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Summary

Thermally driven flow is studied for an horizontal liquid layer suddenlynsitted to evaporation. The deter-
mination of the onset of convection in this unsteady setting is the main focus pfeékent work, taking into
account buoyancy-driven and surface tension-driven convecliwo approaches are used and compared to pre-
vious experimental visualizations performed during the drying of polynlatisas: a numerical 2D simulation

of Navier-Stokes equations and a linear stability analysis based on aonoralrapproach.
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1. Introduction

Thermally driven flow is studied for an horizontal liquid layer suddenlynsitited to free surface evaporation.
The solvent evaporation induces a decrease of the temperature adtseifface due to the vaporization latent
heat. The increase of the thermal gradients may induce a convective matien by buoyancy and/or surface
tension [1, 2]. The determination of the onset of convection in this unsteeitiyg is the main focus of the
present work. Two approaches are used and compared to prexjmrineental visualizations performed during
the drying of polymer solutions [3]. First a numerical 2D simulation of Na@&okes equations has been
developed. Then a linear stability analysis suitable for transient problednses®d on a non-normal approach
is presented, which is an improvement of previous models as the frozen tpneaap or the amplification
theory (cf. for example [4, 5]). To the best of our knowledge, thisrapgh is the only one capable to provide
clear-cut answers on instability problems for truly unsteady basic flowsceShe transition between stable
and unstable regime depends on somehow “arbitrary” parameters ifctiaseia, perturbation definition and
amplitude for the non linear simulations), it is more suitable to view the results asttheagon of a transition
region between a domain exhibiting strong convection and a domain where peittarbations are damped or
have no times to significantly develop during the transient regime. All the rqaétented here for the two
approaches and for different criteria show that this transition regioniniscimpared to the large domain of
Marangoni and Rayleigh covered by the experiments, so that the notitakifity threshold is still valid for
this transient problem.
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2. Simplifying assumptions and governing equations

Drying experiments that underlie the simulations presented in this paper baweperformed on the system
Polyisobutylene (PIB)/Toluene [3]. The two control parameters useceiexperiments are the initial thickness
(0.3mm < e < 14.3mm) and the initial polymer mass fraction € wp < 15%, corresponding to an initial
viscosity5.5 x 107%Pa.s < u < 2.4Pa.s). When evaporation begins, convective patterns have been otiserve
at the very beginning of the experiment. The Lewis number being very sataili(10~?), it can be assumed
that convective patterns observed in the first minutes are mainly driviérelyal effects. Moreover, the rates of
the thickness decrease and change in the polymer mass fraction and irctsityiare small. It is then possible
to use the following simplifying assumptions, valid at the beginning of the dryig &olutal convection is not
taken into account, the physical properties of the solution are assumstduiebas well as the solution thickness.
The free surface is assumed flat (see [6, 7] for more details).

Given these assumptions and with the Boussinesq approximation, the dintessiotass conservation,
momentum conservation and energy balance equations read:
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where scales for length, velocity, time and pressure are respeativeli, e2/a andpa?/e?, with e the fluid
thickness¢ the thermal diffusivity, ang the density. The temperature scalé is % whereTj is the initial
temperature anA\7T" is defined in the following.

Pr = v/ais the Prandtl numberRa = BrgATe?/(va) is the Rayleigh number witlr the kinematic
viscosity and3y the thermal expansion coefficient.

The boundary conditions are the following: apart from the free sarftéee velocity satisfies the no-slip
condition and the wall is assumed adiabatic. At the free surface a shess bsundary condition is imposed,
given by the balance of surface tension forces with the viscous sdr@sskee fluid. The thermal boundary
condition is derived from the conservation of energy flux at the saréad simplifying assumptions resulting
from the small amplitude of temperature variations (cf. [7] for more detailee dnalysis is limited to a one
layer model and transfers with the ambient air are described by globzdheéanass transfer coefficients.

- <@> = Bi(0(z,y=1,t)+1) and <%> =—Ma <%> (2)
with Ma = —<&T (g—%) the Marangoni number anfli = ¢ the Biot numbery, the surface tension, is
Qo

a linearly decreasing function of temperatyigs the dynamic viscosity; is the thermal conductivity anf,

is given by the following equationtl;, = hy,+L % |1, , Wherehy, is the heat transfer coefficiert,the latent

heat of vaporization and., the evaporative flux that can be assumed independent of the solveeitation

at the beginning of the drying. The temperature differef@&used in the temperature scaling is the difference
between the initial temperatuile and the steady temperature obtained at the end of the transient regime, when

the temperature is uniform in the solution. From the dimensional equationstweige- M%fo).

3. Non linear mod€

To characterize the presence of observable convection, a critersmd lmn the thermalé&@elet number was
chosen. The thermaléelet numbePe = e v/a compares the relative importance of advection and diffusion,
and convection will be considered significant if, when the system is subntittad initial perturbation, there

is a timet where the perturbation is significantly amplified, i.e. suckiBs(t)/dt > 0 andPe(t) > 1. The
velocity used in the estimation of thee€let number is the maximal value of the velocity norm. Simulations
have been performed for a large aspect ratio (20) to avoid bountfacyse
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Figure 1: (a) clet number for e=1mm and various dynamic viscosities, initial perturbatrandom velocity
perturbation (uniform law with mean=0 and amplitude=4) - (b) Critical viscdsitylifferent amplitudes of the
initial temperature perturbation (uniform law with mean=0)

An example of results is given in Figure 1(a) where the time evolution of #ceePnumber is drawn far =
1mm and for different values of the dynamic viscosityFor this example, the critical viscosity corresponding
to the chosen criterion lies betweém Pa.s and5mPa.s. As the problem is sensitive to initial conditions, it
is important to analyze the sensitivity of the critical viscosity to the amplitude of fitialidisturbance. As
can be seen on Figure 1(b), only a factor two on the critical viscosity isdfauhen the initial disturbance
amplitude changes over six orders of magnitude. Conclusions are the@amgdl velocity perturbations and
for different form of the initial perturbations.

4. Linear transient stability analysis

As already said, classical linear stability approach is not relevant fatréimisient problem and a specific method
was used, based on the non-normal approach. It is presented inidg@&il First, as usually done, linear
perturbation equations are derived from the model described abowe afplification gain are defined. The
first oneGy (t) is based on the kinetic energy of velocity perturbations and the secor@g(eis a quadratic
term based on temperature perturbation. Then for each wavenunigeatial development of the perturbation
in the infinite horizontal direction) and each timan optimization problem is solved in order to get the vertical
profile 0 < y < e) of the initial optimal perturbation which leads to the maximizatiorGaf(t, k) (velocity
perturbation) oGy (¢, k) (temperature perturbation). For a given set of non dimensional panan(gte Ma,

Pr and Bi numbers) we then defingj, = Maz, .Gy, the larger amplification for any time and wavenumber
when the initial perturbation is imposed on the velocity, &4d = Max; G that is the larger amplification
for any time and wavenumber when the initial perturbation is imposed on the tetaperGy, and G, are
normalized with the initial values of the kinetic energy or temperature norm, $d@-tha: 1 means that the
initial perturbation is never amplified [6].

5. Comparison

The thresholds values obtained with the two approaches (linear analgisisafinear simulations), for different
values of the criteria are given in Figure 2(a) for the Marangoni probl€a = 0) in the planeBi/Ma
(conclusions are the same for the RayleigdnBrd configuration, cf. [6, 7]). As can be seen, all the results are
close. That means that even if a precise threshold value has no meaninghia problem, a thin transition
zone between stable and unstable configurations can be defined. ifida btarangoni number is shown to
depend very slightly on the Prandtl number [6, 7] and to depend non munoally on the Biot number, with a
minimum value aroundi = 2.
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Figure 2: (a) Critical Marangoni as a function of Biot for differeniteria: non linear simulation, velocity
perturbation,Pe = 1, Pr = 1 (cross) - linear analysi&’, = 1, Pr = oo (square) -G, = 100, Pr = oo
(triangle)- G5, = 1, Pr = 1 (continuous line) (b) Comparison of theoratical and experimental resuttein
plane "thickness-viscosity” for different criteria (from top to bottom: linaaalysisG?. = 1, G = 100, non
linear simulation with velocity perturbation a¢k = 1, linear analysigx§, = 100 - Experimental symbols: no
convection (red squares), convective patterns (blue stars)

Results for the Rayleigh-&ard-Marangoni configuration are presented in the plane thickressity for
direct comparison with experimental observations. As can be seen ireR2duly, the transition zone dividing
stable and unstable configurations is consistent with experimental points.again the bandwidth of uncer-
tainty due to the choice of threshold and perturbation types is not very larmé does not modify the order of
magnitude of the critical thickness.
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