We obtain a time dependent dispersion coefficient with an average value given by Watson6 and
oscillatory components of frequency 2ω given by Chatwin11 for a tube and a shear flow. For a
Hele-Shaw cell, we obtained using our own notation, the diffusion coefficient and the mean square
width,

D∥(t) = Dm


1 + R

(
1 +

A1

Ao
cos(2ωt) + A2

Ao
sin(2ωt)

)
, (A4)

∆x2 = 2Dm


t + R

(
t +

A1

2ωAo
sin(2ωt) − A2

2ωAo
cos(2ωt)

)
, (A5)

where the expression of R is given in Ref. 6, and we have computed Ao, A1, and A2 from Eqs. (A3).
These four coefficient function depend on β = H

√
ω/2ν, the ratio of the gap to the thickness of the

viscous boundary layer, and β
√

Sc = H
√
ω/2Dm, the ratio of the gap to the thickness of the mass

boundary layer. In the above experiments and simulations, the flow oscillations are controlled by
the imposed fluid displacement, X = A sinωt and velocity u = Aω cosωt (U = Aω) rather than the
harmonic pressure gradient. Therefore, the expression of R involved the 2D tidal volume per unit
width along y , Vt = 2AH and

R =
A2

H2

β4Sc2(cosh β − cos β)(C(β) − C(β√Sc))
(Sc2 − 1)(β2(cos β + cosh β) − 2β(sin β + sinh β) + 2(cosh β − cos β))

C(β) = sinh β − sin β

β(cosh β − cos β) . (A6)

This is the expression used to draw the continuous line in Fig. 5. Ao, A1, and A2 are written using the
following compact expressions with h = (1 + i)β/2:

Ao =
1890

(Sc2 − 1)β6
ℜ



i tanh h
h

*
,
1 +

tan h coth(h√Sc)
√

Sc
+
-


, (A7)

A1 + iA2 =
1890
iScβ6



tanh2 h
h2 − Sc(1 − tanh2 h)

2(Sc − 1) +
(3 − Sc)Sc tanh h

2β(Sc − 1)2 −
√

Sc tanh2 h coth(h√Sc)
h(Sc − 1)2


.
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Interesting enough are the limiting cases depending of the frequency. At low frequencies such that,
β = H

√
ω/2ν ≪ 1 and β

√
Sc = H

√
ω/2Dm ≪ 1, we do recover the Taylor-like regime, Ao = A1 =

1/2, A2 ≪ 1,

D∥ ≃ Dm + DT cos2(ω t), in which : DT =
(H Aω)2
210 Dm

, (A8)

∆x2

A2 ≃
ω τm
420

[2ω t + sin (2ω t)] + 2t
τm

(
H
A

)2

. (A9)

For liquids, the Schmidt number is large (here, Sc = 4000) and there exists an intermediate regime
where β ≪ 1, and β

√
Sc ≫ 1, R ≃ 6A2/H2 and Ao ≪ A1, A2. This latter regime is referred to as

the “high frequency” or “partial reversibility” regime in the present paper (where the condition
β
√

Sc ≫ 1 is always assumed to be fulfilled). In this case,

D∥ = Dm

(
1 + 6

A2

H2

)
+
ωA2

10
sin(2ω t), (A10)

∆x2

A2 =
2 t
τm

(
H2

A2 + 6
)
− 1

10
cos(2ω t). (A11)

The oscillatory term in the last equation is identical to that estimated in Eq. (17). At intermediate
values of τm/T , the phase shift ∆ϕ = arctan(A2/A1) varies continuously from 0 to π/2 and is plotted
on Fig. 13 in good agreement with experiments and simulations.
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