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Abstract – We analyze experimentally the behavior of a non-Brownian, iso-dense suspension of
spheres submitted to periodic square wave oscillations of the flow in a Hele-Shaw cell of gap H . We
do observe an instability of the initially homogeneous concentration in the form of concentration
variation stripes transverse to the flow. The wavelength of these regular spatial structures scales
roughly as the gap of the cell and is independent of the particle concentration and of the period
of oscillation. This instability requires large enough particle volume fractions φ ≥ 0.25 and a gap
large enough compared to the sphere diameter (H/d ≥ 8). Mapping the domain of the existence of
this instability in the space of the control parameters shows that it occurs only in a limited range
of amplitudes of the fluid displacement. The analysis of the concentration distribution across the
gap supports a scenario of particle migration towards the wall followed by an instability due to
a particle concentration gradient with a larger concentration at the walls. In order to account
for the main features of this stripes instability, we use the theory of longitudinal instability due
to normal stresses difference and recent observations of a dependence of the first normal stresses
difference on the particle concentration.

Copyright c© EPLA, 2018

Introduction. – Since pioneering work on viscous re-
suspension [1] and the observation of particles migration
in flowing dense neutrally buoyant suspensions [2], the
so-called shear-induced particle migration has been in-
tensively studied both theoretically [3] and experimen-
tally [4]. This migration was modeled using the so-called
shear-induced migration model [1,2] or introducing nor-
mal stresses within the flowing suspension [3]. It was soon
recognized that normal stresses differences can lead to in-
stabilities either longitudinal to the flow direction [5] or
perpendicular to it [6]. However, some properties of sus-
pension flows are not yet fully understood, such as the
dynamics of the shear-induced migration in axisymmet-
ric Poiseuille flows at moderate volume fractions (φ ≤
0.3) [7]. Moreover, recent numerical simulations [8] point
out the strong influence of confinement on the suspension
rheology.

Several studies of dry granular media demonstrate that
vibrations may induce volume fraction instabilities [9] and
the build-up of patterns has already been observed in

oscillating suspensions, both experimentally [10,11] and in
numerical simulations [12]. These latter studies dealt with
unbounded dilute suspensions (volume fraction φ ≤ 10%)
of buoyant beads (Δρ �= 0) oscillating at moderately high
frequencies (f ≥ 6 Hz).

In the present study, we analyze experimentally the be-
havior of a non-Brownian, iso-dense suspension of spheres
submitted to a periodic low-frequency square wave oscil-
lation of the flow in a Hele-Shaw cell of gap H . We do
observe an instability of the initially homogeneous sus-
pension in the form of stripes of different particle concen-
trations transverse to the flow. We map the domain of
existence of this instability in the space of the control pa-
rameters of the experiment, i.e., the cell thickness H , the
amplitude A and period T of the fluid oscillations. We de-
termine the variations of the wavelength, λ, and of the crit-
ical onset time, tc, of this instability as a function of these
control parameters. Using fluorescent dye dissolved in the
fluid, we map the particle fraction across the gap H and
observe that the instability is associated to a migration of
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Fig. 1: (a) Schematic view of the experimental set-up. (b) Top
view of a part of the instability pattern. Mean volume fraction
φ = 0.35; cell gap H = 0.4 mm, the cell width, W = 8 mm,
corresponds to the distance between the two black boundaries.

the particles from the center of the cell towards its walls.
In order to account for the main features of this instabil-
ity, we use the theory of longitudinal instability due to
normal stresses difference [6] and recent measurements of
the dependence of the first normal stresses difference on
concentration [13,14].

Experimental set-up and data processing. – The
experimental set-up is shown in fig. 1(a) [15]. The iso-dense
suspension consists of polystyrene beads of diameter d =
40 μm immersed in a water glycerol mixture (21% mass
concentration of glycerol) of viscosity η = 1.8 mPa· s and
density ρ = 1050 kg m−3 matching that of the particles at
a temperature of 23 ◦C. The particles are almost mono-
disperse with a root-mean-square diameter deviation of
less than a few %. For visualization across the gap [16],
suspensions of 40 μm and 60 μm PMMA particles has been
used. The suspension is contained in Hele-Shaw cells of
length L = 100 mm, and of different gap thicknesses H
ranging from 0.3 mm to 1.2 mm; the aspect ratio is larger
than 10.

The oscillating flow of the suspension is induced by a
computer-controlled syringe pump fitted with 2.5 ml glass
syringes. We use a symmetrical square wave variation of
the flow rate. The period T varied from 0.4 s to 10 s; the
lower value is set largely by the limited frequency response
of the tubing and the syringe. The amplitude A of the
mean displacement of the fluid in the cell ranged from
A � 0.5 mm to A = 15 mm with a mean displacement A
in the first half of the period and −A in the other half; the
change of directions of the syringe took place in less than
0.1 s. A few experiments have been performed with a sine
wave variation of the flow rate and a similar instability has
been observed in some cases: it was however less clear-cut
than for square waves, possibly due to the non-constant
velocity between flow reversals.

The cell is horizontal (thickness parallel to the vertical
direction z) and illuminated from below. Images of the

patterns induced by the instability are acquired by a Nikon
D800 camera located at 10 cm above the cell and used in
the movie mode: it captures 25 frames per second with a
1920 × 1080 pixels resolution.

In the experimental procedure, the suspension obtained
after mixing is injected into the Hele-Shaw cell; the unifor-
mity of the transmitted light is a test of the constancy of
the mean concentration (averaged over the cell thickness)
over the whole cell. The reproducibility of the experimen-
tal results requires a well-defined protocol in order to start
from the same initial conditions with a homogenous con-
centration, not only over the whole cell but also across its
aperture. This homogeneity has been tested by a visual-
ization across the gap, using an index-matched suspension
in a fluorescent fluid. The protocol, determined by trial
and error, is to inject slowly the mixed suspension, wait
a few minutes and then start the experiment. An impor-
tant point is also to eliminate all traces of the pattern of
the previous experiment: for this purpose, we induce slow,
large-scale oscillations of the fluid volume. Then, with a
suspension initially at rest, we start the square wave oscil-
lations at the time t0. After a time lapse tc, stripes trans-
verse to the flow appear and reach a stationary shape and
contrast within a few tens of seconds. Figure 1(b) displays
a typical top view of a part of the cell after this stationary
regime has been achieved: the instability is marked by the
appearance of periodic stripes transverse to the flow and
of wavelength λ. These stripes correspond to a modulation
of the transmitted light intensity due to variations of the
particle concentration. As shown by fig. 1(b), the bands
are more visible and straighter in the region of the axis
of symmetry: in order to reduce the influence of the noise
of the image, we average, for a given value of x, the grey
levels of all pixels located within a range of distances of
width Δy ∼ 0.1W centered on the axis. The visibility of
the stripes on the variation curve of this average with x
is enhanced by subtracting out the low-frequency varia-
tion components due, for instance, to the inhomogeneities
of the illumination (these components are estimated by
applying a smoothing filter to the original curve). The
profiles I(x, t) obtained in this way at different times t
are plotted as grey levels in the spatiotemporal diagram
of fig. 2(a). The zigzag structures visible in the diagram
reflect the displacement of the bands along x induced by
the periodic flow; as expected, the segments of the struc-
ture have a linear shape due to the constant value of the
flow rate between flow reversals. Finally, we compute, for
all times t, the autocorrelation function:

F (δx, t) =
∫

I(x, t) × I(x − δx, t) dx. (1)

The function F (δx, t) is plotted as grey levels in the spa-
tiotemporal diagram of fig. 2(b) as a function of time and
of the interval δx. F (δx, t) is symmetrical with respect
to δx = 0 so that only the right part of the diagram is
plotted. The diagram displays alternate bright and dark
vertical bands: their period corresponds to the wavelength
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Fig. 2: (Colour online) (a) Top: spatiotemporal diagram of
the local transmitted light intensities averaged over an inter-
val Δy = 0.1W in the transverse direction (grey level); verti-
cal scale: time; horizontal scale: coordinate x along the flow
direction. (b) Spatiotemporal diagram of the autocorrelation
function F (grey levels) of the profiles of the above figure; ver-
tical scale: time; horizontal scale: interval δx (eq. (1)); the
peaks are separated by one wavelength, λ. (c) Plot of the in-
tensity of the second peak of the autocorrelation function (at
δx = λ = 1.05 mm) vs. time; flow starts at time t0; t1 corre-
sponds to the appearance of the instability; tc = t1 −t0 charac-
terizes the time lapse for the onset of the instability. φ = 0.35,
H = 0.5 mm, T = 1.2 s and A = 2.65 mm.

λ of the variations of the volume fraction induced by the
instability. The visibility of the bands decreases with δx
over a distance which characterizes the spatial correlation
of the stripe pattern: depending on the experiment, it
may range from ∼5λ to ∼30λ. Practically, λ is deter-
mined by plotting the distances δx corresponding to the
different maxima of F as a function of their number in
the sequence and performing a linear regression. With the
protocol we have used, the values of λ are reproducible to
within typically ±10% for a given set of control parame-
ters. As seen in fig. 2(b), the amplitude of the variations
of the autocorrelation function increases with time from
t = t0 onwards. In fig. 2(c), the intensity of the second
peak of the autocorrelation function (δx = λ) is plotted vs.
time (flow starts at t = t0). Time t1 corresponds to the
onset of instability because the appearance of this peak
coincides with that of the periodic structure: as a result,
tc = t1 − t0 measures the time needed for the instability
to develop with an accuracy of a few seconds.

Experimental results. – The control parameters in
these experiments are the particle volume fraction, φ, the
cell thickness, H , the period, T and the peak-to-peak
amplitude A of the mean displacement of the fluid. The
measurements are the wavelength λ of the stripes pattern
and the time tc corresponding to the onset of instability.

Fig. 3: Map of the range of observation of the stripe pat-
tern as a function of the reduced amplitude A/H of the
mean fluid displacement and of the period T . Particle frac-
tion φ = 0.35. Different symbol shapes correspond to gap
values: H = 0.4 mm (�), H = 0.5 mm (�), H = 0.7 mm (♦),
H = 1mm (©). Solid (open) symbols correspond respectively
to experiments in which the instability is (is not) observed.
Grey shades: domains of values of T for which no experiments
were performed.

Let us analyze step by step the influence of each control
parameter.

Particles concentration φ: Instabilities were observed
only for suspensions of large enough volume fraction φ ≥
φmin = 0.25 and up to φ = 0.35. This latter upper limit
of φ reflects the lack of confidence in the uniformity of
the suspension at larger concentrations and the reduced
intensity of the transmitted light which makes the patterns
less visible. In additional experiments, we observed that
a non-zero density contrast between the beads and the
fluid hinders the appearance of the instability rather than
fostering it. For a relative density contrast Δρ/ρ ≥ 3%,
the periodic pattern does not appear any more. In all
experiments discussed below, the density contrast is zero
within 1◦/◦◦ relative accuracy.

Ratio of cell thickness H by sphere diameter d: For the
suspension of d = 40 μm diameter spheres, we observed
the instability pattern for all cell thicknesses except for
H = 0.3 mm (H/d ∼ 7.5). To test this lower bound on the
value of H/d, we used the same type of spheres but with a
larger diameter d = 60 μm: in this case, the instability was
not observed in the 0.4 mm cell and only for H ≥ 0.5 mm.
Therefore, a thick enough cell with H/d ≥ 8 is required for
the instability to occur: this might suggest a continuous
coarse graining.

Amplitude A and period T of fluid displacements: The
instability pattern has been observed in a broad range
of A and T values for different cell gaps and concen-
trations satisfying the conditions discussed above. Note
that the instability was still visible for the shortest pe-
riod T = 0.4 s compatible with our experimental setup:
we cannot therefore determine whether there is a lower
limit to the period for observing the instability. The dia-
gram of existence is displayed in fig. 3 with A/H and T as
vertical and horizontal coordinates. The data points cor-
respond to a volume fraction φ = 35% and to different cell
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Fig. 4: (a) Wavelength λ of the instability pattern vs. the
period T for two different cell gaps: H = 0.4 mm and H =
0.7 mm. Symbol fillings indicate particles volume fractions:
φ = 25% (+); 30% (�), 35% (open symbols). (b) Dimensionless
wavelength λ/H vs. strain deformation ε = A/(H/2) for dif-
ferent cell gaps: 0.4 mm ≤ H ≤ 1.2 mm and volume fractions:
0.25 ≤ φ ≤ 0.35. Symbol fillings: 40 μm polystyrene particles
(open symbols), 40 μm PMMA particles (+), 60 μm PMMA
particles (×). In both graphs (a) and (b), the different symbol
shapes correspond to the same H values as in fig. 3 with, in
addition, (�) for H = 1.2 mm. Error bars reflect the typical
dispersion of the experimental results (±10%) for experiments
using the same set of control parameters.

gaps: 0.4 mm ≤ H ≤ 1 mm. As shown in this figure, for all
periods used (T ≤ 10 s), the instability only occurred in
a finite range of amplitudes (Ac ≤ A ≤ Al) with both an
upper limit and a non-zero lower one. The domain of exis-
tence of the instability seems to become slightly narrower
as T increases from 1 to 10 s.

Dependence of the wavelength λ on T and A: Fig-
ure 4(a) displays the variation of the wavelength λ of the
instability pattern with the period T of the flow for two
different gap thicknesses H = 0.4 mm and H = 0.7 mm
and for similar ranges of strain deformations ε in both
cases (respectively 9 � ε � 12.5 and 6.5 � ε � 12.5);
here, and in the following, the mean strain deformation
during one half-period is taken equal to ε = 2A/H in or-
der to take into account the symmetry of the Poiseuille
profile. The wavelength is independent of T and the ratio
λ/H � 2 ± 0.2 is similar for both thicknesses. In view of
these results, we have plotted in fig. 4(b) for different H
and φ the dimensionless wavelength, λ/H as a function
of ε. Comparing figs. 4(a) and (b) shows that using the
dimensionless variable λ/H instead of λ improves the col-
lapse of the data corresponding to different gaps H and
validates the use of H as the scaling variable for λ. This
collapse is retained at all values of A when the deforma-
tion ε is used as the horizontal scale: the slow increase of
λ with ε may be fitted by λ/H � 1.2 + 0.08ε (dashed line
in fig. 4).

Characteristic time lapse tc for the appearance of the in-
stability: In the experiments for which the instability has
been observed, we measured the characteristic time lapse
tc before its appearance (see fig. 2(c)) for different H , T
and A values. In order to characterize the onset of the
instability by a dimensionless expression, we have stud-
ied the variations of the ratio T/tc (instead of tc) repre-
senting the inverse of the number Nc of oscillations above

0.1
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151050
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800
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0
151050 ε

2Ncε

Fig. 5: Main graph: evolution of 1/Nc = T/tc (inverse of the
number of flow periods before the appearance of the instability
pattern) with the deformation ε during one half period. Dashed
line: linear fit with the data (see text). Insert: variation with ε
of the total accumulated deformation 2 Nc ε at the onset of the
instability. Horizontal dashed line: linear fit to the data (see
text). In both graphs, symbol shapes have the same meaning
as in figs. 3 and 4. Symbol fillings correspond to the periods:
T = 0.8 s (solid symbols), 1.2 s (open symbols), 1.8 s (+), 2.4 s
(�), 4.8 s (×).

which the instability becomes visible. In fig. 5, we plot
1/Nc vs. the characteristic deformation ε defined above.
We observe that 1/Nc follows a roughly linear increas-
ing trend as a function of ε with a similar proportionality
coefficient for all values of H and T used here so that
1/Nc � 0.005 ε. This means that the minimum total de-
formation of the sheared suspension accumulated over Nc

periods for observing the instability is 2 Nc ε � 400 (see in-
sert). If, for further use, we assume that 1/tc scales like the
instability growth rate σ, we obtain: σ � 1/tc � 0.0025 γ̇,
where γ̇ = 2ε/T is an effective shear rate.

Observations across the gap: particle migra-
tion and nature of the instability. – Using the setup
of fig. 1, we have analyzed the global features of the
instability, like its diagram of existence and the depen-
dence of its wavelength on the experimental control pa-
rameters. However, in order to understand the physical
process(es) at work, more local experimental observations
and measurements are needed. For that purpose, we study
now the time dependence of the distribution of the particle
concentration across the gap of the cell during the devel-
opment of the instability. In order to observe this concen-
tration variation, we use both a PMMA cell and PMMA
particles of diameter 40 μm and concentration: 35% im-
mersed in a fluid of the same density and refractive index
as PMMA [16]. We dissolve a fluorescent dye (rhodamine)
in the fluid and illuminate the cell with a green laser sheet
(532 nm) perpendicular to the cell walls and parallel to
the plane (x, y) in fig. 1. The camera axis is parallel to the
axis y so that it maps the particle concentration variations
across the gap inside the illuminated plane (a higher fluo-
rescence intensity corresponds to a smaller concentration
of the non-fluorescent particles).
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Fig. 6: Development of the instability across the gap of a
cell with H = 1.2 mm illuminated by a thin plane light sheet
(T = 1.2 s, A = 5mm). All images are snapshots of the flu-
orescence intensity in the cell gap: brighter zones correspond
to a lower particle concentration. Graph (a): development of
the instability with the time t elapsed after the pump is set in
motion with a weak segregation in the initial state. Graph (b):
development of the instability with a strong initial depletion
of the particles in the center of the gap (bright band in the
middle) and an initial accumulation near the walls.

Both figs. 6(a) and (b) display a series of snapshots
showing the development of the instability with time start-
ing from the initial distribution when the pump is started
(upper pictures); fig. 6(a) corresponds to an initial dis-
tribution obtained using our standard experimental pro-
cedure and does not display a clear segregation of the
particles in the gap (the light intensity is similar near
the walls and in the center of the gap). In the series of
fig. 6(b), instead, there is in the initial state (top image) a
strong depletion of the particles in the middle of the gap
(straight bright band) and a strong accumulation near the
walls (dark regions). The relative maximum difference
between the intensities of fluorescence in the bright and
dark zones is found to be of the order of 15%. Assuming
a roughly linear relation between the light intensity and
the fraction of liquid and multiplying by the mean liquid
volume fraction 1 − φ = 0.65, this provides a rough esti-
mation Δφ ∼ 10% of the concentration contrast between
the vicinity of the walls and the center of the gap in this
particular experiment.

In the first series (a), the second picture (t = 60 s) dis-
plays a band of slightly lower concentration in the gap.
This band is more visible and oscillates at t = 88 s while
accumulation zones appear near the walls. Both the wavi-
ness of the band of lower concentration and the particle
accumulation in regions close to the walls are strongly am-
plified at t = 100 s. It is difficult to determine the relative
contributions of the development of the instability and of
the segregation process.

In the second series of pictures (fig. 6(b)), there is in-
stead a strong initial segregation with a depletion of par-
ticles in a narrow stripe (width ∼H/4) in the middle of
the gap. This stripe displays already waviness at t = 40 s
which grows to a large amplitude at t = 60 s and develops
finally into a cellular structure (t = 100 s).

These two observations of the distribution of the par-
ticle concentration across the gap suggest therefore an

instability scenario of particles migration towards the wall
followed by (or associated with) an instability due to par-
ticle concentration gradients with a higher concentration
at the walls.

Discussion and interpretation. – From the present
results, particle migration from the middle of the gap to
the walls is likely to be the key condition for observing
the stripes instability. Migration of particles in flowing
suspensions has been observed for a long time [1,17,18]. In
continuous pressure-driven flows in a pipe, the migration
is from the walls towards the center [19] or, more pre-
cisely, from the high shear regions close to the walls to
low shear region towards the pipe center line. This effect
was modeled using the so-called shear-induced migration
model [1,2] or by introducing normal stresses within the
flowing suspension [3,20]. When a suspension is oscillat-
ing in a pipe, “anomalous” migration of particles from the
center to the walls was predicted [21] and confirmed exper-
imentally [4]. For large strains, the “normal” migration
to the center is recovered. In our experiments we also
observed this anomalous migration (leading to the stripes
instability) for deformations smaller than ε ≤ 15. These
instabilities are however only observed up to a maximum
deformation (fig. 3) which may reflect the approach of a
change of migration mode; this is consistent with “nor-
mal” migration from the walls towards the center observed
for continuous flows. In our experiments, the instabil-
ity is observed for strains ε ≤ 15–20 much larger than
those (ε ≤ 0.1–0.2) used in previous numerical [21] and
experimental [4] works (in this latter case in a cylindrical
geometry).

The remaining question to address is the mechanism
responsible for the instability of this anomalous spatial
distribution leading to the stripes pattern (fig. 6(b)). A
similar question was addressed for the instability of the
interface between non-Newtonian fluids by Brady and
Carpen [6]. At the interface between the two fluids, owing
to their rheological properties, the normal stresses per-
pendicular to the interface need not be continuous; as a
result, if the initially flat interface is perturbed, the mis-
match of the normal stresses creates a traction that can
destabilize the interface. The second normal stress dif-
ference (N2 = σzz − σyy) governs the instability compo-
nents transverse to the flow while the first normal stresses
difference (N1 = σxx − σzz) governs perturbations in
the flow direction; the latter issues were also analyzed
for elastic fluids [5]. A necessary condition [5,6] for ob-
serving an instability in the flow direction is to have a
larger N1 close to the wall than in the middle, namely
N1(z = 0) = N1(z = H) > N1(z = H/2). However,
for concentrated suspensions, the magnitude and the sign
of N1 are still under debate [6,13,14]. Recent experi-
ments [13] and numerical simulations [14] in dense suspen-
sions predict a positive value of N1 increasing with the
particle volume fraction (∂N1/∂φ > 0) and almost pro-
portional to the shear rate (γ̇). Note that, in a Poiseuille
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flow, the shear rate is larger at the wall than in the middle
of the gap. In the experiments for which the instability
was observed across the gap (fig. 6(b)), the particle con-
centration is larger at the wall than in the middle of the
cell (φ(z = 0 orH) > φ(z = H/2)). Hence, for a positive
N1 increasing with both the shear rate and the concen-
tration, one has N1(z = 0 orH) > N1(z = H/2) which
promotes the instability in the flow direction [5,6]. The
experimental variation of the growth rate with the shear
rate, σ � 1/tc � 0.0025 γ̇ is coherent with the expected
theoretical prediction [6].

Conclusion. – We have analyzed experimentally the
behavior of a non-Brownian, iso-dense suspension of
spheres submitted to periodic square wave oscillations of
the flow rate (period T and amplitude of the fluid dis-
placement A) in a Hele-Shaw cell of gap H . We do observe
an instability of the initially homogeneous concentration
in form of concentration variation stripes transverse to
the flow. The wavelength of these regular spatial struc-
tures scales roughly as the gap of the cell and is inde-
pendent of the particle concentration and of the period of
oscillation. This instability requires large enough particle
volume fractions φ ≥ 0.25 and a gap large enough com-
pared to the spheres diameter (H/d ≥ 8); it is observed in
a rather broad range of periods of the square wave and
for amplitudes of the fluid displacement between lower
and upper bounds. The analysis of the particle concen-
tration distribution across the gap supports a two steps
scenario of the instability: migration of the particles to-
wards the cell walls followed by an instability due to the
concentration gradient across the gap. Recent measure-
ments of the first normal stresses difference [13,14] and the
theory of longitudinal instability due to the first normal
stresses difference [6] account reasonably for our experi-
mental observations. More quantitative comparisons will
require further measurements of the concentration across
the gap as well as of the particle distribution function in
order to estimate N1(z). It will also be important to in-
vestigate further the influence of small density contrasts
on the instability. This instability might be described in
the spirit of what is done for miscible fluid interfaces [22]
by introducing a pseudo-interface.
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