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ABSTRACT 
Swelling or drying of glassy polymer films exhibit 
complex kinetics. For such films local 
thermodynamic equilibrium is no more ensured at 
each time since the relaxation of the stresses induced 
by the volume variations involves slow 
rearrangements of macromolecular chains. A 
numerical comparison of two models is presented, as 
a function of the two pertinent parameters describing 
the coupling between solvent diffusion and polymer 
relaxation: the Deborah number that defines the ratio 
between the relaxation and diffusion characteristic 
times, and R the ratio between the “instantaneous” 
and “delayed” components of swelling. Then a 
numerical study of a global estimation method 
(SIVIA) is made, in order to estimate these 
parameters from weight uptake kinetics. The 
robustness of the estimation is analyzed according to 
R and the Deborah number.  
 
INTRODUCTION  
Diffusion of solvents or low molecular weight 
species in polymer films or membranes is the 
determining factor in many processes such as the 
drying of polymer coatings, membrane formation, 
drug release, etc. When the polymer film is rubbery, 
i.e. when its temperature is well above the glass 
transition temperature, solvent sorption (swelling) or 
desorption (drying) is usually described by Fick’s 
model, with a mutual diffusion coefficient varying 
with the solvent concentration. Indeed, in polymer 
solvent solutions, the diffusion coefficient changes of 

several orders of magnitudes when the solvent 
volume fraction varies from 0.3 to 0 [1]. Swelling or 
drying kinetics is much more complex in the glassy 
domain: local thermodynamic equilibrium is no 
more ensured since the relaxation of the stresses 
induced by the volume variations involves slow 
rearrangements of macromolecular chains. The glass 
transition temperature of a solution, Tg, depends on 
the solvent content, increasing from the Tg of the 
pure solvent to the Tg of the pure polymer as the 
solvent concentration decreases. When drying a 
solvent/polymer solution at a fixed temperature 
(lower than the Tg of the pure polymer), the film 
becomes glassy for a given solvent mass fraction: 
during a drying experiment, the glass transition is 
not induced by a change in temperature but by the 
change in solvent concentration.  
When the time scales characterizing diffusion and 
relaxation are comparable, it is well known that the 
kinetics is no more Fickian [2-9]. Figure 1 gives an 
example of different “anomalous” kinetics that can 
be observed in the glassy domain. This kinetics was 
obtained by performing gravimetry experiments on 
the system poly(methyl methacrylate)/methyl 
acetate [2]. The film is swelled by small successive 
increasing of the solvent vapor pressure above the 
film. For each step the solvent uptake is very small 
so that the diffusion coefficient may be assumed 
constant during the step. If the kinetics were Fickian 
the weight uptake versus t1/2 would show an initially 
linear shape followed by an evolution towards an 
asymptotic value. On the contrary, the sorption 
curves of Figure 1 display the characteristic pattern 
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of solvent absorption in the glassy state observed 
when increasing the solvent content in the film: S-
shaped (run S2R1), pseudo-Fickian (run S2R2) and 
two stages (run S2R3-S2R8).  
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Figure 1: Series of successive absorption kinetics 
runs of MAc in PMMA at 30°C; weight uptake (g/g 
of dry polymer) as a function of t1/2. (This graph was 
reproduced from [2]) 
 
Although numerous works have been devoted to the 
problem of non Fickian diffusion in the glassy 
domain, the involved phenomena are not yet 
completely understood. Moreover the quantitative 
interpretation of sorption or desorption experimental 

kinetics is then complex, since the parameters that 
characterize diffusion and relaxation have to be 
estimated simultaneously. In the present paper a 
comparison is made between two models of sorption 
in the glassy state, for the purpose of getting a 
reliable phenomenological model simple enough to 
be suitable for estimation algorithms. Then the 
paper focuses on the estimation problem itself and 
analyses the robustness of the estimation according 
to the ratio of the characteristic times of diffusion 
and relaxation.  
 
MODELING    
Models: Several theoretical approaches have been 
proposed, none of them succeeding in fitting all the 
types of non-Fickian kinetics [3]. Several of these 
approaches take viscoelastic relaxation into account 
through a constitutive equation, where the 
viscoelastic behavior is approximated by a Maxwell 
model [5-7]. In the point of view considered in this 
paper, the effect of structural relaxations is treated 
mathematically by considering the temporal 
evolution of the polymer swelling as consisting of 
an “instantaneous” component plus a “delayed” 
component.  
 
Petropoulos model (P): In the modeling approach of 
Petropoulos [8] the diffusion process is formulated 
in terms of a chemical potential gradient driving 
force, yielding  
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where c is the local solvent concentration, a is the 
corresponding activity, DT is the thermodynamic 
diffusion coefficient. The solubility c/a is defined as 
a measure of the sorption capacity of the polymer at 
any given stage of the relaxation process. To model 
viscous relaxation process in a simple manner, a 
first order model is used and eq. (1) is supplemented 
with: 
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Eq. (2) simply states that incremental penetrant 
uptake δc over a small time interval δt, can be 
separated into (i) an “instantaneous ” (elastic) 
swelling, which is associated with a corresponding 
change in activity δa without relaxation, plus (ii) a 
“delayed” (viscous) part. The latter corresponds to 
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the amount of penetrant which can be accommodated 
in the swelling polymer, at constant activity, due to 
the extra sorption capacity generated by the 
relaxation process in time δt. Thus, two sorption 
isotherms are defined, an instantaneous one c0(a) for 
unrelaxed polymer, in addition to that of fully relaxed 
polymer c∞(a). Calculations performed by an explicit 
finite difference numerical method have shown that 
the model can predict the basic features of non-
Fickian kinetics observed in sorption experiments, 
with solvent uptake (a) small enough, where the 
diffusion coefficient and the relaxation time may be 
assumed constant (e.g. two-stage curves of Fig. 1), as 
well as (b) large enough to ensure a strong variation 
of both the diffusion coefficient and relaxation time  
during the sorption process (e.g. Case II kinetics) [8, 
9].  
 
Long and Richman model (LR): the (LR) model [10] 
can be viewed as a simplified version of the (P) 
model, the relaxation being taken into account at the 
interface only: each volume element in the bulk is 
assumed to be at the thermodynamical equilibrium 
and the classical formulation for Fickian diffusion is 
employed to describe the solvent diffusion through 
the film: 
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where D is the mutual diffusion coefficient.  
The effect of the relaxation is introduced by making 
the surface concentration a function of time in the 
same way as in the (P) model (first order model). 
Then, assuming a perfect activity step eq. (2) can be 
integrated yielding to the following boundary 
condition: 
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From the theoretical point of view, the Petropoulos 
model (P) gives a better description of the relaxation 
phenomena involved during swelling than the Long 
and Richman (LR) more simple approach.  
 
Two dimensionless quantities are involved in these 
models: the Deborah number that compares the 
characteristic times of diffusion and relaxation: Deb 
= τr/τd, with τd=l2/D; and R, the ratio between the 

instantaneous and delayed component of the solvent 
concentration: R = c0/c∞. A very small Deb 
corresponds to the rubbery Fickian case, when 
relaxation phenomena are instantaneous on the 
diffusion time scale so that the system is in local 
thermodynamic equilibrium. On the contrary a very 
large Deborah leads to two stages kinetics (the two 
phenomena are well separated) or even to Fickian 
kinetics if the second stage is not sensitive on the 
time scale of the experiment. More complex kinetics 
is obtained for intermediate values, depending on 
both Deb and R.  
 
Comparison: Figures 2a, 2b and 3 give the 
comparison of the two models for Deb = 1 or 10 and 
R = 0.1 or 0.5. The dimensionless time is t*=t/τd and 
the dimensionless weight uptake is ∆M*=[M(t)-
M(t=0)]/[M ∞-M(t=0)]. The (LR) model always gives 
more rapid kinetics, which is expected since the 
solubility delay is limited to the boundary condition. 
The less accurate agreement is obtained for Deb=1 
and R=0.1, when the two phenomena are strongly 
coupled and when the solvent uptake due to 
relaxation is dominant (Figure 3). The influence of 
Deb and R is resumed in Figure 4. As can be seen, 
the error is maximum around Deb=0.3 and increases 
when R decreases, i.e. when the relaxation is 
dominant. However this difference is always small 
(less than 10%) which makes possible the use of the 
(LR) model.  
From the numerical point of view, the Long and 
Richman model is simpler since relaxation effect is 
introduced through a boundary condition only and 
not in the equation describing solvent diffusion 
inside the film. The cpu time needed to simulate a 
sorption experiment is then much more smaller than 
with the Petropoulos model. Such a simplification is 
very useful when iterative optimization methods are 
used to estimate unknown parameters from 
experimental data. Indeed, identification algorithms 
imply the simulation of the sorption kinetics a great 
amount of times, which requires a simulation model 
with small cpu.  
 
ESTIMATION 
Experimental sorption kinetics is obtained by 
making a step of pressure vapor above the film and 
recording the weight uptake. Inevitably the 
experimental duration H is finished so that the 
equilibrium value c∞ can have been not reached at 
the end of the experiment if τr is large. The general 
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estimation problem then consists in estimating the 
four parameters “τr, τd, c0, c∞”.  
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Figure 2a 

Comparison of (P) and (LR) models for Deb=1 
Weight uptake as a function of t*1/2 
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Figure 2b 

Comparison of (P) and (LR) models for Deb=10 
Weight uptake as a function of t*1/2 
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Figure 3 

Difference between the (P) and (LR) models 
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Figure 4 

Maximum difference between the (P) and (LR) 
models as a function of Deb 

 
 
SIVIA estimation algorithm : Classical least square 
optimization is not suitable to analyze experimental 
data for that problem. Indeed, when diffusion and 
relaxation are coupled, the problem is badly 
conditioned, i.e. close kinetics can be obtained with 
quite different parameters sets [11]. To overcome 
this difficulty we use a global optimization method, 
the set inversion method [12]. The aim is to estimate 
all the parameter sets “τr, τd, c0, c∞” that give 
kinetics lying between two a priori bounding curves 
of the experimental kinetics. These bounding curves 
are first fixed (before estimation) taking into 
account the various experimental errors.  
 
The optimization method is detailed in [12] and we 
just give the main features of the SIVIA algorithm 
(Set Inversion Via Interval Analysis). First, a large a 
priori variation domain is chosen for each 
parameter, leading to an initial box in the parameters 
space (dimension=4). An iterative procedure divides 
this initial box into smaller and smaller boxes that 
are partitioned in feasible, unfeasible and 
ambiguous boxes. A box is said feasible (unfeasible) 
if all its quadruplets give kinetics lying (not lying) 
between the two bounding curves. Other boxes are 
said ambiguous. Because the kinetics is monotonic 
versus the four parameters (overshoot phenomena 
are excluded) – at a given time, the weight uptake is 
an increasing function of c0 and a decreasing 
function of R, τr, τd  - it is easy to characterize each 
box  by computing the theoretical kinetics 
associated with the extreme values of the box. After 
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elimination of the unfeasible boxes and selection of 
the feasible ones, the ambiguous boxes are divided 
into smaller ones and the procedure is repeated until 
the ambiguous domain is small enough.  
This method has the great advantage to give well-
defined uncertainty domain for the four parameters, 
without favoring any specific solution. All the 
quadruplets that give a kinetics included in the two 
bounding curves are obtained. One dimension 
projections give the maximum variation domain for 
each parameter. The method is however computer 
time consuming (a few hours on a Pentium IV 
computer for the analysis of one weight kinetics). Let 
us underline that the resolution of the (LR) model 
itself uses an analytical solution and takes less than 
one second. The use of the (P) model would then not 
be possible with such a global estimation method. 
 
Test problems: 
To analyze the quality of the estimation according to 
Deb and R on one hand, and the influence of the use 
of the simplified (LR) model on the other hand, the 
following test procedure was chosen: 
-Test 1: in a first step the (LR) model was used to 
generate pseudo experimental kinetics (weight versus 
time) for different values of Deb and R. The two 
bounding curves were obtained by assuming a 
constant error of ± 0.01 on ∆M*. The SIVIA 
estimation algorithm was then used on these data. 
The model used to generate the data being the same 
than the one used in SIVIA, this first test aims to 
characterize the more or less good conditioning of 
the inverse problem, according to Deb and R. 
- Test 2: in a second step the (P) model was used to 
generate the pseudo data and the SIVIA algorithm, 
using the (LR) model, was applied on these data (also 
assuming a constant error of ± 0.01 on ∆M*). The 
influence of the use of the simplified (LR) model in 
the estimation algorithm is analyzed by comparing 
the results obtained with tests 1 and 2.  
All the tests have been performed with τd=1, R=0.5 
and H > 4 max(τd, τr). 
 
Results and discussion:  
The results of tests 1 and 2 are given in Figures 5, 6 
and 7. For each Deborah number, the grey (test 1) 
and red (test 2) vertical bars give the total admissible 
domain for the diffusion time (Figure 5), the 
normalized relaxation time (i.e. the ratio of the 
estimated τr to the true τr, Figure 6) and R (Figure 7). 
All the combinations of the parameters are of course 
not possible and a more detailed analysis would need 

the use of the projections of feasible domains on 
spaces of dimension 2 or 3, but this is beyond the 
scope of this paper. The three figures point out that 
the estimation problem is badly conditioned for 
small Deborah numbers: when Deborah is smaller 
than one, the information brought by kinetics data is 
not rich enough to get an accurate estimation of the 
parameters that characterize diffusion and 
relaxation: Numerically the experimental weight 
uptake may be ensured by a great number of 
combinations of relaxation and diffusion 
phenomena, while the kinetics stays between the 
two bounding curves previously defined: 
|∆M(t)* estimated – ∆M*(t)| < 0.01. Let us note that this 
difficulty may be overcome by decreasing the film 
thickness. Indeed, the diffusion time is proportional 
to the square of the film thickness while the 
relaxation time does not depend on it.   
Concerning the influence of the (LR) 
approximation, the comparison of tests 1 and 2 
confirms the results already obtained in the 
modeling section: For this value of R the admissible 
domains of the different parameters are shifted when 
using the (LR) model in the estimation algorithm, 
but the shift is less than about 20% when Deb is 
greater than 1. 
 
CONCLUSIONS 
Estimation of coupled diffusion and relaxation 
phenomena in glassy polymer films is possible as 
long as the Deborah number is large enough. More 
detailed analysis, to be published later, would need 
to study the influence of R, H and the error 
magnitude.  

 
 

Figure 5 
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Estimated diffusion times for test 1 (grey) and 
test 2 (red), for different Deb. 

 

 
 

Figure 6 
Estimated relaxation times for test 1 (grey) and 

test 2 (red), for different Deb. 
 
 
 

 
 

Figure 7 
Estimated R for test 1 (grey) and test 2 (red), for 

different Deb. 
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