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The influence of a small relative density difference (Ap/p=3X107*) on the displacement of two
miscible Newtonian liquids is studied experimentally in transparent two-dimensional square
networks of microchannels held vertically; the channel width distribution is log normal with a mean
value of a=0.33 mm. Maps of the local relative concentration are obtained by an optical light
absorption technique. Both stable displacements in which the denser fluid enters at the bottom of the
cell and displaces the lighter one and unstable displacements in which the lighter fluid is injected at
the bottom and displaces the denser one are realized. Except at the lowest mean flow velocity U, the
average C(x,1) of the relative concentration satisfies a convection-dispersion equation. The relative
magnitude of |U| and of the velocity U . of buoyancy driven fluid motions is characterized by the
gravity number N,=U,/ |U|. At low gravity numbers |Ng| <0.01 (or equivalently high Péclet
numbers Pe=Ua/D,,>500), the dispersivities I, in the stable and unstable configurations are
similar to /;Pe®>. At low velocities such that [N,|>0.01, I, increases like 1/Pe in the unstable
configuration (Ng<0), while it becomes constant and close to the length of individual channels in
the stable case (N,>0). Isoconcentration lines c(x,y,7)=0.5 are globally flat in the stable
configuration, while in the unstable case, they display spikes and troughs with a rms amplitude o
parallel to the flow. For N,>-0.2, o, increases initially with the distance and reaches a constant
limit, while it keeps increasing for N, <-0.2. A model taking into account buoyancy forces driving
the instability and the transverse exchange of tracer between rising fingers and the surrounding fluid
is suggested and its applicability to previous results obtained in three-dimensional media is

discussed. © 2008 American Institute of Physics. [DOI: 10.1063/1.2899635]

I. INTRODUCTION

Miscible displacements in porous media are encountered
in many environmental, water supply and industrial
problems.l_3 Specific types of miscible displacements, such
as tracer dispersion, are also usable as diagnostic tools to
investigate porous media heterogeneities at the laboratory4 or
field scales. The characteristics of these processes, such as
the width and the geometry of the displacement front, are
often influenced by contrasts between the properties of the
displacing and displaced fluids such as their density.s’8 When
the fluid density increases with height, gravity driven insta-
bilities may appear and broaden the displacement front: As
an unwanted result, this may lead to early breakthroughs of
the displacing fluid. An example is the infiltration of a dense
plume of pollutant into a saturated medium.

The objective of the present paper is to study experimen-
tally at both the local and global scales miscible displace-
ments of two fluids of slightly different densities (Ap/p=3
X 107#): Of particular interest is the influence of buoyancy
driven flow perturbations on the structure and development
of the mixing zone.
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In porous media, from Darcy’s law, the flow per unit
area, U, (counted positively for upward flow), induced by
the difference between the hydrostatic pressure gradients in
the two fluids is

U,=—k—, (1)

in which Ap is the density of the lower fluid minus that of
the upper one, w is the viscosity (identical for both fluids),
and k is the permeability of the medium. The relative mag-
nitude of U, and of the mean flow velocity U is a key ele-
ment of the problem and is characterized by the gravity
number:®

_ U, Apgk
=— = . (2)
Ul wlUl

With the above definition of Ap, one has Ng>0 in the stable
configuration (denser fluid below the lighter one) and
N, <0 in the unstable one.

Recent experiments&7 have shown that, even when the
parameter |N,| is small (2 1072 in Ref. 5), the geometry of
the mixing fronts is still influenced by buoyancy. Variable

© 2008 American Institute of Physics


http://dx.doi.org/10.1063/1.2899635
http://dx.doi.org/10.1063/1.2899635
http://dx.doi.org/10.1063/1.2899635

034107-2 D’Angelo et al.

density flow and transport in porous media has therefore
received increasing attention both theoretically and
numerically.gf11

In the present work, miscible displacements of fluids of
slightly different densities are studied optically in a transpar-
ent two-dimensional (2D) vertical network of channels with
random widths.'? Both visualizations at the pore scale (one
of the fluids is dyed) and measurements of the global con-
centration profiles parallel to the mean flow at different mean
velocities U are achieved. The development and influence of
buoyancy driven flows are analyzed by comparing displace-
ment processes in stable and unstable density contrast con-
figurations.

For density contrasts low enough so that |Ng]<0.2, hy-
drodynamic dispersion damps the development of instabili-
ties. Then the mixing process can be considered as dispersive
and is described well by the macroscopic convection-
dispersion equation classically used for passive tracers with

ic - - _ -
— =V C-D-VO), (3)

where C is the tracer concentration, U is the flow velocity,
and D is the dispersion tensor (all values are averaged over

the gap of the cell); D is assumed to reduce to the diagonal
components D and D, corresponding to directions parallel
and perpendicular, respectively, to the mean flow. The values
of Dy and D, are determined by two main physical mecha-
nisms: advection by the velocity field inside the medium and
molecular diffusion (characterized by a molecular diffusion
coefficient D,,). The relative magnitude of these two effects
is characterized by the Péclet number Pe=Ua/D,, (a here is
the average channel width).

Both  immiscible displacements12 and  tracer
dispersion‘"13 have already been measured previously in such
models. This latter work'” uses the same experimental tech-
nique and porous model as the present ones but deals with
experimental conditions in which the development of buoy-
ancy driven instabilities is negligible. In this case, the dye
can be considered as an “ideal” tracer that does not modify
the fluid properties. In contrast, the present work deals with
the influence of buoyancy effects on dispersion: The compo-

nents of D depend on Ap and are larger in the unstable con-
figuration. Similar studies might be performed on three-
dimensional (3D) porous samples using NMR imaging,
computed  tomography  imaging  scan,  acoustical
techniques,M’ or positron emission projection imaging'(’ but
at a higher cost and/or with strong constraints on the fluid
pairs to be used.

In the present displacement experiments, concentration
maps obtained for a vertical flow are compared for different
flow velocities. At the global scale, an effective dispersion
coefficient is determined and its dependence on the flow ve-
locity is studied in both stable and unstable density contrast
configurations. At the local scale, the variation of geometri-
cal front features of different sizes is analyzed as a function
of the flow velocity and of time. The combination of these
local and global data provides both a sensitive detection of
the instabilities and information on the characteristics of the
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displacement process at different length scales. Finally, a
model aimed at interpreting semiquantitatively these results
and also previous observations on 3D systems is presented.

Il. DESCRIPTION OF EXPERIMENT
A. Experimental setup and procedure

The experimental system and the technique for analyz-
ing the data have already been described in Ref. 13. The
model medium is a vertical transparent 2D square network of
channels of random aperture:12 It has a mesh size equal to
d=1 mm and contains 140X 140 channels with a mean
length of 0.67 mm and a depth of 0.5 mm. The width of the
channels takes seven values between 0.1 and 0.6 mm with a
log-normal distribution and a mean value of a=0.33 mm.
The permeability of the network is k=3 X 10~ m? (i.e., 3000
Darcy).

The model is vertical with its open sides horizontal (see
Fig. 2 in Ref. 13). The upper side is connected to a syringe
pump sucking the fluids upward out of the model from a
reservoir inside which the lower side is dipped. Initially, the
model is saturated by pumping the first fluid of density p; out
of the lower reservoir into the model. Then, the pump is
switched off and the lower side of the model is removed
from the liquid bath by lowering the reservoir (the connec-
tion tubes are shut to avoid unwanted fluid exchange be-
tween the model and the outside during this process). The
reservoir is then emptied completely, filled up by the second
fluid of density p,=p;+Ap, and raised again until the lower
side of the model is below the liquid surface. The displace-
ment process is initiated by opening the connection tubes and
switching on the pump. This procedure provides a perfectly
straight initial front between the two fluids at the beginning
of the displacement. The mean flow velocity ranges from
0.005 to 2.5 mm s~

B. Fluid characteristics

Newtonian water-glycerol mixtures obtained by mixing
60% in weight of glycerol in pure water are used in the
experiments. Their viscosity is equal to w=1072Pas at
20 °C. The injected and displaced fluids are identical but for
water blue dye17 added to one of the solutions, allowing one
both to measure the local concentration optically and to in-
troduce a controllable density difference between the fluids
(note that since the density contrast is purely due to the dye,
the optical determination of the local dye concentration also
measures the local density).

In this work, the absolute value |Ap| of the density
difference between the two fluids is constant with
|Ap|=0.3 kg/m>. For each flow rate and pair of fluids used,
both stable (Ap>0) and unstable (Ap<<0) configurations are
studied by swapping fluids 1 and 2.

Water blue dye has been selected because it pro-
vides a large optical absorption for a minimal amount of
dye and does not get adsorbed on the walls of the
flow channels. Its molecular diffusion coefficient in water
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is D,=65X10"* mm?s™! and, therefore, D;=0.7
X107 mm? s~ in the water-glycerol solutions (assuming
D, ™).

The model is illuminated from the back by a light panel
and images are acquired by a 12 bit high stability digital
camera with a 1040 X 1400 pixel resolution (pixel size
=0.16 mm). Typically, 100 images are recorded for each ex-
periment at time intervals between 2.5 and 700 s. The im-
ages are translated into maps of the relative concentration
C(x,y,t) of the fluids using a calibration procedure com-
monly used’ and described in Refs. 13 and 18.

C. Characteristic parameters of buoyant flows

In the present experiments, the modulus |U,| of the
buoyant flow velocity [see Eq. (1)] is constant (only its sign
changes when the fluids are swapped): The gravity number
N, varies then as U~! with the velocity, and the influence of
gravity is largest at the lowest velocities. Using Eq. (1) in
order to estimate U, for the water-glycerol mixtures used in
the present work leads to |U g] =107 mm s~! for the glycerol-
water mixture. At the lowest experimental flow velocity
(U=5x%10"3 mms™!), the duration of the complete satura-
tion of the network is =3 X 10* s. During this time lapse,
the distance U,t characterizing the growth of the gravita-
tional instabilities is 28 mm for the water-glycerol mixture:
This is far above the length d of the individual channels of
the network, and a noticeable influence of gravity on the
structure of the displacement fronts is thus expected.

For these same solutions, buoyancy effects should be
sizable when the distance U/t becomes larger than d: The
transition should then take place at an imposed flow velocity
U,=U,L/d=0.14 mms~" (L is the model length). This ve-
locity corresponds to the following gravity and Péclet num-
bers: NZ,=—0.01 and Pe“=500. These predictions will be
shown in Sec. III C to correspond well to the experimental
results.

lll. EXPERIMENTAL RESULTS
A. Qualitative observations of miscible displacements

Figure 1 displays concentration distributions observed
during displacement experiments using the water-glycerol
mixture. In the stable configuration of Figs. 1(d)-1(f), the
mean global front shape remains flat at all flow velocities.
The overall width of the mixing zone increases, however,
with the flow rate due to the development of fine structures
parallel to the mean flow, particularly at the highest velocity
[Fig. 1(f)].

In the unstable configuration and at the lowest velocity
[Fig. 1(a)], large instability fingers with a width of the order
of 10-15 mesh sizes appear and grow up to a length equal to
that of the experimental model. For a velocity four times
higher, fingers still appear but they are significantly shorter
[Fig. 1(b)]. As the velocity increases, the size of the fingers
parallel to the mean flow decreases, while finer features de-
velop. For a velocity 50 times higher [Fig. 1(c)], the front
geometry is then more similar to that observed in the stable
case although its width parallel to the flow is still broader. In
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FIG. 1. (Color online) Relative concentration maps for experiments using
water-glycerol solutions of different densities at three different flow rates
with the injected fluid occupying half of the model. [(a) and (d)]
U=0.005 mms™', |N,|=0.2; [(b) and (e)] U=0.025 mms™', |N,|=0.04;
[(c) and ()] U=1.25 mms~', |N,|=8x 107*. Experiments correspond to
stable [(d)—(f)] and unstable [(a)-(c)] density contrast configurations. In
these figures and the following ones, darker shades correspond to the pure
injected or displaced fluid and the lighter shade to a mixture of the two (in
the online version, purple and red colors correspond, respectively, to the
injected and displaced fluids and other colors to a mixture). Fluid flows are
upward with g pointing downward. Field of view is 153 X 140 mm? in the
vertical and horizontal directions (images are stretched horizontally).

Sec. III E, the structure of the mixing zone in these experi-
ments will be analyzed again in the unstable case from the
geometry of the isoconcentration fronts [C(x,y,r)=0.5].

These results agree qualitatively with macroscopic dis-
persion measurements on 3D bead packs5 using conductivity
tracers detected at the outlet of the samples. In this case,
buoyancy driven instabilities are also observed at low veloci-
ties for Newtonian water-glycerol solutions in a gravitation-
ally unstable configuration but not for water-scleroglucan so-
lutions. Compared to this latter work, optical measurements
provide additional information on front structures of differ-
ent sizes. We now examine the variation of the global dis-
persion characteristics as a function of the experimental pa-
rameters and of the configuration of the fluids.

B. Quantitative concentration variation analysis

The procedure for determining a global dispersion coef-
ficient from the concentration maps is described in detail in
Ref. 13. The mean relative concentration C(x,) of a heavy
(dyed) fluid at a distance x from the inlet side is first deter-
mined by averaging the value c(x,y,?) for individual pixels
over a window of width Ay=140 mm across the flow (only
pixels belonging to the pore volume are included in the av-
erage). Figures 2(a) and 2(b) display the variations with time
of C(x,?) for two different values of the gravity number N,.
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FIG. 2. Normalized mean concentration variation C(x,?) as a function of the
time ¢ for unstable displacement experiments using a water-glycerol mixture
[C: Average of local pixel concentration c(x,y,7) over a width Ay
=140 mm in the central part of the model]. (a) U=0.025 mms~, N,
=-0.04, x=104 mm. (b) U=0.005 mms~', N,=-0.2, x=88 mm. Continu-
ous line: Fit by a solution of Eq. (3) with (a) 7=4350 s, D;/U?=110 s and
(b) 7=18 266 s, D,/ U*=1369 s. The determination of the mean velocity U is
discussed in Sec. III B.

These variations have been fitted (continuous line) by the
following one-dimensional solution of the convection diffu-
sion equation (3) assuming an initial steplike variation of C
at the inlet:

1 N t—1
Clx,r) == l+—g-erf<,=> . 4)
2 |Ng| V’4D\\t/ U2

Here, D is equal to the diagonal component of the tensor D
in the x direction. Since flow is always upward, adding the
factor N,/|N,|= = 1 makes the equation usable both for light
fluid displacing heavy fluid (unstable configuration, N, <0)
and for heavy fluid displacing light fluid (stable configura-
tion, N,>0).

For N,=-0.04, the experimental data are well fitted by
Eq. (4). For N,=-0.2, the distortions of the front due to the
instabilities are very large and the concentration does not
decrease smoothly but the experimental curve displays
bumps; these features are the signature of rising fingers
reaching the measurement height. Yet, an acceptable fit of
the experimental data with Eq. (4) can still be achieved. The
fits provide the values of the mean transit time 7 of the front

at the distance x and of the ratio D,/ U?=Ar?/(27) (A7 is
the centered second moment of the transit times along the
distance x).

The insets of Figs. 3(a) and 3(b) display the variation of
t with the distance x which is linear in both cases; this shows
that the mixing zone characterized by the mean concentra-
tion profile C(x,7) moves at a constant velocity U,,. equal to
the inverse of the slope of the variation. A linear regression

Phys. Fluids 20, 034107 (2008)

600

r 6000 -
500 C T[] _
D,/U2[s] | 4000

400f -
[ 2000 N

300? (@ 3

200f

2500

A L
100 150

(=]
W
(=]

X [mm]

FIG. 3. Variation of the fitting parameter D,/ U? as a function of the dis-
tance x from the inlet for two unstable displacement experiments using
the water-glycerol solutions with U=0.025 mms™ (N,=-0.04) and
U=0.005 mms~! (N,=-0.2). Insets: Variation of the mean transit time 7 as
a function of x. Solid line: Linear regression of the data. Values of 7 and
D,/ U? are obtained by fitting the mean concentration variation C(x,) using
Eq. (3) at each distance x.

of the data provides the values U,,,=0.027 mm s~! for case
(a) and U,,,=0.0046 mms~! for case (b). The mean fluid
velocity U in the model may be taken to be equal to the ratio
of the injected flow rate and of the pore volume per unit
length along x which have been determined independently.
The values of U computed in this way at the same two flow
rates as above are U=0.025 and 0.005 mm s, respectively:
They are very close to the corresponding values of U,,..

The two velocities U and U,,, are compared more pre-
cisely in Fig. 4, which displays the values of U,,,/ U for both
stable (O) and unstable (@) flow configurations. This ratio is
always close to 1: This shows that buoyancy effects do not
influence the mean displacement of the concentration profile
even at the lowest flow rate (N,=-0.2) for which they are
very large [Fig. 1(a)]. One assumes therefore in the follow-
ing that U=U,,,.

The main graphics of Figs. 3(a) and 3(b) display the
variation of the ratio D;/U? as a function of the distance x
from the inlet. In case (a) (N,=-0.04), D,/ U? increases
slightly at first with the distance x and levels off for
x=50 mm; then it fluctuates around a constant value. Previ-
ous studies'® have shown that the fluctuations are periodic
and determined by the structure of the network (the period is
equal to the mesh size). In case (b) (N,=-0.2), D,/ U? fluc-
tuates around a constant value for x< 100 mm and increases
slightly with x at larger distances. This is likely due to the
rising fingers, directly observable in Fig. 1(a) and which can
be identified on the curve of Fig. 2(b). Tracers are advected
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FIG. 4. Variation as a function of |Ng\ of the characteristic velocities of the
fluid displacement normalized by the mean velocity U in stable (open sym-
bols) and unstable (dark symbols) density contrast configurations for water-
glycerol solutions. [(O) and (®)] Normalized velocity of the mixing region
U,,./ U determined by a linear regression on the variation of 7 as a function
of x [see insets of Figs. 3(a) and 3(b)]. (J and M) U, s=mean velocity of
isoconcentration lines ¢=0.5.

faster and farther inside these fingers than outside, resulting
in an increase of the dispersivity. Even in this case, however,
the fluctuations of the measurements and the relatively small
variations of the values of D;/U? do not allow one to con-
clude that a diffusive regime is not reached.

These results show both that the mixing front moves at a
constant velocity U and that (except perhaps for N,=-0.2) it
reaches a dispersive spreading regime characterized by a dis-
persion coefficient (D) taken to be equal to the average of D
over the full experimental range of x values. In the follow-
ing, like in Ref. 13, dispersion is characterized by the disper-
sivity l,=(D;)/ U instead of (D)); the standard deviation of
the individual values of D is used to estimate the error bars
on I,

C. Global dispersion measurement results

We now discuss the variations of the normalized disper-
sivity l;/a in the stable and unstable configurations: /,;/a is
plotted in Fig. 5 as a function of the Péclet number
Pe=Ua/D,, (bottom axis) and the gravity number |N,| (top
axis) for the water-glycerol solution. Data points correspond-
ing to N, <0 and N, >0 are clearly separated at high |N,| (or
equivalently low Pe) values: This separation occurs close to
the transition value N,=0.01 (or Pe“=500) discussed in Sec.
IT C. Experiments on 3D bead packings5 displaying a similar
effect are compared to the present ones in Sec. IV. This sepa-
ration reflects the development of fingerlike structures at low
velocities in the unstable configuration (Ng<0) and the flat-
tening of the front in the stable one (N,>0) displayed in Fig.
1. At the lowest Péclet number, the values of /; for N,>0
and N, <0 differ by a factor of nearly 10.

For N,>0, the dispersivity /; reaches for N,=5X 1072
(Pe=100) a minimum value ;=1 mm close to the charac-
teristic local length, i.e., the mesh size of the lattice. In
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FIG. 5. Variation of the dispersivity /,/a=D/aU as a function of the Péclet
number Pe and of the gravity parameter N, (upper axis) for the water-
glycerol mixture for N,>0 (O) and N, <0 (®). Solid (/,/a=0.6 Pe’%) and
dash-dotted (I,/a=0.5 Pe®3) lines: Regression for water-glycerol data for
the stable and unstable configurations, respectively, in the buoyancy-free
flow domain (~0.01 <N,<<0.01). Dotted line: Variation predicted by Eq. (9)
(see Sec. IV) for B;=0 and €=0.3). Dashed line: Variation law [;/a
=1.5 Pe"¥ satisfied from Ref. 13 by data corresponding to shear-thinning
polymer solutions.

homogeneous porous media, this length often represents a
lower limit of /, for a perfectly passive tracer: This low value
confirms the stabilizing influence of the buoyancy forces.®

At velocities U above 0.1 mm s~ (or Pe>500), l; is
similar for both N,>0 and <0 and increases as [/, Pe® with
a=0.5 (solid and dash-dotted lines in Fig. 5). This variation
differs from the slow increase observed in 3D media such as
homogeneous grain packings:5 It reflects the combined ef-
fects of geometrical dispersion due to the disorder of the
velocity field and of Taylor dispersion due to the velocity
profiles in individual channels. The latter becomes important
at high Péclet numbers due to the reduced mixing at the
junctions by transverse molecular diffusion. As a result, the
correlation length of the velocity of the tracer particles along
their trajectories (and therefore the dispersivity ;) becomes
larger.

The above analysis of the global dispersion has used
averages of the local concentration over nearly the full width
of the model and including all the geometrical features of the
front instabilities. The corresponding value of /; then com-
bines different types of effects.

The first one is the local spreading of the displacement
front. It is likely to result from the combined effects of the
local disorder of the flow field (geometrical dispersion
mechanism) and the flow profile between the rough walls
(Taylor mechanisms). The influence of these mechanisms is
discussed in Ref. 13.

The second more global effect is the global spreading of
the mixing zone due to fluid velocity contrasts between dif-
ferent flow paths (resulting, for instance, from the instabili-
ties). This will be studied in Sec. III E specifically from the
variations of the front geometry.
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D. Comparison with dispersion measurements
on the same models using high viscosity
polymer solutions

It is informative to apply the above approaches to mea-
surements previously reported on the same experimental sys-
tems using water-sleroglucan solutions of concentrations
C,=500 ppm and C,=1000 ppm.13 In this case, no buoy-
ancy induced instability occurred in the unstable configura-
tions even at velocities equal to the lowest ones in the
present work. This results from the very high effective vis-
cosity u of these solutions at low shear rates for which in-
stabilities are most likely to develop. w is independent of the
shear rate y below a transition value ¥, of the orders of 0.08
and 0.025 s~!, respectively, for the 500 and 1000 ppm solu-
tions. In this “Newtonian plateau” domain, the corresponding
viscosities u are 410 and 4500 mPa s.

Using the same method as in Sec. II C, an upper limit of
the value of N, can be therefore estimated by taking u= u, in
Eq. (2) at the lowest experimental flow velocity (in this case,
one has y<43, for both solutions). This gives |N,|=5
X107 and |N,|=4.5X107, respectively, for the 500 and
1000 ppm solutions. Both values are below the threshold of
the instabilities observed for the Newtonian fluids, in agree-
ment with the experimental observations.

As could be expected from these results, the values of I,
are also the same for the stable and unstable configurations
for these polymer solutions: /; increases with Pe following a
power law [,<Pe® (dashed line in Fig. 5). This variation is
similar to that satisfied at high Pe values by the water-
glycerol solutions but the value of « is lower (¢=0.35 in-
stead of 0.5). This difference may be due to the different
relative weights of the Taylor and geometrical mechanisms
for these two types of fluids (see Refs. 13 and 18) These
solutions display indeed shear-thinning properties at high
flow rates (while they behave like Newtonian fluids at low
ones): This reduces Taylor dispersion and enhances geo-
metrical dispersion compared to the Newtonian case.

E. Spatial structure of the displacement fronts
for unstable flows

Previous experiments in 3D porous media'> demon-
strated a clear amplification of front structures resulting from
permeability heterogeneities for gravitationally unstable dis-
placements. Such effects can be studied precisely here down
to small length scales, thanks to the 2D geometry of the
model network and to the high precision and spatial reso-
lution of the optical concentration measurements.

In the following, the front geometry is characterized
from the lines x/y,#) along which the local relative concen-
tration c¢(x,y,?) is equal to 0.5 at a given time 7. Examples of
such lines determined by a thresholding procedure at four
gravity numbers —0.2<N,<-0.001 are displayed in Fig. 6.

At the lowest flow velocity investigated (N,=-0.2,
Pe =25), the buoyancy driven flow components have a major
influence on the front geometry and several instability fin-
gers soar up while the front displacement is much slower in
other regions [Fig. 6(d)].

At higher mean flow velocities [Figs. 6(b) and 6(c)], the
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FIG. 6. Isoconcentration fronts x/-(y,t) measured at four different gravity
numbers N,=(a) —0.00125, (b) —0.02, (c) —0.04, and (d) —0.2 for water-
glycerol mixtures in an unstable flow configuration (the injected fluid occu-
pies half of the model area). Flow is upward with g oriented downward. The
inset in (b) displays the typical size of the spikes \.

front retains a rough geometry, still reflecting buoyancy
driven flow components but its mean advancing motion is
clearly visible. In contrast, for N,=-0.2 [Fig. 6(d)], the de-
velopment of the front appears as the combination of the
independent growth of the individual fingers.

Another important feature is the fact that the distance y
across the front at which corresponding geometrical features
(peaks and troughs) appear remains the same. For N,=-0.2,
the extension of these features parallel to the flow increases
and they cluster together into larger structures, as can be seen
by comparing Fig. 6(a) and Figs. 6(b) and 6(c). Moreover,
for 0.2 <N,=<-0.02, and even though the width of the front
parallel to the mean flow increases significantly, the typical
transverse size A (along y) of the individual spikes of the
front is fairly constant with A=4-5 mm. This value has
been taken to be equal to the mean interval (along y) be-
tween successive local maxima of the local distance (parallel
to x) of the front from the inlet side [see inset on Fig. 6(b)].

These results contrast with the assumptions of a varying
wavelength7 often applied to porous media following obser-
vations in Hele-Shaw cells."’ However, for the latter, there is
no characteristic length scale for the flow field in the cell
beyond its thickness; in the present case, on the contrary, the
location of the features of the front are determined by the
heterogeneities of the flow field. At still higher flow veloci-
ties [for instance, in Fig. 6(a)] and for N,> Ng=-0.01 (see
Sec. I C for the expression of N;,), distortions of the front
due to buoyancy effects decrease in size and become hardly
visible on the isoconcentration lines.

Quantitatively, we characterize the isoconcentration
fronts by their mean position along the flow x(1)
=(x/(y,1)), and by the rms fluctuations o of the distance
x((y,0) [oy=({[xpy, ) —xA1)]*,)""?]. As shown in the inset of
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FIG. 7. Variation of the fronts width o as a function of the mean front
position x;. Empty symbols stand for stable configurations and filled sym-
bols for unstable ones. Squares, triangles, diamonds, and circles correspond
to |N,|=0.001 25, 0.02, 0.04, and 0.2, respectively. Inset: Variation of;f as a
function of time in the unstable configuration for N,=-0.2 (@), N,=-0.08
(*), and N,=-0.04 (#). Solid lines: Linear regressions on data points.

Fig. 7, the mean distance m increases linearly with time
even for the lowest flow velocity N,=-0.2. The propagation
of the isoconcentration fronts may therefore be characterized
by the velocity U, 5 obtained by a linear regression on the

variation of x/(r) with 7 (CJ and B symbols in Fig. 4). U, is
close to the flow velocity U (see Sec. Il B) for N,=-0.08;
however, it is 40% higher at the lowest velocity (N,=-0.2).
This confirms other indications of a transition toward a dif-
ferent type of front growth dynamics (in this latter case, U, 5
is likely determined by the development of the few large
fingers observed in Fig. 6).

The variation of o with x() is displayed in Fig. 7. At
the lowest flow rates (or largest |Ng| values), the differences
between the concentration maps of Figs. 1(a) and 1(d) are

reflected in the variations of o with x;. For |[N,|=0.2, oy

increases roughly linearly with x; in the unstable case [(®)
symbols], while in the stable configuration, it quickly
reaches a limit [(O) symbols]. At the highest velocity (i.e.,
IN,|=0.001 25), o becomes constant and equal to 6 mm as
soon as the distance from the injection line is larger than
10 mm. Its value is then the same in the stable and unstable
flow configurations (M,[J): This agrees with the comparison
of Figs. 1(c) and 1(f) which do not display any difference
due to buoyancy. At the intermediate velocities (|N,]
=0.02-0.04), the limiting value of oy is higher in the un-
stable configuration (A, 4) than in the stable one and the
distance x; required to reach this limit is greater. In contrast,
the variations observed in the stable case (open symbols) are
nearly independent of the flow velocity.

This suggests that in the unstable configuration and in
the range of N, values (0.1 <N,<-0.01), two distinct re-
gimes are successively observed. At short distances, the dis-
placement is controlled by the instability while the variation
of oy is similar to that measured for N,=-0.2. At larger
distances, oy levels off and becomes nearly constant like for
stable displacements. The transition distance increases with
Ng: For Ng:—0.2, it is of the order of the sample length,
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explaining why the second regime is not observed. Together
with previous results, this observation allows one to estimate
analytically the dispersivity for Ng<N§.

In order to compare these results to those of Sec. III C,
note that o refers to the extension of the isoconcentration
front ¢=0.5 in the flow direction: It does not include the
influence of the width of the concentration profile (nonzero
even at a given transverse distance y). At high velocities, for
instance, the isoconcentration front is nearly flat [Fig. 6(a)]
with only a few spikes. In this case, o has a nonzero limit at
long distances (due to these small features) and does not
increase as /%> like the width of the global profile C(x,?)
discussed in Sec. I C. In the unstable cases and at low
velocities, the linear increase of o at long distances reflects
directly the buoyant rise of fingers: Its dynamics differs from
that of the global spreading of the mixing zone. The latter
combines several mechanisms (including, but not only, the
growth of the fingers) leading to increase of the global width
of the profile as .

IV. ESTIMATION OF DISPERSIVITY VARIATIONS
FOR UNSTABLE DISPLACEMENTS

The development of fingers driven by buoyancy forces
in the unstable configuration is opposed by lateral mixing
induced by transverse dispersion: The latter reduces the local
density contrast , between the fingers and the surrounding
fluid and, finally, the buoyancy forces. As pointed out in Sec.
IIT E, the structure of the displacement front has a character-
istic size N constant and close to 4 mm for gravity numbers
in the range —0.2<N,<-0.01. The characteristic exchange
time 7 for lateral mixing will then be of the order of the
transverse diffusion time across the half-width A/2 with

2
T= A , (5)
8D
in which D | is the transverse dispersion coefficient.

The rising motion of the fingers driven by buoyancy
forces should have a velocity ugp,, proportional to the local
density contrast dp with ugyee,~ (9p/ ApU,). If the variation
of dp with time results solely from transverse mixing,
then dp will decrease exponentially with a time constant of
the order of the transverse mixing time 7. This leads to
Usinger ~ U, €Xp(=t/7) and the vertical displacement I(7) of
the rising finger before its velocity goes to zero will be given
by

(1) = 1U,. (6)

1(7) is then the typical spreading distance of the front due to
buoyancy driven motions during the time 7: It should be of
the order of the limiting value of the width o of the isocon-
centration lines at long distances. The transverse dispersion
coefficient D, generally decreases with the Péclet number
(or equivalently with the flow velocity U) so that both 7 and
1(7) should increase at low velocities. This agrees with the
observed increase of o, at long distances. At very low ve-
locities, I(7) reaches (or exceeds) the system size as observed
for N,=-0.2: In that case, o keeps increasing with distance
and does not reach a constant value within the model length.
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The dispersion coefficient component /; yyoyancy resulting
from these buoyancy driven motions may be estimated by
assuming that 7 is the characteristic crossover time toward
diffusive front spreading: The corresponding width I(7)
should then verify 1(7)>=2Dp,qyancy™- Combining with Egs.
(5) and (6) leads to the following dispersivity component

ld buoyancy = D buoyancy/ U:

U\
ld buoyancy = ELEJD_ . (7)
1

The total dispersivity /,; is now taken to be equal to the sum
of the dispersivity [ for a fully passive tracer and of
14 buoyancy Which assumes that these two processes are inde-
pendent: This is only an approximation since the spatial flow
velocity variations in the model influence both spreading
processes.

The normalized passive tracer dispersivity /;'/a may be
estimated from data obtained with the polymer solutions for
which, as noted above, no buoyancy effect is visible. The
equation

L = fpe?, (8)
a

where @=0.35*=0.03 and f=1.5=0.3, has been selected for
that purpose: It provides indeed a good global fit (dashed line
in Fig. 5) with the polymer data at all Pe values and an
acceptable one with water-glycerol data either in the stable
configuration or at high velocities.

Combining Egs. (7) and (8) and replacing U by its ex-
pression as a function of Pe leads then to

S (9)
16€Pe!*ArD2

[
—dzﬂ’e“+
a

in which € is a constant. In this equation, the trans-
verse dispersion coefficient D, is assumed to vary as
D, =D,,ePe”r, as suggested by numerical simulations from
Ref. 20 for networks of capillaries of random radii.

In order to put more emphasis on the buoyancy con-
trolled regime at low flow velocities (low Pe), the variation
of the dispersivity is plotted in Fig. 8 as a function of 1/Pe.
For unstable flows, as soon as 1/Pe>0.0025(1/400), [,
steadily increases with 1/Pe. This is also the case of the
buoyancy component estimated by subtracting the passive
tracer dispersivity component [ from the values of /,. The
difference I,—I3" increases linearly with 1/Pe and can be fit-
ted by the second term of Eq. (9) with €=0.3 and B;=0
(continuous line in the inset of Fig. 8).

The experimental value of B is lower than that reported
in Ref. 20 (B,;=0.2); this latter result corresponds to numeri-
cal simulations for capillary tube networks with a normalized
standard deviation o,/a of the channel aperture equal to ours
(0,/a=0.3). However, in our experiments, the influence of
the Iy puoyancy term is mostly significant at the lower Péclet
numbers (Pe<150), while the simulations of Ref. 20 deal
with Pe=300. The variation of D | for Pe <50 may therefore
be expected to be slower (and the corresponding exponent
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FIG. 8. Variation of /,/a as function of 1/Pe for the water-glycerol solution.
The filled circles correspond to N, <0 and empty circles to N,>0. Inset:
Variation of (I;,—13%)/a as a function of 1/Pe for unstable experiments in a
2D network (@) and a 3D porous medium (M) (Ref. 5). In order to make
comparisons easier, horizontal coordinates for the 3D data points have been
divided by a factor of 5 and vertical coordinates by 0.6. Regressions corre-
sponding to power laws of exponents of 1 (solid lines) and 2.1 (dotted lines)
are superimposed on the data.

lower) due to the influence of the molecular diffusion coef-
ficient D,, which is a constant lower limit at very low Pe
values.

In the present work, the variation of the coefficient of
dispersion D results directly from the 2D nature of the net-
work which has been used. In a 3D porous medium, a bead
packing, for instance, D depend weakly on the Péclet
number.>® In this case, ranges between 0 and 0.2 and 7
between 1 and 1.2.° As a result, the difference Iy~ 13" esti-
mated from the model is expected to increase with Pe like
=1/Pe®. We have tested this prediction by reanalyzing the
dispersion coefficients measured by Freytes et al’ In this
work, gravity driven instabilities were studied in a model
porous packing of 1 mm glass beads and for a density dif-
ference Ap=10~% g/1. For water and in the high Pe regime
where the effect of buoyancy is negligible, their data show
that [51ocPe!=01 indicating that B;=1.1+0.1. As above,
the buoyancy component is estimated by subtracting the pas-
sive tracer dispersivity /5 from the measured dispersivities.
The difference [,—[' obtained in this way varies as
(1/Pe)'9*%2 (see inset of Fig. 8) with an exponent of 1.9
close to the value 1+ B;=2.1*0.1 predicted by the model.

V. CONCLUSIONS

To conclude, the miscible vertical displacement mea-
surements on transparent networks of channels reported here
provide information on the mixing front of two miscible flu-
ids of slightly different densities at both the local and mac-
roscopic scales. Qualitatively, the macroscopic dispersion
measurements obtained confirm previous ones performed on
3D porous media:® The key feature of this work is that ad-
ditional new information is provided by the high resolution
visualization of front structures of different sizes down to the



034107-9 Dispersion enhancement and damping

scale of individual channels. Using this information, front
distortions resulting from instabilities in unstable density
contrast configurations could be analyzed quantitatively.

In these systems, the global spreading of the front results
from the combination of the effects of the disordered spatial
variations of the velocity field (the only mechanism active in
the passive tracer case) and of buoyancy driven flows; the
latter may either decrease or reduce the dispersion depending
on the gravitationally stable or unstable configuration of the
fluids. For large Péclet numbers (Pe>500) (i.e., small grav-
ity numbers |N,[<0.01), the displacement fronts are very
similar in both configurations and the global shape of the
isoconcentration fronts is flat. In this case, the front spread-
ing characteristics and the dispersivity values are similar to
those measured for shear-thinning polymer solutions.

In the stable configuration, the dispersivity decreases
significantly for Pe <500 and becomes constant and close to
1 mm when Pe<100. At the same time, the geometry of the
isoconcentration front is only weakly affected by the stabi-
lizing effect of buoyancy.

In the unstable configuration and at moderate N, values
(e.g., -0.2<N,<-0.01), the initial development of the in-
stabilities is damped by transverse hydrodynamic dispersion
after some time. As a result, front spreading remains disper-
sive but with a dispersivity increasing at low velocities as
1,=1/Pe. These instability fingers are reflected in the geom-
etry of the isoconcentration fronts which display large spikes
and troughs. In this range of N, values, the location (in the
transverse direction) and the width of the spikes are observed
to be constant. The spreading in the flow direction as a func-
tion of time displays two regimes: Initially (short distances
from the injection), the width of the isoconcentration fronts
increases linearly and then it levels off toward a constant
value at larger distances.

In order to explain these results, an approach combining
the influences of longitudinal buoyancy forces parallel to the
mean flow and of the exchange of solute between the insta-
bility fingers and the surrounding fluid has been developed:
It accounts semiquantitatively for the dependence of the dis-
persivity on the Péclet number if N,>-0.2. The present ob-
servations on 2D networks and previous measurements on
3D bead packings (for which /,=1/Pe?) are well fitted by
this model.

At the lowest velocity investigated (N,=-0.2), large fin-
gers develop on the interface; the concentration front is
strongly distorted but its spreading is still dispersive. Yet, the
number of fingers on the isoconcentration front decreases
with time while its width parallel to the flow keeps increas-
ing with distance. This suggests that, at lower negative
N, values, gravitational instabilities might control the trans-
port process. In 3D porous media, a linear growth of the
mixing zone reflecting the dominant influence of such insta-
bilities is only observed for N, lower than a threshold value
N,=-15.

Further studies are needed to confirm our observation by
using pairs of fluids with different density contrasts. Another
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issue of practical interest is the influence of the viscosity
contrast on the spatial distribution of the tracer.
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