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Summary

Thermally driven flow is studied for an horizontal liquid layer suddenly submitted to evaporation. The deter-
mination of the onset of convection in this unsteady setting is the main focus of thepresent work, taking into
account buoyancy-driven and surface tension-driven convection. Two approaches are used and compared to pre-
vious experimental visualizations performed during the drying of polymer solutions: a numerical 2D simulation
of Navier-Stokes equations and a linear stability analysis based on a non-normal approach.
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1. Introduction

Thermally driven flow is studied for an horizontal liquid layer suddenly submitted to free surface evaporation.
The solvent evaporation induces a decrease of the temperature at the free surface due to the vaporization latent
heat. The increase of the thermal gradients may induce a convective motion driven by buoyancy and/or surface
tension [1, 2]. The determination of the onset of convection in this unsteadysetting is the main focus of the
present work. Two approaches are used and compared to previous experimental visualizations performed during
the drying of polymer solutions [3]. First a numerical 2D simulation of Navier-Stokes equations has been
developed. Then a linear stability analysis suitable for transient problems and based on a non-normal approach
is presented, which is an improvement of previous models as the frozen time approach or the amplification
theory (cf. for example [4, 5]). To the best of our knowledge, this approach is the only one capable to provide
clear-cut answers on instability problems for truly unsteady basic flows. Since the transition between stable
and unstable regime depends on somehow ”arbitrary” parameters (chosen criteria, perturbation definition and
amplitude for the non linear simulations), it is more suitable to view the results as the estimation of a transition
region between a domain exhibiting strong convection and a domain where initialperturbations are damped or
have no times to significantly develop during the transient regime. All the resultspresented here for the two
approaches and for different criteria show that this transition region is thin compared to the large domain of
Marangoni and Rayleigh covered by the experiments, so that the notion ofstability threshold is still valid for
this transient problem.
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2. Simplifying assumptions and governing equations

Drying experiments that underlie the simulations presented in this paper have been performed on the system
Polyisobutylene (PIB)/Toluene [3]. The two control parameters used in the experiments are the initial thickness
(0.3mm ≤ e ≤ 14.3mm) and the initial polymer mass fraction (0 ≤ ωP ≤ 15%, corresponding to an initial
viscosity5.5 × 10−4Pa.s ≤ µ ≤ 2.4Pa.s). When evaporation begins, convective patterns have been observed
at the very beginning of the experiment. The Lewis number being very small (about10−3), it can be assumed
that convective patterns observed in the first minutes are mainly driven bythermal effects. Moreover, the rates of
the thickness decrease and change in the polymer mass fraction and in the viscosity are small. It is then possible
to use the following simplifying assumptions, valid at the beginning of the drying only: Solutal convection is not
taken into account, the physical properties of the solution are assumed constant as well as the solution thickness.
The free surface is assumed flat (see [6, 7] for more details).

Given these assumptions and with the Boussinesq approximation, the dimensionless mass conservation,
momentum conservation and energy balance equations read:

~∇.~v = 0 ;
∂~v

∂t
+ (~v.~∇)~v = −~∇p + RaPrθ~ey + Pr∆~v ;

∂θ

∂t
+ (~v.~∇)θ = ∆θ (1)

where scales for length, velocity, time and pressure are respectivelye, α/e, e2/α andρα2/e2, with e the fluid
thickness,α the thermal diffusivity, andρ the density. The temperature scale isθ = T−T0

∆T
whereT0 is the initial

temperature and∆T is defined in the following.
Pr = ν/α is the Prandtl number,Ra = βT g∆Te3/(να) is the Rayleigh number withν the kinematic

viscosity andβT the thermal expansion coefficient.

The boundary conditions are the following: apart from the free surface, the velocity satisfies the no-slip
condition and the wall is assumed adiabatic. At the free surface a shear stress boundary condition is imposed,
given by the balance of surface tension forces with the viscous stresses in the fluid. The thermal boundary
condition is derived from the conservation of energy flux at the surface and simplifying assumptions resulting
from the small amplitude of temperature variations (cf. [7] for more details). The analysis is limited to a one
layer model and transfers with the ambient air are described by global heat and mass transfer coefficients.
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with Ma = − e ∆T
µα

(

∂γ
∂T

)

the Marangoni number andBi = Hthe
k

the Biot number.γ, the surface tension, is

a linearly decreasing function of temperature,µ is the dynamic viscosity,k is the thermal conductivity andHth

is given by the following equation:Hth = hth+L ∂Φev

∂T
|T0

, wherehth is the heat transfer coefficient,L the latent
heat of vaporization andΦev the evaporative flux that can be assumed independent of the solvent concentration
at the beginning of the drying. The temperature difference∆T used in the temperature scaling is the difference
between the initial temperatureT0 and the steady temperature obtained at the end of the transient regime, when
the temperature is uniform in the solution. From the dimensional equations we get ∆T = LΦev(T0)

Hth
.

3. Non linear model

To characterize the presence of observable convection, a criterion based on the thermal Ṕeclet number was
chosen. The thermal Péclet numberPe = e v/α compares the relative importance of advection and diffusion,
and convection will be considered significant if, when the system is submittedto an initial perturbation, there
is a timet where the perturbation is significantly amplified, i.e. such asdPe(t)/dt > 0 andPe(t) > 1. The
velocity used in the estimation of the Péclet number is the maximal value of the velocity norm. Simulations
have been performed for a large aspect ratio (20) to avoid boundary effects.
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Figure 1: (a) Ṕeclet number for e=1mm and various dynamic viscosities, initial perturbation =random velocity
perturbation (uniform law with mean=0 and amplitude=4) - (b) Critical viscosityfor different amplitudes of the
initial temperature perturbation (uniform law with mean=0)

An example of results is given in Figure 1(a) where the time evolution of the Péclet number is drawn fore =
1mm and for different values of the dynamic viscosityµ. For this example, the critical viscosity corresponding
to the chosen criterion lies between4mPa.s and5mPa.s. As the problem is sensitive to initial conditions, it
is important to analyze the sensitivity of the critical viscosity to the amplitude of the initial disturbance. As
can be seen on Figure 1(b), only a factor two on the critical viscosity is found when the initial disturbance
amplitude changes over six orders of magnitude. Conclusions are the same for initial velocity perturbations and
for different form of the initial perturbations.

4. Linear transient stability analysis

As already said, classical linear stability approach is not relevant for thistransient problem and a specific method
was used, based on the non-normal approach. It is presented in detailin [6]. First, as usually done, linear
perturbation equations are derived from the model described above. Two amplification gain are defined. The
first oneGV (t) is based on the kinetic energy of velocity perturbations and the second oneGT (t) is a quadratic
term based on temperature perturbation. Then for each wavenumberk (spatial development of the perturbation
in the infinite horizontal direction) and each timet an optimization problem is solved in order to get the vertical
profile (0 < y < e) of the initial optimal perturbation which leads to the maximization ofGV (t, k) (velocity
perturbation) orGT (t, k) (temperature perturbation). For a given set of non dimensional parameters (Ra, Ma,
Pr andBi numbers) we then defineG∗

V = Maxt,kGV , the larger amplification for any time and wavenumber
when the initial perturbation is imposed on the velocity, andG∗

T = Maxt,kGT that is the larger amplification
for any time and wavenumber when the initial perturbation is imposed on the temperature. GV andGT are
normalized with the initial values of the kinetic energy or temperature norm, so that G∗ < 1 means that the
initial perturbation is never amplified [6].

5. Comparison

The thresholds values obtained with the two approaches (linear analysis and non linear simulations), for different
values of the criteria are given in Figure 2(a) for the Marangoni problems (Ra = 0) in the planeBi/Ma
(conclusions are the same for the Rayleigh-Bénard configuration, cf. [6, 7]). As can be seen, all the results are
close. That means that even if a precise threshold value has no meaning in such a problem, a thin transition
zone between stable and unstable configurations can be defined. The critical Marangoni number is shown to
depend very slightly on the Prandtl number [6, 7] and to depend non monotonically on the Biot number, with a
minimum value aroundBi = 2.
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Figure 2: (a) Critical Marangoni as a function of Biot for different criteria: non linear simulation, velocity
perturbation,Pe = 1, Pr = 1 (cross) - linear analysisG∗

T = 1, Pr = ∞ (square) -G∗

T = 100, Pr = ∞
(triangle)-G∗

V = 1, Pr = 1 (continuous line) (b) Comparison of theoratical and experimental results inthe
plane ”thickness-viscosity” for different criteria (from top to bottom: linear analysisG∗

T = 1, G∗

T = 100, non
linear simulation with velocity perturbation andPe = 1, linear analysisG∗

V = 100 - Experimental symbols: no
convection (red squares), convective patterns (blue stars)

Results for the Rayleigh-B́enard-Marangoni configuration are presented in the plane thickness/viscosity for
direct comparison with experimental observations. As can be seen in Figure 2(b), the transition zone dividing
stable and unstable configurations is consistent with experimental points. Here again the bandwidth of uncer-
tainty due to the choice of threshold and perturbation types is not very broad and does not modify the order of
magnitude of the critical thickness.
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