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We demonstrate and study experimentally two instabilities of a horizontal free cylin-
der in a vertical viscous Hele-Shaw flow; we show that they depend critically on
the confinement of the flow with a different influence of transverse and lateral con-
finement characterized respectively by the ratios of the diameter (resp. the length)
of the cylinder to the gap (resp. the width) of the cell. The onset of the instabilities
depends largely on the transverse confinement: for a parameter between 0.4 and 0.6,
one observes transverse horizontal oscillations of the cylinder perpendicular to the
walls: their frequency is constant with the lateral and transverse confinements at a
given cylinder velocity. This instability is shown to be locally two-dimensional and
controlled by the local relative velocity between the cylinder and the fluids: it occurs
down to Reynolds numbers based on the cell gap >~ 15, far below the corresponding
2D vortex shedding thresholds (150—250) for fixed cylinders between parallel planes.
Above transverse confinements of the order of 0.55, we observe a fluttering motion
with periodic oscillations of the tilt angle of the cylinder from the horizontal and of
its horizontal position: their frequency decreases strongly as the lateral confinement
increases but is independent of the transverse confinement and the cylinder velocity.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893342]

I. INTRODUCTION

Elongated particles moving in confined flows are encountered in many natural systems and
industrial applications such as the transport or propulsion of fibers or long bio-particles in micro-
fluidic channels.! Another example is the addition of fibers to prevent the backflow of proppant
particles during the injection of fracturing fluids in reservoir rocks?; finally, fiber sensors may be
used in order to perform underground in situ measurements of, for instance, local temperatures
or fluid compositions for oil engineering or hydrogeological purposes.> In such applications, the
fibers need to move into flows channels with an aperture of the order of the fiber diameter so that
strong confinement effects may be expected.

In connection with the latter example, previous experiments® studied the transport of long
flexible fibers by a viscous flow in transparent rough model fractures comparable to those in real
rocks. While, for flat smooth walls, the fibers remain straight and parallel to the flow, in the rough
case, they display complex shapes and their orientation with respect to the local flow varies. The
interaction with the walls may be strong, leading to undesirable local pinning: a key issue is whether
the fiber remains centered in the gap between the walls of the cell which minimizes the interaction or
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FIG. 1. Schematic views of the experimental setup. (a) Front view and (b) side view. Thick oblique grey and black arrows
on (a) represent the motion corresponding to fluttering oscillations. Thick horizontal and rounded arrows on (b) represent the
displacements and rotations for transverse oscillations. (c) Schematic view of the flow distribution around the cylinder.

whether it touches these walls. Instabilities of the motion of the cylinder play a very important part
in these processes either by bringing the fibers in contact with the walls or, instead, by depinning
them. Another potential application of these oscillatory instabilities is to induce mixing in viscous
flows in small channels such as those used in microfluidic devices.

In view of the complexity of this problem, we study as a first step the better controlled instabilities
of straight rigid cylinders representing sections of a long fiber and moving freely inside a vertical
Hele-Shaw cell with flat parallel walls (Fig. 1). The cylinder is perpendicular to the flow which was
found to be the most favorable configuration for the development of instabilities (no oscillations
occurred for free or tethered cylinders parallel to the flow).

The objective of the present paper is to show that the appearance of these instabilities and
their characteristics are largely due to the confinement of the flow, characterized in the following
by the ratios of the cylinder length to the cell width and of its diameter to the gap. Moreover,
these instabilities display several specific new characteristics differing from those observed on fixed
similar objects or in unconfined flows.

A first kind of previous studies in similar systems dealt with the hydrodynamic forces on static
cylinders submitted to a flow between parallel plates or in a rectangular channel.”® Most investiga-
tions of hydrodynamic instabilities in similar confined geometries studied vortex shedding behind
fixed cylinders.!%"!> Studies of moving cylinders were often restricted to stable displacements.'6-2°
Finally, oscillatory paths observed during the sedimentation of solid bodies in a viscous fluid?'~2*
and periodic fluttering motions of plates falling in air>>-?’ are generally analyzed without considering
the effect of confinement.

Using the present configuration (see Fig. 1), we reported previously 2D numerical simulations
and experiments on horizontal cylinders (6 = 0) in a vertical flow; these experiments used a nearly
2D flow configuration with a length L (>>D) of the cylinders close to the width W of the cell. The
cylinders were tethered®® or completely free’” and could move respectively only in the y direction
or in both the x and y directions. In both cases, oscillations of the cylinder in the direction y were
observed and we refer to them in the following as transverse oscillations. Moreover, the rolling angle
a of a free cylinder oscillates at the same time as its location along y and at the same frequency.”’
More generally, displacements along y will be called “transverse,” along z “lateral,” and along x
“vertical.”

In these nearly 2D configurations, the global flow velocity U is representative of the velocity
over the cylinder (there are no bypass flows at the ends); for a tethered cylinder or a free one with
a zero vertical velocity (V,, = 0), one can then define the Reynolds number as Re = UH/v (H
= cell gap). In the tethered case,”® the threshold Re for the transverse oscillations was of the order
of 19 and they were observed down to Re ~ 20 for a free cylinder.”® This is much lower than the
thresholds predicted by 2D numerical simulations'®'? of vortex shedding behind fixed cylinders
between parallel planes: still using the cell gap as the characteristic length, these values range from
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Re = 150 for D/H = 0.7 to 250 for D/H = 0.5. Moreover, for tethered cylinders of high density
0s > 4 x 10° kg/m?, 2D numerical simulations in the same geometry?® show that as Re increases
further above the threshold, the transverse oscillations first vanish and, then, smaller oscillations due
to vortex shedding occur at still higher values Re 2 110. The two types of oscillations correspond
therefore likely to different processes.

In this paper, we study the changes of the characteristics of this instability and whether new
ones appear when the length L of the cylinder is smaller than W so that the flow geometry is no
longer two dimensional. The study has been performed down to small normalized lengths of the
cylinder (L/W = 0.055) and for several normalized diameters D/H (L/W and D/H characterize
respectively the lateral and the transverse confinement).

An important consequence of the reduced length is that the cylinder can move sideways parallel
to the z axis with a global amplitude of the order of L — W. As a result, a fluttering instability
inducing oscillations of both the coordinate z of the center of mass of the cylinder and of the angle 6
with the horizontal may appear: it is observed either alone or combined with the former, transverse,
instability. A second consequence is that bypass flows appear between the ends of the cylinder and
the cell boundaries (Fig. 1(c)). In the simple case of a free cylinder of zero vertical velocity V,, or
of a tethered cylinder the local relative velocity of the cylinder and the flow no longer corresponds
to the global flow velocity U but to a local velocity U (|U*¢| < |U|). As will be shown in
Sec. IV A, the onset and the characteristics of the transverse oscillations are likely determined by
U'¢ rather than by U.

For free cylinders, in the general case (L < W, V,, # 0), the meaningful velocity is neither U
nor V., but a local relative velocity V!¢ which is a combination of the two. The relevant Reynolds
number is then defined as Re!” = V! H /v. A problem is that neither U nor V!°¢ are measurable
directly, except if L — W, in which case U'c = U (in this limit, transverse oscillations still take
place while the fluttering motion gets blocked by steric interactions with the side walls). Practically,
we estimate V!¢ (and Re'*°) by combining measurements using free cylinders of different lengths
and same diameter (see Sec. IV A).

In the following, we identify first for free cylinders the domains of observation of the transverse
and fluttering instabilities as a function of the confinement parameters L/ W and D/H. Next, the
relation between the velocities V., and U is investigated experimentally as a function of L/ W
for a constant diameter. This provides important information on the values of the local velocities
U'¢ and V/°¢ which determine the onset and frequency of the instabilities and on the variation of
Re'*. The results are then generalized to other diameters and the variation of the frequency f of the
transverse oscillations is studied as a function of L/ W and D/H: these data are interpreted in relation
with the variations of V., with U for the same cylinders. Varying the viscosity of the flowing fluid
provides the variation of the Strouhal number with Re/* which is then compared to experimental
and numerical results obtained previously for tethered cylinders. Finally, the characteristics of the
fluttering instability are studied as a function of L/ W and of the cylinder velocity for different ratios
D/H and are compared to those of the transverse oscillations.

Il. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup has been described in Ref. 29 and is shown in Fig. 1. The length L.y,
width W and gap H of the Hele-Shaw cell are, respectively: 290, 90, and 2.85 mm. The flowing fluids
are water-glycerol or water-salt-glycerol solutions. Their physical properties are listed in Table I.
All water-salt-glycerol solutions (W G S) have the same density, allowing for a specific study of the
influence of the viscosity. The flow rate varies between 0 and 400 ml/mn (corresponding to —25 < U
< 0mm/s): U is negative for an upward flow velocity since the vertical axis x is oriented downward.
Here, the flow velocities (U, U'¢) are defined as the corresponding flow rate per unit length along 7
divided by the gap H.

The top part of the cell has a Y-shape so that the local gap increases from 2.85 to 6 mm over a
vertical distance of 48 mm. All the experiments are performed using plexiglas cylinders of density
ps = 1.19 x 10 kg/m?. Their lengths range between 5 and 85 mm (0.055 < L/ W < 0.94) and their
diameter between 1.1 and 2.2 mm (0.39 < D/H < 0.77).
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TABLE I. Physical properties of the solutions used in the experiments at a
temperature 7' = 25°C. Concentration in weight of glycerol: C; density: p;
and dynamical viscosity: .

Name C@)  pplglem® g mPas)  p/tuarer

Water-glycerol solutions

w 0 0.997 0.89 1

WG5S 5 1.008 1.01 1.13
WG10 10 1.02 1.15 1.29
WG15 15 1.032 1.33 1.49

‘Water-salt-glycerol solutions

WGS5 5 1.035 1.05 1.18
WGS10 10 1.035 1.17 1.31
WGS15 15 1.035 1.33 1.49

First, the cylinders are placed horizontally at the top end of the cell and one lets them drift
into the constant gap region by reducing the flow rate Q; Q is then adjusted in order to bring the
cylinder at the desired initial location. Finally, Q is set to the desired value and kept constant during
the measurements.

The displacement of the cylinder is monitored by a digital camera viewing the Hele-Shaw cell
from the front: its resolution is 1024 x 768 pixels and the frame rate 30 fps. In order to analyze
the rolling motion of the cylinder which accompanies the transverse oscillations,? black staggered
stripes parallel to its axis have been painted on the central portions. We digitally process the images
to determine the cylinder’s angle 6 with respect to the horizontal, the coordinates (x., z.) of its center
of mass, and to estimate the roll angle . The transverse oscillations of the cylinder in the direction
y can be detected visually but cannot be measured quantitatively due to the lack of optical access
(Fig. 1): they are therefore characterized by the associated variations of the roll angle o>

lll. QUALITATIVE PROPERTIES OF DIFFERENT CYLINDER MOTION REGIMES

The different types of motion of the free cylinder have been identified as a function of the
control parameters D, L, and U: D and L were observed to have the largest influence on the results.
We have therefore displayed in Fig. 2 a map of the different regimes observed as a function of the
dimensionless parameters D/H and L/ W.

* For D/H < 0.4, the cylinder remains horizontal and follows a straight stable vertical trajectory
with no transverse or lateral oscillations.

e For ratios 0.4 < D/H < 0.55, both the roll angle « and the coordinate y. transverse to the
walls (not measurable in the present experiments) oscillate at a frequency f. Moreover, the
vertical displacement éx,. displays small oscillations of frequency 2f superimposed over the
vertical drift of velocity V., (Figs. 3(a) and 3(b)). There is no correlated variation of the lateral
displacement 8z, and the cylinder remains at a constant low angle from the horizontal (6 >~ 0).
When D/H 2 0.55, or when L/ W = 0.89 and 0.95 for D/H = 0.53, a periodic fluttering motion
(described below) is superimposed onto these transverse oscillations (Fig. 2): in the second
case, its amplitude is low due to the small clearance between the ends of the cylinder and the
side walls.

e For D/H Z 0.6, only the fluttering instability is generally observed. Both the angle 6 with the
horizontal and the lateral displacement §z. oscillate at a same frequency f; significantly lower
than f (see Figs. 3(c) and 3(d)); the angle || reaches an extremal value shortly after the end of
the cylinder is closest to one of the sides of the cell. There are, in addition, small oscillations
of the roll angle and of the deviation 6x. from the global vertical drift of velocity V.

In short, increasing the ratio D/H and, therefore, the transverse confinement results in a transition
from stable flow to transverse oscillations and then to a fluttering motion.
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FIG. 2. Different cylinder motion regimes observed as a function of the ratios D/H and L/W for plexiglas cylinders of
different lengths and diameters and for the water-glycerol solution W G 10: straight trajectory (+); transverse oscillation (OJ);
fluttering+transverse oscillation (X); and fluttering (x).
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FIG. 3. (a) and (c) Sequences of views taken at constant time intervals Az. In both cases, the cylinder moves downward.

(b) and (d) Time variations in the same ex

periments of geometrical parameters characterizing the motion of the cylinder:

6 = angle of the cylinder axis with respect to the horizontal (continuous line), sa = deviation of the roll angle from its mean

value (dotted line), §z. = deviation of the

coordinate z of the center of mass of the cylinder from its mean value (dashed

line), 8x, = deviation of the coordinate x. of the center of mass from the mean drift motion (dashed-dotted line). (a) and (b)

transverse oscillation regime: L/ W = 0.77

D/IH=0.46,U=9.1mms~! (WG10 solution), At = 1.33 s, field of view: 89

x 195mm; (c) and (d) fluttering regime: L/ W = 0.49, D/H = 0.77, U = 7.15mms~' (WG10 solution), At = 0.66 s, field

of view: 78 x 167 mm.

IV. INFLUENCE OF THE TRANSVERSE AND LATERAL CONFINEMENT
ON THE GLOBAL MOTION OF FREE CYLINDERS

A. Influence of the cylinder length on the velocity and the Reynolds number

We studied first experimentally the variation of the velocity V., with the flow velocity U (—20
< U< 0mm s~ ") for several dimensionless lengths 0.055 < L/ W < 0.94 and a constant value of
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FIG. 4. Variation, as a function of the normalized cylinder length L/ W, of the parameters g (>>) and |V, | (<) of Eq. (1) for
D/H = 0.53 (WG 10 solution).

D/H = 0.53. As observed previously,?’ V., varies linearly with U with
Vex = U = V)). 1)

The parameter V, = U — V., /B is the global relative velocity of the mean flow and the cylinder.
The experimental variations with L /W of g and V, are plotted in Fig. 4. The slope 8 is independent
of L/W (> symbols) with § = 1.4 £ 0.15 even when fluttering oscillations are also present. In
contrast, |V, | decreases linearly from 22 to 9mm s~! as L/ W varies from 0.1 to 0.95 (<1 symbols).
Only the data point corresponding to the shortest cylinder (L/ W = 0.055) is significantly above the
global trend.

This suggests to generalize the discussion presented in Ref. 29 for L/ W = 1. In this particular
case, the hydrodynamic forces balancing the weight of the cylinder were determined by the combi-
nation V, = U — V,, /B, constant with U in which B represents the ratio between the coefficients
relating the hydrodynamic forces to U and V,,, respectively. For L < W, the weight per unit length
of the free cylinder is still balanced by the hydrodynamic forces per unit length which must therefore
be independent both of L/ W and U (or V,,): these forces are then no longer determined by V, which
depends on L/ W but by a local relative velocity V! associated to the local flow over the length of
the cylinder; like these forces, Vrl“ (and Re'*“) must be independent of both L/ W and U (or V).
In the limit L/ W — 1, V, and V,I”" must be equal so that one can determine Vrl"" (and, therefore
Re'°°) by extrapolating the variations of V, with L/ W to L/ W = 1 (Fig. 4).

Physically, this is equivalent to assume that the streamlines are weakly deflected near the ends
the cylinder and to break down the flow into two local 2D velocity fields (v, and v, independent of
z): one corresponds to a flow of characteristic velocity U'¢ < U over the full length of the cylinder
and the other to a bypass flow between its ends and the lateral walls (Fig. 1(c)). The velocity U*¢
< U can be estimated under these assumptions by generalizing Eq. (1) to

viee =yl — v, /B. 2)

The lack of variation of 8 with L/ W (including when L/ W — 1) justifies using the same value of
B in Egs. (1)and (2): Eq. (2) implies then that U"°, like V,.Z”" (and unlike U), is also constant with
L/ W for a given velocity V.

In the case of Fig. 4, V! = —8 + 0.3mms™! so that Re'” = V!*°H /v =20 =+ 1. Since
Re”¢ and V!°¢ are independent of both L/ W and V.., these values are valid for the whole set of
experiments in this figure. The numerical value of U"¢ depends on V., (but not on L/W) and
becomes equal to V!¢ for V., = 0.
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FIG. 5. Experimental variation of the slope B and the velocity V, with the normalized diameter D/H for two different
normalized lengths: L/ W = 0.61 (open symbols); black; L/W = 0.22 (black symbols). Data points correspond to the
transverse oscillation regime except for D/ W = 0.39 (stable regime) and D/ W = 0.7 and 0.77 (pure fluttering regime).
Flowing fluid: WG 10 solution.

TABLE II. Variations with the ratio D/H of the local relative velocity V¢
and of the corresponding Reynolds number Re/*® (W G 10 solution).

D/H VI mms~! Relo¢ = VIoeH [y Type of cylinder motion
0.39 1341 33+£3 Stable

0.46 8§+1 20+£3 Transverse oscillations
0.53 8§+1 20+£3 Transverse oscillations
0.56 T+1 18+3 Transverse oscillations
0.63 5+1 12+3 Fluttering

B. Mean velocity and Reynolds number for different diameters

We extend now the results of Secs. IV A and V A by comparing, for two differentlengths (L/ W =
0.61 and L/ W = 0.22), experiments using cylinders of different diameters (0.39 < D/H < 0.77).
Transverse oscillations are observed in the narrower range 0.46 < D/H < 0.63 (Fig. 2).

Figure 5 displays the variation with D/H of the parameters 8 and V, determined like in
Sec. IV A: data points corresponding to pure fluttering (D/H = 0.7 and 0.77) or stable (D/H = 0.39)
regimes are included in the graph and follow the global trend of the other data. The coefficient 8
= 1.35 £ 0.1 is independent of D/H and does not vary at the transition towards the stable or the
fluttering regimes. The velocity V, decreases smoothly by 30% as D/H varies from 0.39 to 0.77 for
L/W = 0.61 and increases by 15% as D/H varies from 0.39 to 0.63 for L/ W = 0.22; like for 8,
there is no visible influence of the transition from a flow regime to another.

For these different ratios D/H, we estimated V'°° by assuming that, like in Fig. 4, V, varies
linearly with L/ W: a linear extrapolation from the experimental determinations of V, for L/ W
=0.61 and L/ W = 0.22 provides then the values of V/°¢ = V,(L/W = 1) listed in Table II. The
corresponding Reynolds number Re/® is practically constant between D/H = 0.45 and 0.56 at the
same low value 2~ 20 as in Sec. IV A. The lower values of V/°° and Re!° for D/H = 0.63 may reflect
the stronger blockage of the flow.

V. INFLUENCE OF THE TRANSVERSE AND LATERAL CONFINEMENT
ON THE TRANSVERSE OSCILLATIONS OF FREE CYLINDERS

A. Influence of the cylinder length on the frequency of the transverse oscillations

We discuss now the influence of the normalized length L/ W on the transverse oscillations for
the same cylinders as in Sec. IV A (D/H = 0.53). For L/ W < 0.77, these oscillations are the only
ones taking place and the cylinder remains horizontal (Fig. 2). For L/ W = 0.89 and 0.94, fluttering
is superimposed to them (with a small amplitude due to the high L/W values resulting in strong
steric interactions with the walls).



084106-8 Gianorio et al. Phys. Fluids 26, 084106 (2014)

4.5
f] +
] -
4.0 +®
] Satd
P o

3.0 T T T T T

0 10 20 30 4

Vex (mm.s-1)

FIG. 6. Experimental variation of the transverse oscillation frequency fas a function of the cylinder velocity V., for plexiglas
cylinders of different lengths and constant diameter D = 1.5 mm (D/H = 0.53). Flowing fluid: W G 10 solution. The cylinders
used in the experiments are the same as for Fig. 4 and the symbols correspond to the normalized lengths: L/ W = 0.055 (),
0.11 (+), 0.22 (®), 0.33 (@), 0.44 (H), 0.61 (D), 0.67 (), 0.77 (x), 0.89 (), and 0.94 ()

Figure 6 displays the variations of the frequency of the transverse oscillations with the cylinder
velocity V., for the different ratios L/ W. These curves collapse onto a common trend, except for
L/W = 0.055. For V., =0, the frequency is f = 3.3 & 0.1 Hz. Physically, the flow field around
the cylinder and, therefore, f are fully determined by the pair of values (V,,, U'¢). The fact that fis
independent of L/ W for a given velocity V,, of a free cylinder confirms, therefore, that U is also
independent of L/ W.

As seen on Fig. 6, the frequency f increases weakly with V,,, i.e., by 15% between V., = 0
and 20mm s~'. This shows that, while the hydrodynamic forces which balance the weight of the
cylinder depend only on V/°¢, fhas a more complex dependence on V,, and U"¢: more precisely, f
depends dominantly of V!¢ but has a residual additional variation with V,,. Moreover, the curves
of Fig. 6 corresponding to the two largest values of L/W for which fluttering is superimposed
onto the transverse oscillations do not differ from the others: together with the lack of anomaly in
the variations of V, and B at the onset of fluttering, this confirms that the transverse and fluttering
oscillations are independent.

B. Transverse oscillation characteristics for cylinders of different diameters

The variation of the frequency fwith V,, is plotted in Fig. 7 for the same cylinders as in Sec. IV B.
All data points correspond to pure transverse oscillations except for L/ W = 0.61 and D/H = 0.63 in
which case fluttering is superimposed. The frequency fis remarkably independent of the normalized
diameter D/H, except for D/H = 0.46 and L/ W = 0.61: in this case, f follows the common trend of
variation for V., > 0but its values are higher for V., < 0. The curves correspondingto L/ W = 0.22
and L/ W = 0.61 also coincide which generalizes the lack of dependence on L/ W already observed
for D/H = 0.53 (Fig. 6). Finally, fluttering does not induce any clear deviation from the common
trend (< symbols).

The amplitude of the transverse oscillations could not be measured quantitatively in the present
experiments, even though they are detectable visually. In a previous work,? it was found to be
generally independent of the velocity V., for a given cylinder and fluid. Moreover, the amplitude
decreased as the diameter D increased: this could be expected since the global amplitude is generally
of the order of the upper geometrical limit H — D.

C. Influence of the Reynolds number on the transverse oscillation frequency

All the experiments discussed above have been performed with the water-glycerol solution
loc

WG10: as shown above, the Reynolds number Re'® = V!°°H /v is then nearly independent of
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FIG. 7. Experimental variation of the transverse oscillation frequency as a function of the cylinder velocity V., for cylinders
of different normalized diameters: D/H = 0.46 (v, ¥), 0.53 (O, »), 0.56 (A, A), and 0.63 (X). Open symbols: L/ W = 0.61;
black symbols: L/ W = 0.22. Flowing fluid: WG 10 solution.

U and L/W for a given value of D/H. In order to study the influence of Re on the transverse
oscillations, it is necessary to vary the viscosity. Experiments have therefore been performed on a
same cylinder using water and 6 water-glycerol solutions of different concentrations (see Table I).
For three of the latter solutions, the density oy = 1.035 g/cm? is kept constant by adding salt in order
to study specifically the influence of the viscosity.

The corresponding variation of the Strouhal number St/°¢ = f H/V/°¢ with Re'¢ is plotted in
Fig. 8 (V. = 0 in all cases): here, we estimate Vrl"" from the experimental variations of V, as a
function of L/ W for D/H = 0.53 (Fig. 4) by assuming that the ratio V!°/V, for a given value of
L/ W is the same for all fluids of Table I.

Figure 8 shows that S#°° decreases by 25% as Re'* varies from 15 to 30 and that all points
follow the same trend independent of the density and the viscosity. This variation is very similar to
that reported previously?® for a tethered cylinder using either water or a nearly Newtonian water-
natrosol solution (l, A symbols): the values obtained in the free case are less than 10 % lower. In the
tethered case, both the vertical motion and the variations of the roll angle are blocked: the removal
of the corresponding kinetic energy components may therefore account for the slight increase of the

1.5 5
St, ] A
Stloc_ & ‘ “

| Am Am
1.0
0.5
0.0

fyrrrrrrrrrrrrrrTrTrTT T T T T T T T T T T
10 20 30 Re, Re'* 40

FIG. 8. Variations of the Strouhal number St/°¢ = f H/ V! of the oscillations of a free plexiglas cylinder (L/ W = 0.61,
D/H = 0.53) as a function of the Reynolds number Re/*¢ = V,.l”‘H /v for V. = 0 - (0O): pure water (W); (¢): water-glycerol
solutions (WG), and (A): water-salt-glycerol (WG S) solutions of concentrations 5%, 10%, and 15% (data points are in this
order from right to left). Variation of St = fH/U with Re = UH/v for a tethered cylinder: D/H = 0.64, L/ W = 0.98 using water
(M) and a water-natrosol solution (A) of viscosity 1.3 x 1073 Pa s (from Ref. 28). Continuous line: numerical simulation.
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frequency. There may also be an influence of the differences between the values of L/ W and D/H.
Numerical 2D simulations also reported in Ref. 28 display a very similar variation (continuous line).

Transverse oscillations obtained for free and tethered cylinders result then likely from the same
physical mechanisms with only a small influence of the additional degrees of freedom.

VI. INFLUENCE OF THE CYLINDER LENGTH AND DIAMETER
ON THE FLUTTERING INSTABILITY

As shown in Sec. III, the fluttering instability corresponds to oscillations of the angle 6 of
the cylinder with respect to the horizontal and to synchronous lateral oscillations of the center
of mass (Figs. 3(c) and 3(d)). Fluttering takes place for large values of D/H > 0.63 either alone
or superimposed onto transverse oscillations (Fig. 2). For D/H = 0.53, fluttering occurs, together
with transverse oscillations, but only if L/ W = 0.89 and L/ W = 0.95. At the values of L/ W still
closer to 1 used in Ref. 29, sideways motions of the cylinder along z could only be of very small
amplitude and the fluttering instability was not observable. For given geometrical ratios L/ W and
D/H, the occurrence of fluttering does not depend on the velocity U except for the longest cylinder
(L/W = 0.95): in this case, fluttering only occurs at the largest upward flow velocities (X symbols
in Fig. 9).

As shown above using Figs. 4 and 5, the vertical drift of the cylinder does not seem to be
influenced by the occurrence of the fluttering instability. More precisely, the slope § of the variation
of V., with U is the same as in the regime of transverse oscillations; the global relative velocity
V, also follows the same trend of variation with L/ W as for cylinders of same diameter in other
regimes.

Figure 9 displays variations of the fluttering frequency f; as a function of the velocity V., for
several pairs of values of L/ W and D/H. A first important feature is that f; is at least 3 times lower
than the frequency of transverse oscillations in similar geometries. Moreover, f;is also constant with
Vex (and U) within experimental error for all values of L/ W and D/H investigated (for transverse
oscillations, the frequency increased instead slowly with V).

Figure 10 shows that f; decreases significantly with L/ W, e.g., by a factor 3 as L/ W increases
from 0.22 to 0.9: this, too, differs from transverse oscillations for which fis independent of L/ W ata
given velocity V.. This strong dependence of fron L/ W is not surprising since, unlike the transverse
oscillations, the fluttering motion does not induce a 2D velocity field in the planes perpendicular
to the cylinder axis. The bypass flows between the two ends of the cylinder and the side walls
(Fig. 1(c)) will, in particular, influence strongly the fluttering process. Unlike its variation with
L/ W, the frequency f; is, like f, nearly constant with the normalized diameter D/H: this is for
instance visible in Fig. 10 for L/ W = 0.61 and for dimensionless diameters D/H = 0.63, 0.7, 0.77

-8B @5 Qs S :@é
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FIG. 9. Experimental variation of the fluttering frequency f; for the W G10 solution as a function of the cylinder velocity
V. for plexiglas cylinders of different normalized diameters: D/H = 0.63, L/ W = 0.22 (X); D/H=0.77, L/ W = 0.49 (#);
D/H = 0.53, L/W = 0.89 (%k; D/H = 0.53, L/W = 0.94 (X); D/H = 0.63, L/W = 0.61 (O); D/H = 0.7, L/W = 0.61
(®); D/'H=0.77, L/W = 0.61 (®); and f = 0 means: no oscillation.



084106-11 Gianorio et al. Phys. Fluids 26, 084106 (2014)

1.0 -
fr 7 b2l
(CON

| O
0.5 i @

%E

o4

0.0 0.5 Lw 1.0

FIG. 10. Experimental variation of the fluttering frequency f; with the normalized length L/ W for cylinders with different
normalized diameters and lengths: D/H = 0.63, L/W = 0.22 (><1); D/H = 0.77,0.22 < L/W < 0.61 (O); D/H = 0.77,
L/W =0.49 (#); D/IH = 0.53, L/W = 0.89 (x); D/H = 0.53, L/W = 0.94 (X); D/H = 0.63, L/W = 0.61 (O); D/H =
0.7, L/W = 0.61 (®); and D/H = 0.77, L/ W = 0.61 (®). Flowing fluid: WG 10 solution.

((O), (®) and (®) symbols). Similarly, for L/ W = 0.22, the values of f; corresponding to D/H
= 0.63 and 0.77 are nearly equal.

It follows from these results that, unlike for transverse oscillations, the local relative velocity
V!oc defined in Sec. IV A is likely not the relevant characteristic velocity for fluttering because it is
constant with L/ W while f; varies. The global velocity V,, instead, decreases linearly with L /W like
Jfrand is a better candidate; moreover, the corresponding Strouhal number St; is practically constant
when L/ W increases from 0.23 to 0.61 with Sty = 0.105 4= 0.02 for solution WG10and D/ W = 0.77
(f; decreases from 0.85 to 0.45 s™"). This suggests that V, might be the relevant relative velocity for
fluttering while V°° is that for transverse oscillations. Further experiments using different cylinders
and fluids are however needed to determine the dimensionless numbers controlling this instability.

Regarding the amplitude of the oscillations of §z. and 6, these increase during the motion of
the cylinder (starting from rest) and become constant with time and independent of the flow velocity
U; the initial growth rate increases however with U. Moreover, the amplitude does not appear to
depend on the ratio L/ W: however, the ends of long cylinders (L/ W 2 0.6) touch the sides during
the oscillations which limits the amplitude of the variations of §z.. Finally, the amplitude decreases
when the fluid viscosity increases.

Visually, this fluttering instability resembles those of rectangular sheets falling obliquely.
However, such effects are observed in unconfined configurations while the frequency f; of fluttering
varies here with the lateral confinement (i.e., with L/ W): it involves therefore likely a different
mechanism in which viscous forces play an important part. A possible origin of fluttering is the
dissymmetry of the flow created when the cylinder moves laterally so that §z. # O: then, the forces at
its two ends are different, which creates a torque and a lateral force inducing respectively a variation
of the tilt angle 6 and a sideways motion.

25-27

VIl. CONCLUSION

The present experimental study demonstrates that confinement may induce two different types
of oscillatory instabilities of a free horizontal cylinder in a vertical viscous Hele-Shaw flow. Both the
occurrence and the properties of these transverse and fluttering oscillations were shown to depend
strongly and differently on the lateral and transverse confinement. Moreover, these instabilities may
develop simultaneously and display novel specific features such as their onset at Reynolds numbers
as low as 15, their lack of dependence on the cylinder diameter and the lack of influence of the
cylinder length on the transverse oscillations.

The domain of observation of either type of instability is essentially determined by the transverse
confinement parameter D/H. Transverse oscillations are typically observed for 0.4 < D/H < 0.6 while
fluttering occurs for D/H 2 0.55; there is therefore a domain in which the two kinds of oscillations
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are superimposed but with no visible interaction between them. The lateral confinement L/ W does
not influence very much the onset of either instability: however, for D/H = 0.53, increasing L/ W
beyond 0.9 lets fluttering appear in addition to transverse oscillations. The occurrence of the fluttering
instability does not influence significantly either the mean vertical velocity of the cylinder.

The frequency f of the transverse oscillations is remarkably constant with L/W down to
L/W ~ 0.1 for a given cylinder velocity V., : they appear therefore as a 2D process of characteristics
independent of L/ W. More precisely, one may assume a local 2D fluid velocity field around the
cylinder with a relative velocity V!¢ of the fluid and the cylinder independent of L/ W, V., and of
the distance z along the cylinder.

V!¢ has a dominant influence and is the suitable characteristic velocity for defining the relevant
Reynolds number Re'¢ = V!°¢ H /v for this instability: Re' is of the order of 20 for a 10% water-
glycerol solution and for 0.46 < D/H < 0.56. This value is significantly lower than the thresholds
for vortex shedding behind cylinders between parallel planes (typ. 150—250): this confirms that one
deals with a different process in which the coupling between the motion of the cylinder and the
variations of the flow is a key factor. These transverse oscillations are similar to those observed for
tethered cylinders in the same geometry:?® the variations with Re/* of the Strouhal number based
on V!¢ are indeed almost the same in both cases (for free cylinders, Re'® is varied by using fluids
of different viscosities).

Due to the two dimensional character of the transverse oscillations, their main features should
be reproduced by 2D simulations of the type previously used for tethered cylinders.”® These will
allow us to understand better the origin of the weak dependence of the frequency f and of Re on the
ratio D/H for which no simple explanation is presently available.

The fluttering oscillations have a very different dependence on the ratio L/ W': their frequency
fr decreases indeed by a factor of 3 between L/W = 0.22 and L/W =1 (however, like f, f; does
not depend on D/H). Unlike the transverse oscillations, fluttering depends therefore strongly on the
clearance between the ends of the cylinder and the sides of the cell, as could be expected in view of
the large displacements of the cylinder along z it induces. As a result, the local relative velocity V/'°¢
which determines largely the transverse oscillations is not relevant for characterizing the fluttering
process (f; varies with L/ W while V!o¢ remains constant). The global relative velocity V, seems
actually to be better adapted: the Strouhal number St; = f;H/V, based upon it St remains indeed
constant within +2% as L/W increases from 0.23 to 0.61 while V, and f; vary by a factor of 2. This
hypothesis needs however to be confirmed by further experiments for other values of L/ W and D/H
and other viscosities (.

Modeling thoroughly the fluttering motion would require 3D numerical simulations since flows
both between the side of the cylinder (resp. its ends) and the walls of the cell (resp. its sides) are of
importance. However, useful information may likely be obtained from a 2D numerical model, this
time in the (x, z) plane, replacing the cylinder by a plane object (elongated rectangle for instance).
Such simulations would take advantage of the specificity of Hele-Shaw cell flows (potential 2D
mean flow in most of the surface of the cell) but friction forces in the region between the side
of the cylinder and the cell walls would have to be included in the model. Further experimental
studies, particularly of the influence of the viscosity and of the local structure of the flow will also
be necessary to understand fully the mechanism of these instabilities and determine the relevant
dimensionless parameters (particularly the Reynolds number) controlling this phenomenon.
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