
Fluctuations of Global Energy Release and Crackling in Nominally Brittle
Heterogeneous Fracture

J. Barés,1,* M. L. Hattali,1,† D. Dalmas,2 and D. Bonamy1,‡
1Laboratoire SPHYNX, Service de Physique de l’Etat Condensé, IRAMIS, CEA Saclay, CNRS UMR 3680, 91191 Gif-sur-Yvette, France

2Unité Mixte CNRS/Saint-Gobain, Surface du Verre et Interfaces, 39 Quai Lucien Lefranc, 93303 Aubervilliers cedex, France
(Received 29 January 2014; revised manuscript received 19 November 2014; published 30 December 2014)

The temporal evolution of mechanical energy and spatially averaged crack speed are both monitored in
slowly fracturing artificial rocks. Both signals display an irregular burstlike dynamics, with power-law
distributed fluctuations spanning a broad range of scales. Yet, the elastic power released at each time step is
proportional to the global velocity all along the process, which enables defining a material-constant fracture
energy. We characterize the intermittent dynamics by computing the burst statistics. This latter displays the
scale-free features signature of crackling dynamics, in qualitative but not quantitative agreement with the
depinning interface models derived for fracture problems. The possible sources of discrepancies are pointed
out and discussed.
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Predicting when and how solids break continues to pose
significant fundamental challenges [1,2]. This problem is
classically addressed within the framework of continuum
mechanics, which links deterministically the degradation
of a solid to the applied loading. Such an idealization,
however, fails in several situations. In heterogeneous solids
upon slowly increasing loading, for instance, the fracturing
processes are sometimes observed to be erratic, with
random events of sudden energy release spanning a variety
of scales. Such dynamics are, e.g., revealed by the acoustic
emission accompanying the failure of various materials
[3–6] and, at much larger scale, by the seismic activity
going along with earthquakes [7,8]. A generic observation
in this field is the existence of scale-free statistics for the
event energy [9].
These avalanche dynamics [10] have attracted much

recent attention. They were originally thought to be inherent
to quasibrittle fracture, where the solid starts by accumulat-
ing diffuse damage through microfracturing events before
collapsing when a macroscopic crack percolates throughout
the microcrack cloud [11]. Phenomenological models such
as fiber bundle models (see [12] for review) or random fuse
models (see [2] for review) developed in this case reproduce
qualitatively the avalanche dynamics with a minimal set of
ingredients. More recently, it has been demonstrated [13]
that a situation of nominally brittle fracture, involving the
destabilization and propagation of a single crack, can also
yield erratic dynamics. Within the linear elastic fracture
mechanics (LEFM) framework, the in-plane motion of a
crack front was mapped to the problem of a long-range (LR)
elastic interface propagating within a two-dimensional (2D)
random potential [14,15], so that the driving force self-
adjusts around the depinning threshold [13]. This approach
reproduces, in a simplified 2D configuration, the local and
irregular avalanches evidenced in the space-time dynamics

of an interfacial crack growing along a weak heterogeneous
plane [16]. There exists theoretical arguments to extend this
approach to the bulk fracture of real three-dimensional (3D)
solids and crackling dynamics at the global (specimen) scale
are anticipated [17,18]. Still, fracture experiments are
crucially missing to demonstrate this point.
The study reported here aims at filling this gap. Fracture

experiments in heterogeneous solids made of sintered
polymer beads are found to display irregular burstlike
dynamics at the global scale, with large, power-law distrib-
uted fluctuations for the mean failure speed vðtÞ and overall
mechanical energy EðtÞ stored in the specimen. Yet, and
despite their individual giant fluctuations, the ratio between
vðtÞ and the power release dEðtÞ=dt remains constant and
defines a continuum-level scale material-constant fracture
energy. The burst statistics displays the scale-free features
predicted in elastic interface models. Still, the agreement
remains qualitative only, and the scaling exponents are
different from those predicted. The possible sources of
discrepancies are discussed.
Experiments.—The experiments were carried out on

artificial rocks made of sintered polystyrene beads: (i) a
mold filled by monodisperse polystyrene beads was heated
to T ¼ 105 °C (90% of the temperature at glass transition)
and compressed (pressure p ¼ 4.2 MPa) between the
two jaws of an Instron electromechanical machine while
keeping T ¼ 105 °C; (ii) the mold was then unloaded and
slowly cooled down to ambient temperature and the
obtained sample was extracted from it. This sintering
process provides heterogeneous solids with homogeneous
microstructures, the length scale of which is set by the
bead diameter d. In all the experiments reported here,
d ¼ 500 μm. Large enough heterogeneity scales, indeed,
are requested to observe global crackling at finite driving
rate [18] and the fracture of sintered materials with smaller
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d (250, 140, 80, and 40 μm) were observed to display
continuumlike dynamics.
In the so-obtained materials, stable cracks were driven by

means of wedge splitting fracture tests [see Fig. 1(a) and
Refs. [19,20] for details]: Parallelepiped samples of size
140 × 125 × 15 mm in the x (propagation), y (loading),
and z (sample thickness) were loaded in mode I by pushing
a wedge at constant speed Vwedge into a 25 × 25 mm cut out
on one of the two (y − z) edges. An initial seed crack
(10 mm-long) was introduced with a razor blade in the
middle of the cut. It prevents dynamic fracture and enables
growing slow stable cracks. Two go-between steel blocks
were placed between the wedge and the specimen to limit
parasitic mechanical dissipation and ensure the damage
and failure processes to be the sole dissipation source for
mechanical energy in the system (see [21] for details).
The wedge speed Vwedge was varied from 16 nm=s to

1.6 μm=s. During each test, the force fðtÞ applied by the
wedge was monitored in real time by a S-type Vishay cell
force (acquisition rate of 50 kHz, accuracy of 1 N). As soon
as the wedge starts to push on the specimen (time origin set
at this onset), f increases. When f gets large enough
(∼200–300 N), the seed crack starts to propagate. This
propagation was imaged at the specimen surface via a
camera (USB2 uEye from IDS Imaging Development,
space and time accuracy of 130 μm and 0.1 s, respectively),
providing the instantaneous length csurfaceðtÞ of the crack
edge at the surface. The instantaneous mechanical energy
EðtÞ stored in the specimen is given by EðtÞ ¼ 1

2
fðtÞ×

Vwedge × t, and the instantaneous mean crack length cðtÞ

(i.e., spatially averaged over specimen thickness) is
obtained from the knowledge of the instantaneous speci-
men stiffness kðtÞ ¼ fðtÞ=Vwedge × t. Indeed, in a linear
elastic material, the curve k vs c is a continuous decreasing
function set by the specimen geometry only, and indepen-
dent of the other experimental parameters (e.g., Vwedge,
microstructure parameters, etc.). We hence measured the
curves k vs csurface in each of our experiments, averaged
them over all our experiments, and smoothed the result via
a Tikhonov regularization. The so-obtained curve defines
the curve k vs c for our fracture geometry; it was checked
that this curve is identical to that obtained using 2D finite
element calculations (software Castem 2007) on the exact
experimental geometry, assuming plane stress conditions.
This reference curve kðcÞ was used to infer cðtÞ ¼
k−1ðfðtÞ=Vwedge × tÞ from the signal fðtÞ [k−1ðxÞ denoting
the inverse function of kðxÞ]. Time derivation of cðtÞ finally
provides the instantaneous crack speed vðtÞ.
Results.—Figure 1(b) presents the time evolution of vðtÞ

and EðtÞ in a typical fracture experiment. These profiles
exhibit the intermittent features characteristic of crackling
dynamics, with random violent bursts (sudden drops) in
vðtÞ [in EðtÞ]. The superposition of the two also reveals that
the velocity bursts coincide with the energy drops. Beyond
this occurrence coincidence, the fluctuation amplitude vðtÞ
is proportional to the power PðtÞ ¼ −dE=dt released at
each moment t [Fig. 1(c)]. This proportionality was
observed in all our experiments, irrespective of the wedge
speed. It betrays the characteristics of a nominally brittle
fracture: PðtÞ ¼ GðtÞ × vðtÞ where GðtÞ ¼ −dE=dc is the
energy release rate. Now, for a stable crack slowly driven in
a nominally brittle material, LEFM states that GðtÞ ∼ Γ,
where the fracture energy Γ is a material constant. In other
words, a nominally brittle fracture compatible with LEFM
assumptions yields PðtÞ ¼ Γ × vðtÞ at all times t, irre-
spective of the precise values of PðtÞ and vðtÞ, as observed
here. In this scenario, the proportionality constant in
Fig. 1(c) gives Γ for the considered material: Here Γ ¼
100� 10 J=m2.
We turn now to the statistical characterization of the

crack dynamics. We analyzed the temporal evolution PðtÞ
in preference to that of vðtÞ since the former is directly
obtained from the experimental measurement of applied
force fðtÞ, while the latter calls for the addition of the k vs c
curve. The distribution of instantaneous power released is
first analyzed. Note that, in experiments, an “instantane-
ous” quantity is actually averaged over a finite time
scale δt, the value of which affects the fluctuation ampli-
tude. The distributions of PðtÞ, hence, have been computed
for different values of δt. A Gaussian distribution (centered
at zeros, standard deviation decreasing as 1=

ffiffiffiffi

δt
p

) is
observed at small scales [plain lines in Figs. 2(a)
and 2(b)], and a power-law tail is observed at large scales
[Fig. 2(b)]. The Gaussian part at small P is observed
throughout the whole experiment, even in the preliminary

(a)

(b) (c)

FIG. 1 (color online). (a) Sketch of the Wedge-Splitting test.
(b) Zoomed view of the crack tip speed vðtÞ (black) and stored
mechanical energy EðtÞ (gray) as a function of time in a typical
fracture experiment (Here, Vwedge ¼ 16 nm=s). (c) Instantaneous
power release P ¼ −dE=dt as a function of vðtÞ for all t.
The axes are linear in the main panel, and logarithmic in the
inset. In both panels, straight lines indicate proportionality. The
proportionality constant Γ ¼ 100� 10 J=m2 gives the material’s
fracture energy. In both panels (b) and (c), the coarse-graining
time is δt ¼ 0.2 s
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loading phases where cracks do not propagate. It results
from the noise in the measurement of the force signal. This
noise yields a δt-dependent resolution limit Pr below
which the true fracture-induced fluctuations of PðtÞ cannot
be deconvoluted from the Gaussian noise. Conversely, the
probability that a fluctuation of size PðtÞ > Pr is due to
noise rapidly is insignificant. Keeping only the relevant part
above Pr, the distributions all collapse onto a single master
curve [Fig. 2(c)] exhibiting two power-law scaling, a small-
scale regime with a scaling exponent asmall ¼ 1.4� 0.15
and a large-scale regime with alarge ¼ 2.5� 0.1. The two
scaling regimes, together with the value of the associated
crossover (PC ≈ 0.34 mW), depend neither on δt, nor on
the loading rate Vwedge. Conversely, the maximal value
Pmax (vmax) of PðtÞ [vðtÞ] decreases with δt, as 1=

ffiffiffiffi

δt
p

[inset in Fig. 2(c)], as expected for independent fluctuation
peaks. Note that the large scale power-law exponent

alarge ¼ 2.5� 0.1 observed here at the global scale for
fracture experiments in bulk solids is very close to that
reported on the local velocity fluctuations in 2D situations of
interfacial cracks, both experimentally [16,22] and numeri-
cally [23]. This supports the conjecture that at large scales,
brittle 3D fracture can be reduced to a 2D elastic interface
problem [9,13,18]. Conversely, the small scale power-law
regime with asmall ¼ 1.4� 0.1 observed here differs from
that observed in the 2D interfacial configuration.
The scale-free statistics observed for the fluctuations

PðtÞ [or equivalently for the fluctuations vðtÞ] is a first hint
toward crackling dynamics. We adopt the standard pro-
cedure in the field, and identify the underlying avalanches
with the bursts where PðtÞ is above a prescribed reference
level Pr ¼ ChPi. Then, the avalanche duration D of each
pulse is given by the interval between the two intersections
of PðtÞ with Pr, and the avalanche size S is defined as the
energy released during the event, i.e., the integral of PðtÞ
between the two intersection points. Note that, in conven-
tional elastic interface formalism, the avalanche size S is
expressed as the total area A swept by the front between two
successive pinned configurations. The two definitions are
equivalent since, in the nominally brittle situation experi-
enced here, an event releasing an energy S creates fracture
surfaces of area A ¼ S=Γ. As expected for a crackling
signal, S follows a power-law distribution PðSÞ ∝ S−τ over
nearly 3 orders of magnitude, with event areas up to ∼400
times the elementary one d2 [Fig. 3(a)]. (A break in the
scaling, around 3 × 10−3 and 10−3 J for Vwedge ¼ 16 and
Vwedge ¼ 160 nm=s cannot be precluded.) Also, the mean
avalanche size goes as a power-law with D, S ∝ Dγ

[Fig. 3(b)]. The exponents τ and γ are independent of
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FIG. 2 (color online). Distribution of instantaneous power
release for different coarse-graining time δt plotted in logarithmic
[panel (a)] and linear scales [panel (b)]. Here, Vwedge ¼ 16 nm=s.
Plain curves are Gaussian distributions with zero average and a
variance σðδtÞ prescribed so as the Gaussian curve fits the
experimental data on the small scale plateau. (c) Main panel:
Same graphs as in (a) after having withdrawn the noise-
dominated Gaussian part of each distribution. Empty and filled
symbols correspond to Vwedge ¼ 16 and Vwedge ¼ 160 nm=s,
respectively. The curves associated to Vwedge ¼ 160 nm=s have
been shifted vertically for the sake of clarity. Distributions
involve 3094 events for Vwedge ¼ 16 nm=s and 5299 events
for Vwedge ¼ 160 nm=s. Leftward (red) and Rightward (blue)
straight lines are power-law fits with exponents asmall ¼ 1.4�
0.15 (small scale regime) and alarge ¼ 2.5� 0.1 (large scale
regime). Vertical dashed line locates the crossover
PC ≈ 0.34 mW. (c) Inset: maximum value Pmax observed for
PðtÞ as a function of δt. Red line shows the 1=

ffiffiffiffi

δt
p

dependency.
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FIG. 3 (color online). (a) Distribution of the avalanche size S,
defined either as the energy released (black, bottom) or as the area
swept (red, top) during the event. In the latter case, the area is
normalized by d2 where d ¼ 500 μm is the grain diameter
(b) Scaling between normalized size S=hSi and duration
D=hDi. In both panels, the various symbols correspond to
various values for fδt; Cg [specified in the inset of (a)] and
Vwedge (empty symbol for Vwedge ¼ 16 nm=s, filled ones for
Vwedge ¼ 160 nm=s; the latter have been shifted vertically for
sake of clarity). Analyses involve 899 avalanches for Vwedge ¼
16 nm=s and 473 avalanches for Vwedge ¼ 160 nm=s. Straight
lines are power-law fits PðSÞ ∝ S−τ and S ∝ Dγ , with τ ¼ 1.4�
0.1 (τ ¼ 1.1� 0.15) and γ ¼ 1.38� 0.05 (γ ¼ 1.17� 0.05) for
Vwedge ¼ 16 nm=s (Vwedge ¼ 160 nm=s).
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the prescribed values for δt and C. Conversely, they both
decrease with the loading rate, from fτ ¼ 1.4� 0.1; γ ¼
1.38� 0.05g at Vwedge ¼ 16 nm=s to fτ ¼ 1.1� 0.15;
γ ¼ 1.17� 0.05g at Vwedge ¼ 160 nm=s.
To complete the dynamics characterization, we computed

the average temporal avalanche shape. This observable,
indeed, provides an accurate characterization of the consid-
ered crackling signal and has been measured in a variety of
systems [24–29]. The standard procedure was adopted here:
First, we identified all the pulses i of duration Di falling
within a prescribed interval ½Dmin; Dmax�); and second, we
averaged the shapePiðtÞ=Pi

max vs t=Di over all the collected
pulses i. Figure 4(a) shows the resulting shape and its
evolution withD. Two observations should be noted: (i) The
shape is parabolic for small D and flattens as D increases;
(ii) a small, but clear leftward asymmetry is observed
as D increases: The bursts start faster than they stop.
Quantitatively, the shape evolution (how fast it flattens
and how large the asymmetry is) depends on Vwedge.
A similar shape flattening was observed in Barkhausen

experiments [27]. Therein, it was shown to result from the
finite value of the demagnetizing factor k. Such a shape
flattening is thus expected in the LR interface model for
crack growth [13], where the unloading factor plays the
same role as k [18]. Conversely, the numerical simulation
of this LR interface model yielded symmetrical shapes [21]
(at finite driving rate) or slight rightward asymmetry [29]
(at vanishing driving rate). In Barkhausen experiments,
in contrast, a leftward asymmetry was observed, and
attributed to the eddy currents, which provides a negative
effective mass to the domain walls [24]. We conjecture that
the viscoelastic nature of the polymer rocks fractured here
acts in a similar way by providing a negative inertia to the
crack front (i.e., the addition of a retardation term in the LR
interface model of crack [13]).
Concluding discussion.—The experiments reported here

demonstrate that crackling at the global scale can be

observed in nominally brittle fractures (due to the propaga-
tion of a single crack) and is not restricted to quasibrittle
(multifracturing) situations. Three main observations
emerge: (i) Despite their individual giant fluctuations, the
ratio between spatially averaged velocity and power release
remains fairly constant and defines a continuum-level scale
material-constant fracture energy; (ii) the event size, defined
either as the increase of crack length or as the energy release
during the event, is power-law distributed, and scales as a
power law with the event duration; and (iii) the associated
exponents depend on the crack loading rate.
These observations are in qualitative agreement with

what is predicted by a recent model [13] identifying stable
crack growth with a LR elastic interface driven in a random
potential so that the driving force self-adjusts around the
depinning threshold. Still, the agreement is qualitative only
(i) in the universality class of the LR depinning transition,
the scaling exponents are predicted to be asmall ¼ 0.38 [30],
τ ¼ 1.28 [9], and γ ¼ 1.80 [9], significantly different from
the experimental values measured here, and (ii) these
predicted exponents are independent of the driving rate
[31], contrary to what is observed here. This discrepancy is
thought to result from the finite width of the fracture
specimens; the LR elastic kernel in the interface model [13]
arises from Rice’s perturbative analysis of the elastic
problem of a corrugated crack front embedded in a sample
of infinite width [32]. Conversely, it is interesting to note
that the variations of τ and γ observed in our experiments
are compatible with those expected in the mean-field
ABBM model [33]: In the ABBM model, (i) τ decreases
from 3=2 to 1 as the driving rate increases; (ii) γ exhibits
two values—γ ¼ 2 for short pulses, γ ¼ 1 for large ones,
with a crossover decreasing with driving rate [27]. In our
experiments, the mean-field approximation may be relevant
since the separation between the microstructure scale (bead
size d ¼ 500 μm) and the continuum-level scale (specimen
width: 15 mm ¼ 30d) is quite small. The simplicity of the
ABBM model has allowed the derivation of exact analytical
solutions for the avalanchedistribution and shape [27,34–36].
A very interesting future extension of this study is to
accurately characterize how the avalanche statistics evolve
with the driving rate and to confront those against the
ABBM solutions. Work in this direction is under progress.

Support through ANR project MEPHYSTAR (ANR-09-
SYSC-006-01) is gratefully acknowledged. Special thanks
to Thierry Bernard for technical support.

*Present address: Duke University, Durham, North Carolina
27708, USA.

†Present address: Univ Paris-Sud, UPMC Univ Paris 6,
CNRS, UMR 7608, Laboratoire FAST, Bat 502—Campus
Universitaire, F-91405 Orsay, France.

‡Daniel.Bonamy@cea.fr
[1] D. Bonamy and E. Bouchaud, Phys. Rep. 498, 1 (2011).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3s < D < 0.4s

0.4s < D < 0.5s

0.5s < D < 0.6s

0.6s < D < 0.7s

0.7s < D < 0.8s

0.8s < D < 1.0s

t/D

P
/P

m
ax

FIG. 4 (color online). Temporal avalanche shape for different
avalanche durations D (Vwedge ¼ 16 nm=s). Note the shape
flattening and leftward asymmetry that develop as D increases.

PRL 113, 264301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

264301-4

http://dx.doi.org/10.1016/j.physrep.2010.07.006


[2] M. J. Alava, P. K. V. V. Nukala, and S. Zapperi, Adv. Phys.
55, 349 (2006).

[3] A. Petri, G. Paparo, A. Vespignani, A. Alippi, and M.
Costantini, Phys. Rev. Lett. 73, 3423 (1994).

[4] A. Garcimartin, A. Guarino, L. Bellon, and S. Ciliberto,
Phys. Rev. Lett. 79, 3202 (1997).

[5] J. Davidsen, S. Stanchits, and G. Dresen, Phys. Rev. Lett.
98, 125502 (2007).

[6] J. Baro, A. Corral, X. Illa, A. Planes, E. K. H. Salje,
W. Schranz, D. E. Soto-Parra, and E. Vives, Phys. Rev.
Lett. 110, 088702 (2013).

[7] P. Bak, K. Christensen, L. Danon, and T. Scanlon, Phys.
Rev. Lett. 88, 178501 (2002).

[8] A. Corral, Phys. Rev. Lett. 92, 108501 (2004).
[9] D. Bonamy, J. Phys. D 42, 214014 (2009).

[10] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature
(London) 410, 242 (2001).

[11] J. G. M. van Mier, Concrete Fracture (CRC Press, Boca
Raton, 2012).

[12] S. Pradhan, A. Hansen, and B. K. Chakrabarti, Rev. Mod.
Phys. 82, 499 (2010).

[13] D. Bonamy, S. Santucci, and L. Ponson, Phys. Rev. Lett.
101, 045501 (2008).

[14] J. Schmittbuhl, S. Roux, J. P. Vilotte, and K. J. Måløy, Phys.
Rev. Lett. 74, 1787 (1995).

[15] S. Ramanathan, D. Ertas, and D. S. Fisher, Phys. Rev. Lett.
79, 873 (1997).

[16] K. J. Måløy, S. Santucci, J. Schmittbuhl, and R. Toussaint,
Phys. Rev. Lett. 96, 045501 (2006).

[17] L. Ponson and D. Bonamy, Int. J. Fract. 162, 21
(2010).

[18] J. Barés, L. Barbier, and D. Bonamy, Phys. Rev. Lett. 111,
054301 (2013).

[19] J. Scheibert, C. Guerra, F. Célarié, D. Dalmas, and D.
Bonamy, Phys. Rev. Lett. 104, 045501 (2010).

[20] C. Guerra, J. Scheibert, D. Bonamy, and D. Dalmas, Proc.
Natl. Acad. Sci. U.S.A. 109, 390 (2012).

[21] J. Barés, Ph.D. thesis, Ecole Polytechnique, 2013.
[22] K. T. Tallakstad, R. Toussaint, S. Santucci, and K. J. Måløy,

Phys. Rev. Lett. 110, 145501 (2013).
[23] K. J. Gjerden, A. Stormo, and A. Hansen, Front. Phys. 2, 66

(2014).
[24] S. Zapperi, C. Castellano, F. Colaiori, and G. Durin, Nat.

Phys. 1, 46 (2005).
[25] A. P. Mehta, K. A. Dahmen, and Y. Ben-Zion, Phys. Rev. E

73, 056104 (2006).
[26] L. Laurson andM. J. Alava, Phys. Rev. E 74, 066106 (2006).
[27] S. Papanikolaou, F. Bohn, R. L. Sommer, G. Durin, S.

Zapperi, and J. P. Sethna, Nat. Phys. 7, 316 (2011).
[28] Z. Danku and F. Kun, Phys. Rev. Lett. 111, 084302 (2013).
[29] L. Laurson, X. Illa, S. Santucci, K. T. Tallakstad, K. J.

Måloy, and M. J. Alava, Nat. Commun. 4, 2927 (2013).
[30] A. Dobrinevski, Ph.D. thesis, Ecole Normale Supérieure

Paris, 2013.
[31] J. Barés, M. Barlet, C. L. Rountree, L. Barbier, and D.

Bonamy, Front. Phys. 2, 70 (2014).
[32] J. R. Rice, J. Appl. Mech. 52, 571 (1985).
[33] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi,

J. Appl. Phys. 68, 2901 (1990).
[34] F. Colaiori, Adv. Phys. 57, 287 (2008).
[35] A. Dobrinevski, P. Le Doussal, and K. J. Wiese, Phys. Rev.

E 85, 031105 (2012).
[36] A. Dobrinevski, P. Le Doussal, and K. J. Wiese, Phys. Rev.

E 88, 032106 (2013).
[37] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.264301 for a
movie showing the crack propagation at the specimen
surface for a wedge speed of 16 nm/s. It shows a region
of size ≈130 × 38 cm2. The film is accelerated: The total
duration of the recorded process is about 5h 30min.

PRL 113, 264301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

264301-5

http://dx.doi.org/10.1080/00018730300741518
http://dx.doi.org/10.1080/00018730300741518
http://dx.doi.org/10.1103/PhysRevLett.73.3423
http://dx.doi.org/10.1103/PhysRevLett.79.3202
http://dx.doi.org/10.1103/PhysRevLett.98.125502
http://dx.doi.org/10.1103/PhysRevLett.98.125502
http://dx.doi.org/10.1103/PhysRevLett.110.088702
http://dx.doi.org/10.1103/PhysRevLett.110.088702
http://dx.doi.org/10.1103/PhysRevLett.88.178501
http://dx.doi.org/10.1103/PhysRevLett.88.178501
http://dx.doi.org/10.1103/PhysRevLett.92.108501
http://dx.doi.org/10.1088/0022-3727/42/21/214014
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.74.1787
http://dx.doi.org/10.1103/PhysRevLett.74.1787
http://dx.doi.org/10.1103/PhysRevLett.79.873
http://dx.doi.org/10.1103/PhysRevLett.79.873
http://dx.doi.org/10.1103/PhysRevLett.96.045501
http://dx.doi.org/10.1007/s10704-010-9481-x
http://dx.doi.org/10.1007/s10704-010-9481-x
http://dx.doi.org/10.1103/PhysRevLett.111.054301
http://dx.doi.org/10.1103/PhysRevLett.111.054301
http://dx.doi.org/10.1103/PhysRevLett.104.045501
http://dx.doi.org/10.1073/pnas.1113205109
http://dx.doi.org/10.1073/pnas.1113205109
http://dx.doi.org/10.1103/PhysRevLett.110.145501
http://dx.doi.org/10.3389/fphy.2014.00066
http://dx.doi.org/10.3389/fphy.2014.00066
http://dx.doi.org/10.1038/nphys101
http://dx.doi.org/10.1038/nphys101
http://dx.doi.org/10.1103/PhysRevE.73.056104
http://dx.doi.org/10.1103/PhysRevE.73.056104
http://dx.doi.org/10.1103/PhysRevE.74.066106
http://dx.doi.org/10.1038/nphys1884
http://dx.doi.org/10.1103/PhysRevLett.111.084302
http://dx.doi.org/10.1038/ncomms3927
http://dx.doi.org/10.3389/fphy.2014.00070
http://dx.doi.org/10.1115/1.3169103
http://dx.doi.org/10.1063/1.346423
http://dx.doi.org/10.1080/00018730802420614
http://dx.doi.org/10.1103/PhysRevE.85.031105
http://dx.doi.org/10.1103/PhysRevE.85.031105
http://dx.doi.org/10.1103/PhysRevE.88.032106
http://dx.doi.org/10.1103/PhysRevE.88.032106
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.264301

