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A B S T R A C T

When subjected to some anti-plane shear mode III loading, segmentation of the crack front
frequently occurs during propagation: even if the crack is initially planar, propagation produces
facets/segments rotated toward the shear free direction. Here, we examine, both experimentally
and theoretically, the effect of this microstructure on the effective macroscale brittle fracture
toughness. Experiments performed on PMMA beams reveal that the critical load leading to
abrupt rupture increases with mode III to mode I ratio. This apparent macroscopic toughening
is usually taken into account by invoking a specific mode III toughness in addition to the mode
I one. By applying thoroughfully a micro/macroscale Cohesive Zone (CZ) model that we have
recently developed, we demonstrate that an additional material constant is useless here since
this toughness increase can be attributed mainly to the presence of the facets at the microscale,
whose geometry can be anticipated to depend on the classical mode I material constants. More
precisely, two related physical mechanisms are generated due to the formation of a disconnected
crack front: (i) changes in fractured surface area in comparison to a straight propagation, and
(ii) crack shielding caused by the facets that reduce the effective crack opening. While the
first effect is obvious to quantify, we show that the second plays an essential role but is more
complex to take into account: it depends on the solution of the three-dimensional elasticity
problem in presence of the facets, that is considered in the CZ model. We illustrate on the
experiments how to use this approach in practice to determine the critical fracture threshold.

Working toward the sustainability of materials is an undeniable, albeit indirect, way to reduce our carbon footprint. Lifetime
redictions of industrial components (aircraft, power-plants, railways. . . ) are often greatly underestimated. While usually safe,
oo frequent replacements of components is a waste of energy and material. One source of the underestimation comes from
implifications made in the actual models, especially on the geometry of the crack (Lazarus, 2003, 2011). Here, we focus on the
tudy of surface topology effect, generated by mode I+III loading conditions, on crack propagation. In this case, appearance of
nclined facets within fracture surfaces demonstrates the need for a 3D picture.

Patterns on broken surfaces are well-known from everyday experience, but surprisingly, how and why they form are wide-open
uestions, notably when a pre-existing crack or fault is subjected to some anti-plane shear/torsion mode III loading. This situation
ccurs in engineering: turbines (Fremy et al., 2014), wind power plant, railway (Bonniot et al., 2018), but also in the Nature: stick–
lip earthquake (Cambonie et al., 2019), bone fracture. Segmentation of the crack front then frequently occurs during propagation:
ven if the crack is initially planar with a straight front, both the crack front and surfaces become distorted as propagation occurs,
hen some facets (also known as segments or echelons) orientated toward the shear free direction appear and further coalesce during
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Fig. 1. Facets formation and coalescence as observed by transparency in fatigue bending experiments performed on PMMA (Chen et al., 2015; Cambonie
et al., 2019; Lazarus et al., 2020). Columns a, b: In-situ pictures of the facets in three different samples (named 16, 17, 18) observed at increasing stages of
the propagation outlining the facet apparition and further coalescence: (a) Perspective view; (b) Bottom (first row) and front views (second row). Column c:
postmortem picture of the fracture facies; the black surface corresponds to the fracture surface left by the facets and the white lines to the ultimate fracture of
the ligaments between them. The bar scales are all 1 mm.

propagation (Palaniswamy and Knauss, 1975; Hull, 1995; Lazarus et al., 2008). First disconnected, the ligaments between the facets
are broken in a second step. An example of the formation of those facets, their further coalescence and a postmortem picture of the
fracture surface are given in Fig. 1.

This phenomenon appears (i) in a large set of materials: metals (Eberlein et al., 2017), polymers (Lazarus et al., 2008; Lin et al.,
2010), glass (Sommer, 1969), cheese (Goldstein and Osipenko, 2012), soft matter (Ronsin et al., 2014), rocks (Pollard et al., 1982),
tectonic plates (Cambonie et al., 2019); and (ii) from the scale of metallic grain boundaries (Qiao and Argon, 2003; Lambert-Perlade
et al., 2004; Andrieu, 2013) to the kilometer geological scales (Pollard et al., 1982) through the lab (Lazarus et al., 2008) and
engineering structures scales (F., 2012). It occurs both in fatigue (Lazarus et al., 2008), under cyclic loading, and above the brittle
fracture threshold (Goldstein and Osipenko, 2012; Lin et al., 2010; Pham and Ravi-Chandar, 2016). As in the experiments of Fig. 1,
the facets generally coalescence during propagation by screening of every other facet (Pons and Karma, 2010; Chen et al., 2015;
Pham and Ravi-Chandar, 2017) with a few exceptions (Sommer, 1969; Wu et al., 2007).

Even if initially planar with a straight front, why does the crack follow such a tortuous path instead of a simple straight and
planar one once mode III loading is applied? The debate is not completely over, and it will not be the topic of this paper, but
basically it is linked to a blend of (i) energy minimization principles that favor the formation of tilted facets rotated toward the
shear free direction (Lazarus et al., 2001a,b; Hull, 1995; Pollard et al., 1982), triggered by (ii) inevitable imperfections that act
as spots where the nucleation and the segmentation instability initiate (Pons and Karma, 2010; Leblond et al., 2011; Leblond and
Lazarus, 2015; Chen et al., 2015; Pham and Ravi-Chandar, 2017; Doitrand and Leguillon, 2018; Leblond et al., 2019; Vasudevan
et al., 2020).

Toughening during mixed mode fracture is a common observation. For instance, an increase of fracture resistance with the
amount of mode II versus mode I is generally reported for mode I+II interfacial crack propagation (Cao and Evans, 1989). In this
case, in addition to plastic and viscoelasticity dissipations, reduction of the sliding crack opening caused by the contact zones along
the unavoidable rough interface has been evidenced to play an important role (Liechti and Chai, 1992; Zebar et al., 2020). This last
effect, called crack shielding in Evans and Hutchinson (1989) reduces the apparent energy release rate. Similarly, toughening induced
by the presence of mode III has been reported in several experiments (Davenport and Smith, 1993; Liu et al., 2004; Lin et al., 2010;
Eberlein et al., 2017) and may be related to the propagation of the disconnected facets. To test the pertinence of this correlation, the
apparent macroscopic energy release rate has to be related to the microscale of the facets. This is precisely the aim of a two-scale
Cohesive Zone (CZ) approach that we have recently developed (Leblond et al., 2015; Lazarus et al., 2020). Comparing this approach
with 4 points bending experiments, we demonstrate that the toughening due to the presence of mode III can be attributed to the
sole change of geometry induced by the facets without invoking (Lin et al., 2010; Leblond et al., 2019) a specific mode III fracture
toughness in addition to the mode I value. The shape of the facets comes in through two ways: modification of the fracture surface
area and crack shielding. The last is both similar to the shielding described for mode I+II in Evans and Hutchinson (1989), in
the sense that out-of-plane asperities are responsible of the reduction of the crack opening in either case, but also different in the
sense that the decrease of the opening is induced by the unbroken ligaments between the facets in mode I+III and by contact zones
between the surface asperities in mode I+II.

While the change in surface area is easy to take into account, the crack shielding induced by the facets in mixed mode I+III calls
for a three-dimensional approach. It can be studied by the following two-scale micro/macro view. Assume, as usually observed,
that facets appear at a small scale along the crack front. At a larger scale, once they have emerged, the crack advance corresponds
to the propagation of the most advanced tips of these segments. By de-zooming sufficiently, the picture is the one of a coplanar
equivalent extension, encompassing the facets, with a straight front connecting their most advanced points. Due to partial breaking
of the material, the opening of this effective front and its Energy Release Rate (ERR) for a given loading, are lower than if the
2
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Fig. 2. Sketch and notations of the initial crack and the facet formation: decomposition of the initial 3D problem (a) in two 2D problems: at the microscale
(obtained by rescaling 𝑋 and 𝑌 axis by 𝑋∕𝜂 and 𝑌 ∕𝜂, with 𝜂 ≡ 𝑑∕𝑎 → 0), the facets appear as an array of parallel echelon cracks subjected to remote stresses
(b); at the macroscale, they are embedded in a cohesive zone (c).

extension was smooth and coplanar. Consequently, it yields an increase of the apparent brittle fracture toughness at the macroscale,
that we aim to bring out in this paper by interpreting some new experimental results in the light of a recent Cohesive Zone two-scale
approach (Leblond et al., 2015; Lazarus et al., 2020).

The main ideas and equations of this model are recalled in Section 1. The experiments, performed using a 4 points bending setup
and Poly(methyl methacrylate) polymer (PMMA) samples are presented in Section 2. We measure the crack geometry on the broken
samples following the procedure described in Cambonie and Lazarus (2014) and use the data as inputs in the CZ model. In this
way, we obtain a critical loading in agreement with the experiments (Section 3). This demonstrates that the increase of the fracture
threshold observed experimentally (i) can be attributed to the apparition of facets that require higher load to propagate and (ii) can
be evaluated by the CZ model from the knowledge of the facet geometry. This roots the understanding of the observed toughening
at the microscale and shifts the difficulty to the determination of the facet geometry. In Section 4, some ways to determine this
geometry and the main physical mechanisms involved in the toughening are discussed.

1. Cohesive zone model

1.1. Principle of the method

In presence of mode III, some facets (Fig. 1), nucleate along the crack front at the microscale. This changes the effective loading
that makes them advance deeper into the material. The idea of the model developed by Leblond et al. (2015) in the framework
of Linear Elastic Fracture Mechanics, is to embed the facets in a Cohesive Zone at the macroscale, its advance being ruled by
some effective loading at its tip, that depends on the geometry of facets. Assuming that the spacing between the facets is small in
comparison to their length, i.e. that 𝜂 ≡ 𝑑∕𝑎 ≪ 1, a closed form solution can be found using matched asymptotic expansions.

More precisely, consider a planar and straight crack subjected to mode I+III remote loading yielding uniform Stress Intensity
Factors (SIF) 𝐾𝐼 , 𝐾𝐼𝐼𝐼 along its front (Fig. 2a). When 𝜂 → 0, the facets can be considered as a bi-dimensional periodic array of
ilted cracks at the microscale (internal problem, Fig. 2b) and as a growing CZ at the macroscale (external problem, Fig. 2c) whose
ropagation is ruled by the effective SIF 𝐾𝑒𝑓𝑓

𝐼 , 𝐾𝑒𝑓𝑓
𝐼𝐼𝐼 at the tip of the Cohesive Zone. Notice that this tip corresponds to the position

f the line connecting the position of the most advanced points of the facets, so that its propagation corresponds in fact to the
rowth of the facets in the 𝑋 direction. The picture at the macroscale is obtained by zooming out, the facets then appear to be
ncompassed in the cohesive zone. Details of the method are complex and given in Leblond et al. (2015). Here we give only a rough
icture of the method and recall the equations necessary for the determination of 𝐾𝑒𝑓𝑓

𝐼 , 𝐾𝑒𝑓𝑓
𝐼𝐼𝐼 , the dimensionless input parameters

eing the Poisson ratio 𝜈, the geometry of the facets (𝜂, 𝓁∕𝑑, 𝛼) and the initial mode mixity ratio 𝐾𝐼𝐼𝐼∕𝐾𝐼 .

.2. Determination of 𝐾𝑒𝑓𝑓
𝐼 , 𝐾𝑒𝑓𝑓

𝐼𝐼𝐼

The opening of the cohesive zone would be larger if it was completely broken than partially by facets. This explains why the
ffect of the facets appear in the matched asymptotic expansions as some additional surface tractions ±[𝑝(𝑋)𝐞𝑌 +𝑞(𝑋)𝐞𝑍 ] exerted on
he faces of the CZ. These additional pinning forces decrease the effective loading at the crack front and yield lower than nominal
IF at the crack tip of the cohesive zone:

⎧

⎪

⎪

⎨

⎪

⎪

𝐾𝑒𝑓𝑓
𝐼 =

√

2
𝜋 ∫

𝑎

0
𝑝(𝑋) d𝑋

√

𝑎 −𝑋

𝐾𝑒𝑓𝑓
𝐼𝐼𝐼 =

√

2
𝜋 ∫

𝑎
𝑞(𝑋) d𝑋

√
.

(1)
3

⎩

0 𝑎 −𝑋
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The corresponding energy release rate can be obtained using Irwin (1958)’s formula:

𝐺 = 1 − 𝜈2

𝐸

(

𝐾𝐼
2 + 1

1 − 𝜈
𝐾𝐼𝐼𝐼

2
)

and 𝐺𝑒𝑓𝑓 = 1 − 𝜈2

𝐸

(

(𝐾𝑒𝑓𝑓
𝐼 )2 + 1

1 − 𝜈
(𝐾𝑒𝑓𝑓

𝐼𝐼𝐼 )
2
)

. (2)

In Fig. 2a, the facets are sketched before any possible coalescence and the notations 𝑎, 𝓁, 𝑑, 𝛼 describing their geometry are
introduced. Afterward, two situations may arise: (i) The facets propagates keeping 𝑑 constant; (ii) The facets progressively coalesce
(as in Fig. 1), implying that the distance 𝑑 between them increases with 𝑎. Assuming that 𝛼 and 𝓁∕𝑑 are constant along the facets,
he additional surface tractions 𝑝(𝑋) and 𝑞(𝑋) on the CZ (for 𝑋 ∈ [0, 𝑎]) can be obtained by a set of equations, that depends whether
oalescence has occurred or not:

• Without coalescence, 𝑑 is independent of 𝑋, 𝑝(𝑋) and 𝑞(𝑋) for 𝑋 ∈ [0, 𝑎] can be obtained by solving the following equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪
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(22 + 2𝜈12)
d𝑝
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− 23
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𝜋𝜂𝑎
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0
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2
√
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0
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2
√

2𝜋 𝑋3∕2
.

(3)

• With coalescence, that we assume to be at a constant rate, 𝑑∕𝑎 = 𝜂 whatever 𝑋, the equations become:
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+
𝑝
𝑋

)

+ 33

(

d𝑞
d𝑋

+
𝑞
𝑋

)

+ 1
𝜋(1 − 𝜈)𝜂𝑋

𝑃𝑉 ∫

𝑎

0
𝑞(𝑋′)

√

𝑎 −𝑋′

𝑎 −𝑋
d𝑋′

𝑋′ −𝑋

= −
(23 + 2𝜈13)𝐾𝐼 −33𝐾𝐼𝐼𝐼

2
√

2𝜋 𝑋3∕2
.

(4)

In both cases, these integro-differential equations on 𝑝(𝑋) and 𝑞(𝑋) have to be completed by the following boundary condition:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝(𝑎) =
𝐾𝐼

√

2𝜋𝑎

𝑞(𝑎) =
𝐾𝐼𝐼𝐼
√

2𝜋𝑎
.

(5)

The factors 𝑝𝑞 are linked to the behavior of the CZ, hence to the geometry of the facets in the inner problem, implying that
𝑝𝑞 = 𝑝𝑞(𝛼,𝓁∕𝑑). The plots of 𝑝𝑞(𝛼) for several values of 𝓁∕𝑑 deduced from Lazarus et al. (2020) are given in Appendix A. Their
definition is also recalled in there. Rewriting Eqs. 3 or (4), and Eqs. (1) and (2) on the following dimensionless quantities 𝑋∗ = 𝑋

𝑎 ,

𝑝∗ = 𝑝
√

2𝜋𝑎
𝐾𝐼

, 𝑞∗ = 𝑞
√

2𝜋𝑎
𝐾𝐼

, it becomes clear that 𝑝∗, 𝑞∗ and thus 𝐺𝑒𝑓𝑓∕𝐺 are functions of 𝛼,𝓁∕𝑑, 𝜂, 𝐾𝐼𝐼𝐼∕𝐾𝐼 , 𝜈.

1.3. Application to the determination of the fracture threshold

Suppose that the fracture energy cost per unit surface, 𝐺𝑐 , is independent of the mode mixity, that is the same in pure mode I
than in mode I+III. Following Griffith criterion, the crack is able to propagate only if the energy release rate equals 𝐺𝑐 . In a three
dimensional setting, this condition has to be fulfilled locally at each point of the crack front line. The surface fracture energy 𝐺𝑐 is
linked to the mode I fracture toughness 𝐾𝑐 by 𝐺𝑐 =

1−𝜈2
𝐸 𝐾2

𝑐 . These quantities are classical material constants which are known for
wide range of materials (Ashby, 1989).

Consider a straight crack front subjected to uniform mixed mode I+III loading, through some remote force 𝐹 applied somewhere
on the boundary of the body. We suppose that propagation occurs in two steps: First, facets appear; Second the facets advances
once a peak load 𝐹𝑐 is reached until the final breakage of the specimen. At this point, we assume (i) that the advance of all the
points along the facets is ruled by Griffith threshold 𝐺𝑐 ; (ii) that no ligaments between the facets has formed that would induce
an additional energy penalty (Lin et al., 2010). We aim here to compare 𝐹𝑐 with the threshold 𝐹0 required for uniform coplanar
4
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Determination of 𝐹0 Denote 𝐾 (1)
𝐼 , 𝐾 (1)

𝐼𝐼𝐼 the SIF and 𝐺(1) the energy release rate along the initial crack for a unit force 𝐹 = 1. Then,
using the linearity of 𝐾𝐼 and 𝐾𝐼𝐼𝐼 with 𝐹 , together with Irwin’s formula (Eq. (2)), the loading 𝐹0 required to trigger coplanar
propagation verifies 𝐹 2

0𝐺
(1) = 𝐺𝑐 =

1−𝜈2
𝐸 𝐾2

𝑐 that is

𝐹 2
0 =

𝐺𝑐

𝐺(1)
=

𝐾2
𝑐

(𝐾 (1)
𝐼 )2 + 1

1−𝜈 (𝐾
(1)
𝐼𝐼𝐼 )

2
(6)

Determination of 𝐹𝑐 Once facets appeared, the propagation of the crack in the direction 𝑋 corresponds to the advance of the tips
of the facets in this direction. In the external problem of the CZ model, these tips correspond to the tip of the CZ and 𝐺𝑒𝑓𝑓 to
their effective energy release rate. Taking into account that the effectively broken surface is 𝓁 over one period 𝑑, we obtain
𝐹 2
𝑐 𝐺𝑒𝑓𝑓

(1)𝑑 = 𝓁𝐺𝑐 where 𝐺𝑒𝑓𝑓
(1) is the effective fracture energy for 𝐹 = 1, so that:

𝐹 2
𝑐 = 𝓁

𝑑
𝐺𝑐

𝐺𝑒𝑓𝑓
(1)

(7)

From Eqs. (6) and (7), it follows that

𝐹𝑐
𝐹0

=

√

𝓁
𝑑

𝐺(1)

𝐺𝑒𝑓𝑓
(1)

=

√

𝓁
𝑑

𝐺
𝐺𝑒𝑓𝑓

, (8)

the last equality being justified by the independence of 𝐺
𝐺𝑒𝑓𝑓

with the applied force.

We have observed in Lazarus et al. (2020) that even if 𝑝 and 𝑞 depends on 𝜈, its influence on 𝐺𝑒𝑓𝑓 is weak. The ratio 𝐹𝑐∕𝐹0 can
thus in practice be determined from the knowledge of the facet geometry (𝛼, 𝑑∕𝑎, 𝓁∕𝑑) and the mixity factor 𝐾𝐼𝐼𝐼∕𝐾𝐼 , by

1. determining the solution 𝑝, 𝑞 of Eqs. (3) or (4) completed by the boundary conditions Eq. (5);
2. inserting this solution into Eqs. (1), Irwin’s formula (Eq. (2)) and finally Eq. (8).

Eq. (8) highlights that two terms contribute to the difference between 𝐹𝑐 and 𝐹0: the ratio of broken surface 𝓁∕𝑑 and 𝐺∕𝐺𝑒𝑓𝑓 .
While 𝐺∕𝐺𝑒𝑓𝑓 is related to the solution of the elasticity problem depicted in Fig. 2, 𝓁∕𝑑 is a contribution capturing the difference
in fracture costs correlated to the broken surface area. Since 𝐺∕𝐺𝑒𝑓𝑓 is always greater than 1 due to the pinning forces induced by
the ligaments between the facets (Leblond et al., 2015; Lazarus et al., 2020), it always participates to an increase of the apparent
toughness. In contrary, the first contribution 𝓁∕𝑑 induces an increase only if 𝓁∕𝑑 ≥ 1, that is the surface broken by the facet is larger
than a coplanar propagation would induce.

2. Experimental evidence of toughening induced by the facets

2.1. 4 point bending experiments with an inclined notch

As in some of our previous studies (Lazarus et al., 2008; Chen et al., 2015; Cambonie et al., 2019), experiments are carried out
using cast 1 PMMA2 beams and a traditional four point bending setup (Fig. 3). The beams of length 𝐿 = 50 mm have a squared
cross-section of width 𝑊 = 10 mm. An initial slit is manufactured by micro-milling (diameter 400 μm) and further sharpened by
pushing a razor blade inside the gap controlling the applied load by a mechanical testing machine. The length of the added sharp
notch is approximately 1/10 of the total length 𝑎0 of the crack. The residual stresses introduced by this process, are relaxed by
heating. More details about the manufacturing of the samples are given in Appendix B. To introduce some amount of mode III, the
crack is tilted with an angle 𝛤0 from the mode I central plane of symmetry (that corresponds to 𝛤0 = 0). When 𝛤0 increases, the
amount of shear mode III increases.

The sample is centered thanks to a 3D printed support, in an Instron 4 point bending device (Instron 5882 mounted with 1 kN
force sensor). The distance between the upper loading points is fixed to 𝐿1 = 40 mm and between the lower supporting points
𝐿2 = 20 mm. An increasing displacement at a loading velocity 𝑉 = 0.1 mm⋅s−1 or 𝑉 = 0.2 mm⋅s−1 is applied (without visible impact
f 𝑉 on our results) until the sample breaks abruptly into two pieces at a critical force 𝐹𝑐 (see Fig. 3 for a typical loading curve).
e perform experiments for different values of 𝑎0 = 2, 3, 4 mm and tilting angle 𝛤0 ranging from 0 to 30◦. For each experiment, 𝐹𝑐

is measured as the maximum load. The evolution of 𝐹𝑐 with 𝛤0 for different values of 𝑎0 is given in Fig. 4. One notices an increase
of 𝐹𝑐 with 𝛤0 and a decrease with 𝑎0. The different symbols used for the points are linked to different types of fracture surface
morphologies that will be defined below, in Section 2.3.

1 Obtained by casting the polymer. This fabrication process guaranties that the material is isotropic, in contrary to PMMA obtained by extrusion which is in
general anisotropic.

2 Two brands of PMMA Vacour or Abaqueplast have been used with no noticeable difference in the results.
5



Journal of the Mechanics and Physics of Solids 156 (2021) 104596M.L. Hattali et al.
Fig. 3. (a–b) Geometry and nomenclature of the loading conditions for the notched four-point bending specimen. The (𝑋0 , 𝑌0 , 𝑍0) directions are linked to the
sample orientation. A local axis system (𝑋 = 𝑋0 , 𝑌 , 𝑍) is associated with the crack front that is tilted with an angle 𝛤0 with respect to 𝑋0. When the crack front
is aligned with the pure mode I direction, 𝛤0 = 0. When 𝛤0 ≠ 0, some mode III contribution appears and induces the formation of facets tilted by an angle 𝛼
toward the shear free direction. Axes and angle notations are chosen so that 𝛼 > 0, 𝐾𝐼𝐼𝐼 > 0 when 𝛤0 > 0. (c) Typical experimental loading curves with a linear
increase of the force with the applied displacement until the final breakage of the sample.

Fig. 4. Maximum load 𝐹𝑐 measured for several values of 𝛤0 and 𝑎0.
6
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Fig. 5. Fracture surfaces as observed by numerical microscopy. 𝛤0 = 8◦ corresponds to Type A, for 𝛤0 = 15◦ to Type C, for 𝛤0 = 30◦ to Type B.

2.2. Finite Element calculation of the Stress Intensity Factors

The evolution of the Stress Intensity Factors (SIF) 𝐾𝐼 (𝑍), 𝐾𝐼𝐼 (𝑍), 𝐾𝐼𝐼𝐼 (𝑍) along the crack front are computed by Finite Elements
in the frame (0, 𝑋, 𝑌 , 𝑍) defined in Fig. 3b, for different values of 𝛤0 and 𝑎0. Software Abaqus relying on interaction integrals (Shih
and Asaro, 1988) is used. These functions 𝐾𝐼 (𝑍), 𝐾𝐼𝐼 (𝑍), 𝐾𝐼𝐼𝐼 (𝑍) are given in Appendix C for some selection of 𝑎0 and 𝛤0. For
symmetry reasons, 𝐾𝐼𝐼 is an odd function of 𝑍, hence 𝐾𝐼𝐼 (𝑍 = 0) = 0 (the origin 0 of the frame is defined in Fig. 3). Also in a wide
zone in the middle of the front, 𝐾𝐼𝐼𝐼∕𝐾𝐼 is almost constant and 𝐾𝐼𝐼∕𝐾𝐼𝐼𝐼 remains small. In the sequel, we choose to quantify the
mode mixity 𝐾𝐼𝐼𝐼∕𝐾𝐼 by the value 𝐾𝐼𝐼𝐼∕𝐾𝐼 (𝑍 = 0). We get a remarkable fit with the FE values using:

𝐾𝐼𝐼𝐼
𝐾𝐼

≡
𝐾𝐼𝐼𝐼
𝐾𝐼

(𝑍 = 0) ≃ 𝜅 𝑎−0.40 tan𝛤0 (9)

with 𝜅 = 0.95 mm0.4

2.3. Fracture patterns

In these experiments the fracture occurs abruptly once the threshold is reached, so that in-situ observation of the propagation
path is impossible contrary to the experiments of Fig. 1 that were performed on similar specimens (same material and geometry)
but under cyclic loading (Chen et al., 2015). Looking at the broken samples, three types of fracture patterns can be observed (Fig. 5)
corresponding either to:

Type A The formation of a factory roof surface along the whole crack front with river lines that coalesce during propagation. These
features are similar to the ones observed during fatigue crack propagation (Fig. 1c) and are the traces left by the formation
of the facets and the further rupture of the ligaments between them (Lin et al., 2010). These facets are pictured by the case
𝛤 = 8◦ on the left of Fig. 5.

Type B The failure of the sample into two pieces by the propagation of a new crack initiating from one single point randomly
located along the crack front. No facets apparition along the initial front is observed. This feature is illustrated by the case
𝛤 = 30◦ on the right of Fig. 5.

Type C A blend of the two precedent patterns: factory roof patterns along some part of the front, while the other part is broken
by a plane which is not in continuity with the initial crack front, as can be observed on the case 𝛤 = 15◦ in the middle of
Fig. 5.

In Fig. 4, the symbols refer to these different types. One can notice that:

• below a value 𝛤𝑐 ≃ 13◦–15◦, all samples are of type A.
• for larger values of 𝛤0, different types coexist for the same value of 𝑎0 and 𝛤0 (see for instance 𝑎0 = 2 mm and 𝛤0 = 15◦).

We have also done some preliminary experiments for other values of 𝑊 , namely 𝑊 = 12, 15, 20 mm, keeping the aspect ratio of the
samples, and noticed no significative effect on 𝛤 .
7
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Fig. 6. Outline of the procedure to get the tilt angle 𝛼 and the coarsening rate 𝜂 from the fracture surface measured using a profilometer (in this example
0 = 12◦): (a) Profile of the crack surface along a line located at a distance 𝑎 of the initial slit. The facets are highlighted in orange. (b, c) Evolution of the tilt
ngle and distance between two facets. Each black marker corresponds to one single facet at a given distance 𝑎. The red line is their mean value. The maximum

value of 𝛼 is marked by a blue dot. The range that is considered for linear interpolation of 𝑑(𝑎) is located before the sharper increase and the best fit of the
ed curve is plotted in blue dashed line.

.4. Quantification of the facet geometry

Focusing on type A (𝛤0 < 𝛤𝑐), the facet rotation angle 𝛼 and the facet aspect ratio 𝜂 have been obtained by profilometry. The
xperimental setup and measurement protocol, as well as the data’s post-processings, are thoroughly detailed in Cambonie and
azarus (2014). We only provide here a summary for brevity’s sake. The fracture profiles have been scanned every 25 μm from the
ip of the precrack, which is set as the origin along the propagation direction (𝑎 = 0 mm). Notice that this position presents some
ncertainty since the roughness of the initial slit and facets are difficult to distinguish as long as their sizes are comparable. Fig. 6
s a summary of the procedure used corresponding to the particular, but representative, case 𝛤0 = 12◦. Fig. 6a displays an example
f 2D fracture profile taken at the position 𝑎 = 0.61 mm. The extrema are detected (the orange markers in Fig. 6a) and used to
efine each facet. The mostly sharp profile of the facets makes it possible to approximate each facet by the line between pairs of
inimum–maximum (the dotted orange lines in Fig. 6a). From it, we retrieve each facet’s tilt angle 𝛼𝑖, and the distance between

onsecutive facets 𝑑𝑖. Therefore for each position 𝑎 along the 𝑥-axis, distributions of tilt angles {𝛼𝑖}(𝑥=𝑎) and distances {𝑑𝑖}(𝑥=𝑎) are
btained, and are represented using black x markers in Fig. 6b, c. In these figures, the mean value at each position is computed and
s shown using the red line to emphasize the evolution of the facet characteristics with the distance of propagation.

The procedure to characterize the tilt angle and coarsening rate of one experiment by a unique representative and objective value
s defined as follows. In all the experiments, the tilt angle is observed to increase continuously until a maximum value (Marker: blue
ircle in Fig. 6b). This maximum is reported on Fig. 7a as a function of 𝐾𝐼𝐼𝐼∕𝐾𝐼 using Eq. (9). The distance 𝑑 between the facets
lways presents a linear increase with 𝑎 before a sharper increase (Blue line in Fig. 6c). We determine its slot by linear regression
nd report its value as 𝜂(𝐾𝐼𝐼𝐼∕𝐾𝐼 ) in Fig. 7c.

Interpolation of these points, using that 𝛼 = 0 and 𝜂 = 0 when 𝐾𝐼𝐼𝐼∕𝐾𝐼 = 0, gives the following linear approximation:

𝛼 = 86.7
𝐾𝐼𝐼𝐼
𝐾𝐼

degrees

𝜂 = 1.07
𝐾𝐼𝐼𝐼

(10)
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Fig. 7. (a) The tilt angle 𝛼 is taken as the maximum value of 𝛼(𝑎) (blue dot in Fig. 6b), the error bars corresponds to the standard deviation of the facet
angle distribution at the peak location. (b) The coarsening rate 𝜂 is taken as the slop of the linear part of the evolution 𝑑(𝑎) (in blue in Fig. 6c), the error bars
orresponds to the upper and lower bounds of the 95% confidence interval of the linear regression.

Fig. 8. Comparison between the CZ model and the experimental values of 𝐹𝑐∕𝐹0. The point symbols are the same than on Fig. 4. The CZ model is applicable
only for type A fracture surfaces (empty symbols) that is on the left of vertical line located around 𝐾𝐼𝐼𝐼∕𝐾𝐼 ∼ 0.2.

The complete determination of the facet geometry requires moreover the knowledge of 𝓁∕𝑑. But, unfortunately it is not possible to
get it for our samples for two reasons: (i) In-situ measurement during propagation is impossible due to the unstable propagation of
the crack; (ii) The ultimate propagation of the ligaments between the facets erases the initial width 𝓁 of the facets, so that it cannot
e measured postmortem contrary to 𝛼 and 𝜂.

. Application of the cohesive zone model to the experiments

Fig. 8 aims to compare experiments with the CZ model using the values of 𝐹𝑐∕𝐹0 as function of the mode mixte ratio 𝐾𝐼𝐼𝐼∕𝐾𝐼 .
he building of this figure is quite complex. It follows the method described below:

• From a theoretical point of view, plugging the experimental values (Eq. (10)) of 𝛼 and 𝜂 into Eq. (8) gives 𝐹𝑐∕𝐹0 as a function
of 𝐾𝐼𝐼𝐼∕𝐾𝐼 for given values of 𝓁∕𝑑. As explained in Section 1.3, it requires to solve Eq. (4) or Eq. (3) to get 𝑝 and 𝑞 and then
𝐺𝑒𝑓𝑓∕𝐺. The values are different whether assuming coalescence (that is solving Eq. (4)) or not (solving Eq. (3)). The functions
𝑝𝑞 have not been calculated yet neither for large values of 𝓁∕𝑑, nor for small values of 𝛼 if 𝓁∕𝑑 ∼ 1, since proximity of the
tips would require much higher level of refinement in the calculations (Lazarus et al., 2020). This explains why the theoretical
curves start at 𝐾𝐼𝐼𝐼∕𝐾𝐼 ∼ 0.05 (corresponding to 𝛼 ∼ 5◦) and no results are provided for 𝓁∕𝑑 > 1.3.

• From an experimental point of view, the critical force 𝐹𝑐 is given as function of 𝛤0 and 𝑎0 in Fig. 4. It can be changed to get 𝐹𝑐
as a function of 𝐾𝐼𝐼𝐼∕𝐾𝐼 using their values obtained by FE simulations (Eq. (9)). The load to promote straight propagation 𝐹0
cannot be measured directly since facets always appear. It can be obtained by Eq. (6) in which we plug (i) the toughness 𝐾𝑐
obtained by performing mode I experiments (𝛤0 = 0) for several values of 𝑎0 that is 𝐾𝑐 = 1.23 MPa ⋅m0.5 (Abaqueplast brand)
or 𝐾𝑐 = 1.06 MPa ⋅ m0.5 (Vacour brand); (ii) 𝐾 (1)

𝐼 and 𝐾 (1)
𝐼𝐼𝐼 computed by Finite Element taking 𝐹 = 1 (Appendix C), 𝜈 = 0.38

and the geometry of the setup described in Section 2.1. Notice that these SIFs are independent of 𝐸 for dimensional reasons
and thanks to their linearity with 𝐹 .
9
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The CZ model is applicable only if facets appear along the whole crack front, that is only for type A fracture surfaces. Those
xperiments corresponds to empty symbols in Fig. 8 and are located on the left of the vertical line 𝐾𝐼𝐼𝐼∕𝐾𝐼 = 0.2. Several
bservations can be made:

• plotting 𝐹𝑐∕𝐹0 as a function of 𝐾𝐼𝐼𝐼∕𝐾𝐼 instead of 𝛤0 and 𝑎0 as in Fig. 4, induces a collapse of the experimental points. This
shows that 𝐾𝐼𝐼𝐼∕𝐾𝐼 is the pertinent parameter to estimate the local load along the initial slit.

• A relatively large spread in this collapse, that can be attributed to the variability of the measure of the peak force. This
measure is very sensitive to any imperfection, notably of the initial slit, even though we took great care in its manufacturing
(see Appendix B). This variability has still be observed in PMMA with a slit prepared in a similar way (Maccagno and Knott,
1989) and may be amplified here in presence of mode III by the nucleation of new cracks (the facets), that is known to be
sensitive to the randomness of defects.

• While the experiments show an increase of the apparent toughness with 𝐾𝐼𝐼𝐼∕𝐾𝐼 , this behavior is caught by the CZ model
only if 𝓁∕𝑑 ≥ 1.2, meaning that the interaction between adjacent cracks plays an important role.

• The model with coalescence overestimates the experimental values, while a very good agreement is found for the model
without coalescence. This result sounds surprising at first glance because coalescence is visible on the postmortem face, but is
consistent with the fact that 𝐹𝑐 is measured experimentally at the very beginning of facet formation, whereas coalescence has
probably not yet had time to express itself.

• The aspect ratio of the facets 𝓁∕𝑑 has to be adjusted to 𝓁∕𝑑 = 1.2 − 1.3 to be in agreement with the experiments. This is
reasonable in view of the values that can be measured in-situ on fatigue experiments (Fig. 1b).

The good agreement between the CZ model and experimental values of 𝐹𝑐∕𝐹0 shows that the apparent toughening observed in
Fig. 4 can be attributed mainly to the presence of the facets at the microscale and can be determined from the knowledge of their
geometry via the CZ model. The sole material constants required to get 𝐹𝑐 are the standard ones, namely Poisson’s ratio 𝜈 and the
mode I toughness 𝐾𝑐 (or equivalently the fracture surface energy 𝐺𝑐 and Young modulus 𝐸). It was useless here to resort to any
additional constant, as for instance a specific mode III toughness 𝐾𝐼𝐼𝐼𝑐 for mode III propagation or similarly a dependence of 𝐺𝑐
with 𝐾𝐼𝐼𝐼∕𝐾𝐼 (Lin et al., 2010; Leblond et al., 2019). In other words, it means that in our experiments, the apparent dependence
of 𝐺𝑐 with 𝐾𝐼𝐼𝐼∕𝐾𝐼 comes from the dependence of the facet geometry with 𝐾𝐼𝐼𝐼∕𝐾𝐼 .

. Discussion

.1. Determination of the facet geometry

In this study, we have seen that the CZ method permits to quantify the toughening effect knowing the facet geometry through the
onstants 𝛼, 𝓁∕𝑑 and 𝜂. This reports the problem on the determination of these constants. Self-sustainability of the method requires
hat they can be obtained from the knowledge of the load and 𝐾𝑐 , 𝐸, 𝜈. In Lazarus et al. (2020), we proposed:

• To determine the tilt angle 𝛼 using either the Principle of Local Symmetry or energy minimization; both have been observed to
yield very similar values and to be in agreement with some experiments, but more extensive comparison remains to be done
notably by monitoring carefully the value of the Poisson’ ratio 𝜈;

• That the lateral extension 𝓁∕𝑑 results from the application of Griffith minimization principle. Comparison with experiments
necessitate in-situ measurements of 𝓁∕𝑑. It can only be done if the crack advances slowly, that was not the case here.

ence 𝛼 and 𝓁∕𝑑 can be anticipated to depend only on 𝐾𝑐 and the elastic constants 𝐸, 𝜈, so that the fully efficiency of the method,
relies on the determination of 𝜂. Its is the most challenging since it necessitates to solve a three dimensional problem to get the
3D shape of the facets. Whether it does or not necessitate an additional material constant remains an issue (Chen et al., 2015). In
any case, careful and extensive comparisons with dedicated experiments has to be performed to completely validate any of these
propositions (Lazarus et al., 2020).

In all this study, we assume that the facets are straight, but it is likely (Ghelichi and Kamrin, 2015; Chen et al., 2015, supplemental
material) that en-passant curved shapes appear as in the experiments of Fig. 1. Phase-field simulations of the internal problem may
be used to get this shape (Mesgarnejad et al., 2019) and at the same time the corresponding CZ model, that is the functions 𝑝𝑞
involved in Eqs. (3) and (4). This task can be anticipated to be highly demanding since the outcome of the CZ model is highly
sensitive to 𝓁∕𝑑 for small values of 𝛼. This is because the adjacent crack tips in the internal problem (Fig. 2) are then very close
hence very sensitive to their precise location in particular in case of overlapping (𝓁∕𝑑 ∼ 1). This high sensitivity also explains the
high variability of 𝐹𝑐∕𝐹0 with 𝓁∕𝑑 that can be observed in Fig. 8 for small values of 𝐾𝐼𝐼𝐼∕𝐾𝐼 , that corresponds to small values of
𝛼 (Eq. (10)). This point is discussed further in Appendix A.

4.2. Predominant toughening mechanism

Section 1.3 and Eq. (8) evidence that the facets contribute to the toughening through two physical mechanisms: (i) changes in
fractured surface area 𝓁∕𝑑 in comparison to a straight propagation, and (ii) crack shielding, that is the effective decrease of the load
𝐺𝑒𝑓𝑓∕𝐺 in the vicinity of the facets due to partial breaking of the cohesive zone. We aim here to discuss their relative importance.

For this, consider the theoretical evolution of 𝐹𝑐∕𝐹0 with 𝓁∕𝑑, keeping 𝐾𝐼𝐼𝐼∕𝐾𝐼 constant (that is 𝛼 and 𝜂 = 𝑑∕𝑎 as well). One
observes on Fig. 8 that 𝐹 ∕𝐹 diminishes with increasing 𝓁∕𝑑, in other words that the correlation between 𝐹 ∕𝐹 and 𝓁∕𝑑 is negative.
10
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Remembering that 𝐹𝑐∕𝐹0 is computed from Eq. (8) involving positive correlation with 𝓁∕𝑑 and 𝐺∕𝐺𝑒𝑓𝑓 . It means that this negative
correlation can only be attributed to a negative correlation between 𝐺∕𝐺𝑒𝑓𝑓 and 𝓁∕𝑑, that is to the increase of 𝐺𝑒𝑓𝑓∕𝐺 with 𝓁∕𝑑.
Looking at Fig. 2 by fixing 𝑑, 𝑎 (that is 𝜂) and 𝛼, this increase can itself easily be understand by the increase of the opening of
he Cohesive Zone when the width of the facets 𝓁 increases. While it is clear that the increase of fracture surface area contributes
o the increase of the apparent toughness (Kolvin et al., 2017) since it induces an increase of the fracture costs, the necessity to
nvolve 𝐺𝑒𝑓𝑓∕𝐺 to explain the behavior of 𝐹𝑐∕𝐹0 with 𝓁∕𝑑, shows that besides the fracture costs, 𝐺𝑒𝑓𝑓∕𝐺 that is, the modification
f the apparent energy release rate by crack shielding cannot be dismissed and even plays a determinant role. The CZ model is
n efficient way to quantify this decrease without resorting to costly simulations of the 3D elasticity problem in the presence of
acets. Conciliating the microscopic scale of the facets with the macroscopic structure can even be anticipated to be unfeasible in
E simulations without using multi-scale approaches.

. Conclusion and perspectives

In the continuity with our previous experimental campaigns (Lazarus et al., 2008; Leblond and Lazarus, 2015; Chen et al., 2015;
azarus et al., 2020), we have conducted bending experiments on PMMA beams containing an inclined initial slit, inducing some
ode III shear load along the crack front. Here, instead of applying a cyclic loading to study fatigue propagation, the specimens
ere loaded until the abrupt rupture of the specimen into two pieces. We measured the critical load for various orientation and
epth of this slit. We observed (i) some river-line patterns on the post-mortem crack surface, that are analog to those observed in
atigue and that can be attributed to the formation and further coalescence of facets/segments during propagation; (ii) an increase
f the critical load with the inclination of the slit that is, with increasing 𝐾𝐼𝐼𝐼∕𝐾𝐼 ratio.

Comparing the results with a two-scale Cohesive Zone (CZ) model that we have developed recently (Leblond et al., 2015; Lazarus
t al., 2020), we showed that

• this apparent toughening can be attributed to the presence of facets at the microscale, whose further propagation require a
higher load than the one that promotes a smooth propagation.

• resorting to an additional mode III material constant is useless; the apparent dependence of the toughness with 𝐾𝐼𝐼𝐼∕𝐾𝐼 can
be rationalized through the dependence of the facet geometry with 𝐾𝐼𝐼𝐼∕𝐾𝐼 .

• two related physical mechanisms are generated due to the formation of a disconnected crack front: (i) changes in fractured
surface area in comparison to a straight propagation, and (ii) crack shielding, that is the decrease of the load in the vicinity
of the facets due to reduced opening of the CZ. We show that the second plays an essential role, but is more complex to take
into account since it relies on the 3D elasticity problem involving the microscale of the facets and the macroscale of the body.
The two-scale CZ model (Leblond et al., 2015; Lazarus et al., 2020) has been demonstrated to be an efficient analytical way
to catch the second mechanism.

• the critical load can be determined accurately by the CZ model assuming the coalescence had no time to occur. In practice,
from the knowledge of the facets geometry, that is the rotation angle 𝛼 of the facets and their aspect ratios, 𝓁∕𝑑 and 𝜂 = 𝑑∕𝑎,
𝑝 and 𝑞 can be computed solving Eqs. (3) and (5), and then using Eqs. (1), (2) and (8), to get 𝐾𝑒𝑓𝑓

𝐼 , 𝐾𝑒𝑓𝑓
𝐼𝐼𝐼 , 𝐺𝑒𝑓𝑓 and finally

𝐹𝑐∕𝐹0.

In the present study, the facets geometry was measured using profilometry on the post-mortem fracture surfaces following
he procedure described in Cambonie and Lazarus (2014). But, to obtain self-sufficient prediction of the critical loading, the
etermination of the facets geometry from the loading conditions is necessary. Avenues for determining 𝛼 are discussed in Pham
nd Ravi-Chandar (2014) and Lazarus et al. (2020), but the determination of 𝜂 and 𝓁∕𝑑 will no doubt require to predict numerically
he propagation of facets in all their three-dimensional complexity. We envisage it using a phase-field approach in line with the
reliminary results presented in Chen et al. (2015) or Pham and Ravi-Chandar (2017).

Additional experiments are necessary (i) to validate the approach for a larger range of 𝐾𝐼𝐼𝐼∕𝐾𝐼 than in our setup; (ii) to drive the
racture quasi-statically, in order to permit in-situ observations of the development of the facet geometry and notably the measure
f 𝓁∕𝑑. One option is to use the experimental hydraulic fracture setup of Wu et al. (2007). It presents the advantage to involve
n internal circular crack, hence to avoid the apparition of mode II inherent to the coupling between mode II and III at a free
urface (Dhondt et al., 2001), but the disadvantage to require to extend CZ model to circular crack geometries. Closer perspective
s to apply the CZ model to the same kind of experiments in fatigue. This requires careful monitoring of the crack advance with the
umber of loading cycles (Ben Hadj Khaled, 2018).
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Appendix A. Functions 𝒑𝒒(𝜶,𝓵∕𝒅) and high sensitivity of the solution to 𝓵∕𝒅 for small values of 𝜶

The functions 𝑝𝑞(𝛼, 𝑐∕𝑑) appearing in Eqs. (3) and (4) are linked to the values of the SIF at the lateral crack tips of the internal
roblem (Fig. 2b) through some functions 𝑝

𝜆

(

𝓁
𝑑 , 𝛼

)

(Leblond et al., 2015; Lazarus et al., 2020). For small enough values of 𝓁∕𝑑,
their values have been obtained by Leblond and Frelat (2014) and for larger values by Lazarus et al. (2020). By plugging these
results in Eq. (7) of Lazarus et al. (2020), 𝑝𝑞(𝛼) for several values of 𝓁∕𝑑 can be obtained. Their plot is given in Fig. A.9.

Fig. A.9. 𝑝𝑞 (𝛼) for several values of 𝓁∕𝑑.
12
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Fig. B.10. Left: Notch milling and sharp notch formation. Right: Length of the additional precrack as a function of the compressive applied force for the two
brands of PMMA (Vacour and Abaqueplast) used in this study.

Fig. C.11. Meshing used in the Finite Element model with the imposed Boundary Conditions.

Fig. 8 of the main part of the paper highlights the high sensitivity of the effective toughness 𝐹𝑐∕𝐹0 with 𝓁∕𝑑, for 𝓁∕𝑑 ≥ 1 and
𝐾𝐼𝐼𝐼∕𝐾𝐼 ≪ 1. In this range of parameters, we have 𝛼 ≪ 1 and a high sensitivity of the functions 𝑝𝑞 with 𝓁∕𝑑 is observed in Fig. A.9.
This is not surprising since adjacent crack tips are then very close to each others (Fig. 2) and their mutual influence becomes very
sensitive to any small perturbation in the length 𝓁 of the facets. By the way, for 𝛼 < 5◦ and 𝓁∕𝑑 > 1, the values of these functions
have not been computed since sufficient accuracy is then difficult to achieve with finite elements methods (Lazarus et al., 2020).

It is possible to dig one step further looking at the relations (Eq. (A.1)) between the displacement jump [[𝑈𝑖]](𝑋) and the stresses
𝛴𝑖𝑗 (𝑋) (𝑖, 𝑗 = 𝑋, 𝑌 , 𝑍) along the cohesive zone, which involve the functions 𝑝𝑞 :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[[𝑈𝑋 ]](𝑋) = 0

[[𝑈𝑌 ]](𝑋) =
4(1 − 𝜈2)𝑑

𝐸
[

22𝛴𝑌 𝑌 (𝑋) +12𝛴𝑍𝑍 (𝑋) −23𝛴𝑌 𝑍 (𝑋)
]

[[𝑈𝑍 ]](𝑋) =
4(1 − 𝜈2)𝑑

𝐸
[

−23𝛴𝑌 𝑌 (𝑋) −13𝛴𝑍𝑍 (𝑋) +33𝛴𝑌 𝑍 (𝑋)
]

.

(A.1)

For 𝐾𝐼𝐼𝐼∕𝐾𝐼 ≪ 1, the CZ is predominantly in mode I and the main contribution of the CZ comes from [[𝑈𝑌 ]](𝑋) ∼
4(1 − 𝜈2)𝑑

𝐸
22

𝛴𝑌 𝑌 (𝑋), that is 22(𝛼,𝓁∕𝑑) whose values are multiply by a factor up to 50 when 𝛼 = 5◦ and 𝓁∕𝑑 is changed from 𝓁∕𝑑 = 1 to
𝓁∕𝑑 = 1.3 (Fig. A.9).
13
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Fig. C.12. Evolution of the ratio 𝐾𝐼𝐼∕𝐾𝐼 and 𝐾𝐼𝐼𝐼∕𝐾𝐼 along the crack front as calculated by Finite Elements.

Appendix B. Machining of the notched specimens

Experiments are carried out using cast PMMA (with the common trade names of Plexiglass® (Vacour) or Altuglas® (Abaqueplast))
of beams of dimensions 50 × 10 × 10 mm3. The notches were performed by a heavy-duty micro-milling machine (Roland MDX500)
using a ball-end end-mills (HSS-E Cobalt from SURCO529) with a diameter of 400 μm. We chose different notch depths, 𝑎0 = 2, 3
nd 4 mm with tilting angle, 𝛤0 varying between 0◦ (pure mode I) to 30◦. As an end-mill is quite expensive and as drilling 𝑎0 = 3
nd 𝑎0 = 4 mm deep slits with such a 400 μm diameter mill necessitates frequent replacement because of the mill fragility, 𝑎0 = 2
m was used for most of the samples.

The micro-milling was conducted under constant spindle rotational speeds 12 000 rpm, an axial depths of cut 100 μm and a feed
ate of 0.5 mm/s. At these conditions, there was no burr-formation. To initiate a true crack with a sharp tip and a smooth straight
ront, we pushed a wedge (razor blade) into the notch, quasi-statically, under displacement-controlled condition at a constant rate
f 0.1 mm/min, using an electro-mechanical testing machine (Instron 5882). The length of sharp crack is 𝑑𝑎 ∼ 0.1𝑎0 in every cases
Fig. B.10). The compressive force 𝐹com to apply to get a precrack length d𝑎 is given in Fig. B.10. The slit manufacturing introduces

◦
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Fig. C.13. Ratio of the mode III over the mode I SIF taken at the middle of the crack front. Inset: the dependence with 𝑎0 and 𝛤0 can be encompassed in the
ingle formula (9).

e check that they have disappeared. The experimental protocol developed above permit rapid, accurate, efficient, and reproducible
anufacturing of notch and sharp notch.

ppendix C. Finite Element determination of the Stress Intensity Factors

The Boundary Conditions are taken as follows (Fig. C.11): At the top, group of nodes defining the load lines are coupled to the
igid body motion defined by the reference nodes RP1 and RP2 and the force applied 𝐹 is distributed evenly; At the bottom, zero
isplacement along 𝑌 is imposed along the contact lines. The meshes were constructed with C3D10: A 10-node quadratic tetrahedron,
nd a tetrahedral elements free meshing technique is assigned. The elasticity problem is solved using ABAQUS 6.14 environment
ABAQUS 2014) to get the displacement and stress fields. A spider web mesh around the crack tip is beneficial (Fig. C.11). To create
uch a mesh, a partition is made, corresponding to a circle centered on the crack tip. The spider web will be inside this circle.

To describe the
√

𝑟− behavior of the displacement field near the crack tip, mid-side nodes are moved toward the tip and
hexahedral elements are collapsed to wedges with multiple nodes at each location at the crack tip. Provided that the user has
defined the nodes of the crack front, the software automatically finds the contours in order to carry out the energetic analysis, and
then returns the SIF values for each contour using the 𝐽−integral method. In our case, the near-tip mesh consists of 10 contours of
elements meshed.

The values of 𝐾𝐼𝐼∕𝐾𝐼 and 𝐾𝐼𝐼𝐼∕𝐾𝐼 along the crack front are given in Fig. C.12 for 𝑎0 = 2 mm and different values of 𝛤0. As
awaited near the edges (Bazant and Estenssoro, 1979; Dhondt et al., 2001), 𝐾𝐼𝐼∕𝐾𝐼 becomes of the same order than 𝐾𝐼𝐼𝐼∕𝐾𝐼 .
However, in the center of the crack front, that is in the zone of interest for our study, 𝐾𝐼𝐼𝐼∕𝐾𝐼 is almost constant and predominant
in comparison to 𝐾𝐼𝐼∕𝐾𝐼 . We choose to quantify the mode mixity by 𝐾𝐼𝐼𝐼∕𝐾𝐼 ≡ 𝐾𝐼𝐼𝐼∕𝐾𝐼 (𝑍 = 0). The evolution of this quantity
with 𝛤0 is given in Fig. C.13.

Another output of the FE calculations is the displacement corresponding to the applied vertical forces. We checked that
this displacement is nearly constant along the loading lines in agreement with our setup (Fig. 3a). From the compliance (ratio
displacement/force) obtained by FE, the Young can be estimated from the loading curves. We get 𝐸 = 2800 MPa in agreement with
the usual value of PMMA (Ashby, 1989).
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