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ABSTRACT
Sensitivity of a transient B́enard-Marangoni problem is

studied using stochastic models to simulate the uncertainties of
thermal initial conditions. Using different assumptions,three
probabilistic models are developed and compared. Statistics are
performed on flow velocities and temperatures. Transitionsare
examined with respect to the stochastic models.

NOMENCLATURE
Bi Biot number
e Fluid layer thickness
Hth Global heat transfer coefficient
k Thermal conductivity
L Length of the fluid layer
Lev Latent heat of vaporization
Ma Marangoni number
p Dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
T0 Ambient temperature
~v Dimensionless velocity vector,= u~ex +v~ey

Vi The ith value of the vigintiles
~x Dimensionless spatial coordinates,= x~ex +y~ey

Greek symbols
α Thermal diffusivity,

∗Address all correspondence to this author. Email: eric.chenier@univ-paris-
est.fr

βT Thermal expansion coefficient
∆T Temperature scale
γ Surface tension
Φev Evaporation flux
µ Dynamic viscosity
ρ Density
σXξ Standard deviation of the stochastic valueXξ
t Dimensionless time
θ Dimensionless temperature
Θξ(x) Probabilistic condition for the initial temperature field
Other symbols
< Xξ >Mean value of the stochastic quantityXξ
Xξ Spatial average of the stochastic quantityXξ
Subscripts
ξ Probabilistic variable

INTRODUCTION
The drying of a solution involves mass, momentum and

energy exchanges between the liquid film and the surrounding
gas. Phase change of the volatile component modifies the
thickness of the fluid layer, the different concentrations in the
solution close to the free surface, and therefore the local physical
properties of the fluid mixture, and also the temperature at the
interface due to the vaporization latent heat. These mass and
thermal imbalances are able to create convective motions driven
by buoyancy and capillary forces. Numerous authors have
studied buoyant and capillary flows for volatile or nonvolatile
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fluids, using the linear stability approach or direct numerical
simulations [1–3]. Thus, more or less complicated numerical
models have been erected but usually with the idea that steady
flows would develop or by expecting quasi-steady regimes.

The key point of the drying of a solution is that the flow is
transient by nature. From the fluid at rest, a transientdiffusive
regime takes place. During the temporal evolution, the dimen-
sionless parameters may exceed temporarily critical values and
thus perturbationscan linearly grow around a transient basic
stateon a timeinterval before they decrease and disappear for
long times.
The notion of stability thus needs to be revisited.One way
to do is to freeze successively in timethe basic solution and
then to compute the instantaneous growth rate of the dominant
disturbance. The interpretation of frozen time results may
however be problematic, specially when the growth rate of the
linear perturbation is larger than the characteristic timeof the
basic flow. Other methods, like the non normal approach, takes
into account the transient character of the problem explicitly [4].
In this last method, the idea is to seek the initial disturbance
that provides the maximum amplification of the kinetic or/and
thermal energy. The critical parameter is then defined when this
amplification exceeds one and reaches an arbitrary chosen value.

For experimental works or direct numerical simulations,
the appearance of instabilities during the drying is also linked
to the magnitude ofthe disturbances. Whereas the absolute
control of perturbations is illusive in experimental works,
it can almost be reachedin numerical approachesby using
very precise numerical schemes.Because such a numerical
solution is in disagreement with experimental results where
convection is observed, perturbations must be explicitly added
in the numerical simulations in order to simulate the physical
disturbances. The main question is how to reproduce these
disturbances numerically, while they are usually out of control
of experimentalists.

The aim of this paper is to study the sensitivity of fluid flows
and transitions between diffusive and convective states asa func-
tion of initial disturbances. The paper is divided as follows. The
thermal model of the drying of a solution is first introduced,then
three uncertainty models for the thermal initial conditionare de-
scribed. The next section is devoted to the presentation of results
before a conclusive section.

PHYSICAL AND NUMERICAL MODELS
Thermal model of drying - Transient B énard-Marangoni
problem

The simulations presented in this paper are based on drying
experiments of a Polyisobutylene (PIB)/Toluene mixture. The

polymer solution at the ambient temperature is poured in a dish
located under an extractor hood [5]. The physical model under
consideration corresponds to the beginning of the drying only,
when the convective motions have been experimentally shown
to be driven by thermal gradients [5]. Thus for the sake of sim-
plicity, the polymer mass fraction is assumed frozen, equalto its
initial value, and the interface velocity is neglected. Theevapo-
ration at the free surface is taken into account througha global
heat transfer coefficientHth between the ambient air and the fluid
interface. More details upon assumptions can be found in [6].
In a first attempt andin orderto reduce the computational cost,
the numerical analysis is restricted to two-dimensionalproblems.
The liquid film is located in a rectangular domain of lengthL
and thicknesse. No-slip conditions are imposed on the adia-
batic lateral and bottom solid walls. The dimensionless veloc-
ity ~v(~x, t) = u(~x, t)~ex +v(~x, t)~ey and temperatureθ(~x, t) fields are
solutions of the Navier-Stokes and energy equations under the
Boussinesq approximation:

~∇.~v = 0
∂
∂t

~v+~∇ · (~v⊗~v) = −~∇p+Pr∇2~v+RaPrθ~ey

∂
∂t

θ+~∇ · (θ~v) = ∇2θ

(1)

with Pr = µ/(ρα) and Ra= ρgβT∆Te3/(µα) are the Prandtl and
Rayleigh numbers. The lengths are scaled by the thicknesse,
e2/α t is the time,α/e~v(~x, t) the velocity,ρ(α/e)2 p(~x, t) the
dynamical pressure andT0 + ∆Tθ(~x, t) the temperature. The
temperature scale∆T = (LevΦev(T0))/Hth measures the differ-
ence between the temperature at the final equilibrium (constant
and uniform temperature) and the ambient temperatureT0 which
is also the mean initial temperature. The boundary conditions
write:

x = 0, ~v =~0, ∂θ
∂x = 0

x = L/e, ~v =~0, ∂θ
∂x = 0

y = 0, ~v =~0, ∂θ
∂y = 0

y = 1,

{ ∂u
∂y = −Ma ∂θ

∂x
v = 0

∂θ
∂y = −Bi (θ+1)

(2)

where Ma= −e∆T
µα

(
∂γ
∂T

)
and Bi = Hthe

k stand for the Marangoni

and Biot numbers.

Using the properties of the Polyisobutylene (PIB)/Toluene
[5], we can express the dimensionless parameters as a function
of two physical parameters only,that were the control parame-
ters used in the experiments,namely the thickness of the liquid
film, e, and the viscosity of the solution,µ. Notice that the vis-
cosity can be adjusted by modifying theinitial mass fraction of
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the polymer in the mixture. The Rayleigh, Prandtl, Marangoni
and Biot numbers write respectively Ra= 451e3/µ, Pr = 12µ,
Ma = 5850e/µ andBi = 0.2ewith [e] = mmand[µ] = mPa·s.

Uncertainty model for the thermal initial condition
As presented in Introduction, it is crucial to introduce distur-

bances into the numerical model in order to recover the transition
between thediffusive and convective states which has been ob-
served in experiments. Because it is very difficult, if not illusive,
to reproduce the experimental disturbances, the idea is rather to
consider a family of perturbations by using a stochastic approach.
In this study, perturbations are imposed on the initial temperature
field in the following way.The fluid is initially at rest:

~v(~x, t = 0) =~0 (3)

with a dimensionless temperature defined by some small proba-
bilistic fluctuations,Θξ(x), around the dimensionlessnull ambi-
ent temperature:

θξ(~x, t = 0) = 0+Θξ(x) (4)

For the sake of simplicity, the probabilistic fluctuationΘξ(x)
only depends onx and is invariant in they-direction.
The stochastic behavior of the outputX is measured through
the mean value< Xξ >, the standard deviationσXξ , and the
confidence interval 90% which is defined by the vigintiles (20-
quantiles). We denote byV1 andV20 the first and last of the vigin-
tiles. Statistical quantities are approximated by the Monte Carlo
method which consists in performing many deterministic simu-
lations,n for instance, with different random initial conditions
Θ(k)

ξ (x), k = 1, · · · ,n. The specific way to construct the initial
conditions is described in the next subsectionsand the influence
of stochastic models on temperature and flow field evolutions
will be studied in the result section.

Elementary approach The simplest idea is based on

the spatial discretization of the thermal initial condition Θ(k)
ξ (x)

in the following way. By usingN + 1 discretex-coordinates
xi = L/e× i/N, i = 0, · · · ,N, {ξi , i = 0, · · · ,N} a family of ran-
dom variables defined by the uniform and centered probability
law on[−

√
3;
√

3] then

Θ(k)
ξ (x) =

N−1

∑
i=0

H(x−xi)H(xi+1−x)ξi (5)

with H(x) the Heaviside function. This approach excites in-
dependently the neighboring discrete values of the temperature

along thex-direction. Thus if the mesh size goes to zero, the tem-
perature gradient evaluated atxi tends to infinity what may affect
the global convergence of the numerical scheme. Furthermore,
this specific choice for the initial condition does not fit with the
thermal boundary conditions atx = 0 andx = L/ewhere no heat
flux is imposed. At last in physical problems, the disturbances
are probably spatially correlated, what is not taken into account
in this elementary approach.

Autocorrelation functions In this approach, we as-
sume that the disturbances should satisfy a specific autocorre-
lation function which is chosen in order to perform analytical
calculations. This autocorrelation function writes:

R1(x,x
′) = R0exp

(−|x−x′|
λ

)
(6)

where λ is the dimensionless correlation length andR0 is a
strictly positive real value characterizing the magnitudeof the
autocorrelation function, and as a result, it also controlsthe mean
initial thermal energy injected by the disturbances. The associ-
ated stochastic process is defined by the Karhunen-Loève decom-
position [7]:

Θξ(x) =
∞

∑
m=0

√
βmξmφm(x) (7)

where{φm(x)} is a Hilbert base inL2([0,L/e]), βm > 0 such that
βi+1 ≤ βi and limn→∞ βn = 0, and{ξm} is a family of random
values which are chosen as being engendered by the uniform and
centered probability law on[−

√
3;
√

3]. The functionsφm(x) are
solutions of a differential equation

φ′′m(x)+
2λR0−βm

λ2βm
φm(x) = 0 (8)

Two different options are available to solve Eqn. (8), depending
on whether the perturbations must fulfill the thermal boundary
conditions atx= 0 andx= L/eor whether the stochastic process
must exactly satisfy the autocorrelation function (6).
If the Karhunen-Lòeve expansion must be compatible with the
thermal boundary conditions, then(dφm(x))/(dx) = 0 for x = 0
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andL/e and we obtain:






φn(x) =

√
2

L/e
cos

(
nπ
L/e

x

)
, n∈ N

⋆

φ0(x) =

√
1

L/e

βn =
2λR0

1+λ2
(

nπ
L/e

)2

(9)

In that case, the autocorrelation function (6) is altered. The new
autocorrelation function associated to the stochastic process is
notedR2(x,x′) and writes:

R2(x,x
′) =

∞

∑
n=0

βnφn(x)φn(x
′) (10)

with φn(x) defined by (9).
If the thermal boundary conditions are released, the solution
writes:






φn(x) = Ancos(ωnx+χn)

An =

√
2ωn

ωnL/e+sin(ωnL/e)cos(ωnL/e+2χn)

βn =
2λR0

1+λ2ω2
n

χn = −ωnL/e
2

+
nπ
2

tan

(
ωnL/e

2
− nπ

2

)
=

1
ωnλ

(11)

Notice that the last relation of system (11) leads to a transcen-
dental equation which must be solved numerically.

Numerical scheme
Equation (1) with the boundary conditions (2) are dis-

cretized by the finite volume method on staggered grids. Spatial
derivatives are second order accurate. An implicit second order
Euler scheme is used for time advance and the non-linear terms
are approximated with a Adams Bashforth scheme. The coupling
between the velocity and the pressure is achieved with a projec-
tion algorithm. Linear systems are solved with a Crout method
using the red-black reordering technique. The random values
used to construct the stochastic initial conditions are produced
by the Mersenne Twister algorithm.

RESULTS
Simulations are based on Polyisobutylene (PIB)/Toluene

experiments [5]. The thickness of the fluid layer is fixed to
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Figure 1. CONVERGENCE FOR THE ELEMENTARY APPROACH OF

<̂ Xξ >
[i]

, V̂1
[i]

, AND V̂20
[i]

AS A FUNCTION OF THE NUMBER OF

MONTE CARLO RUNS (i) FOR a. ∆θξ AND b. Peξ.

1mm (Pr = 12 and Bi= 0.2) and the aspect ratio of the liquid
film is equal toL/e = 20. Unless otherwise specified, results
are presented using mean values associated with error bars
corresponding to the confidence interval equal to 90%.

The mesh is regular and consists of 800× 40 control
volumes. The time step is initialized equal to 10−4 and increased
by 1% at each iteration until it reaches 10−3.

For computations, the series defined by (7) are split to

the 200th term and denoted byΘ{200}
ξ (x); the associated au-

tocorrelation function is notedR{200}(x,x′). In that case,
the lowest dimensionless wave number of the probabilistic

function Θ{200}
ξ (x) is equal to 0.20 and it is discretized on

8 control volumes of the mesh. Notice that the approx-

imation errors
∣∣∣|R{200}(x,x′)|L2([0;L/e]2)/|R(x,x′)|L2([0;L/e]2) −1

∣∣∣

and
∣∣∣| < Θ{200}

ξ (x) > |L2([0;L/e])/| < Θξ(x) > |L2([0;L/e])−1
∣∣∣ are

respectively less than 5· 10−3% and 0.5% for both models (9)
and (11).
The convergence of the statistical quantityX i(~x, t), usingi runs
of the Monte Carlo method, is measured by theL2([0;L/e]×
[0;1]; [0;T])-norm:

X̂
[i] =

√
1
T

Z T

0

1
L/e

Z 1

0

Z L/e

0
X i(~x, t)2d~xdt (12)

whereX i(~x, t) could be either< Xξ >i (~x, t), σi
Xξ

(~x, t) V1
i(~x, t)

or V20
i(~x, t). Figure 1 presents the convergence of both the

mean value and the vigintiles for the Péclet number Peξ(t) =√
|~u2

ξ(~x, t)|L2([0;L/e]×[0;1]) and the difference between the aver-

age temperatures at the bottom and at the interface∆θξ(t) =

|θξ(x,y = 0, t)−θξ(x,y = 1, t)|, for µ = 1mPa·s (Ra = 451 and
Ma = 5850).
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We consider that a good approximation of the statistical quanti-
ties are achieved with 200 runs of the stochastic thermal fields.

The Karhunen-Lo ève model
Figure 2 shows the difference between the autocorrelation

functionsR1(x,x′) (Eqn. (11)) andR2(x,x′) (Eqn. (9)) for two
x′ values and two dimensionless correlation lengthsλ. The two
autocorrelation functions are all the more close than the correla-
tion points are far from the boundaries andλ is small. The mea-
sure of theL2-norm of R1(x,x′) andR2(x,x′) clearly illustrates
this sensitivity: forλ = 1, |R1(x,x′)/R0|L2([0;L/e]2) = 19.5 and
|R2(x,x′)/R0|L2([0;L/e]2) = 22 whereas|R1(x,x′)/R0|L2([0;L/e]2) =

150 and|R2(x,x′)/R0|L2([0;L/e]2) = 437 for λ = 10. The calcu-
lation of the mean thermal energy injected at the initial time,
| < Θξ(x)/

√
R0 > |L2([0;L/e]), is noteworthy as well. Using the

elementary approach or the model (11), we find 20. On the other
hand by using (9) we obtain 21 (close to 20) forλ = 1 but 30 for
λ = 10. Therefore with the model compatible with the thermal
boundary conditions, the modification of the correlation length
multiplies by 3/2 the mean injected energy. Initial thermal per-
turbations are drawn in Fig. 3 for the same set of 200 random
numbers. The two curves are close and even superimposed in the
middle region, forλ = 1. As a conclusion, statistical solutions
provided by the two Monte Carlo methods (9) or (11) are really
comparable for a givenλ-value provided thatR0 is adjusted to
get the same mean thermal energy for the initial condition.

Convective flows
The following simulations were performed forµ = 1mPa·s

(Ra = 451 and Ma= 5850) and a mean injected thermal en-

t = 0.06

t = 0.08

t = 0.10

Figure 4. ISOTHERMS AND STREAMLINES AT 3 INSTANTS.
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Figure 5. MEAN VALUES AND CONFIDENCE INTERVALS FOR a.

∆θξ(t) AND b. Peξ(t).

ergy equals to 2·10−5, namely a maximum intensity for the dis-
turbance of order 10−3 (see Fig. 3). For these Marangoni and
Rayleigh numbers, the flow is driven by surface tension effects.
A flow evolution is shown at three dimensionless times 0.06, 0.08
and 0.1 (0.6s, 0.8sand 1s) for model (9) andλ = 1 (Fig. 4). We
clearly distinguish the convection of the temperature fieldby the
Marangoni cells and the evolution of the flow field.
Figure 5a illustrates the evolution of the mean values of thedif-
ferences between the average temperatures at the bottom and
at the free surface,∆θξ(t), for the elementary approach, the
Karhunen-Lòeve method (9) forλ = 1 andλ = 10, and the purely
diffusion problem (Ma= 0 and Ra= 0). As expected, the ap-
pearance of the convection reduces substantially the temperature
gap between the top and bottom of the liquid layer because of
the mixing. The departure from the diffusive solutions occurs
between 0.07 and 0.09 (0.7s and 0.9s). From Fig. 5b, these
times correspond to a Péclet number close to unit. We also note
that convection becomes visible earlier with smaller correlation
lengths and that the elementary approach based on uncorrelated
disturbances is less effective to engender convection thanthe cor-
related case withλ = 1 because the departure from the diffusion
curve occurs later (Fig. 5a).
The local velocities at the free surface for three locations, x =
L/(2e), x = L/(4e) and x = 3L/(4e) are drawn on Figs. 6a-
6c. The mean values are small but confidence intervals are very
large, what indicates an extreme sensitivity of the flow fieldwith
the initial conditions. Notice that the mean values and the medi-
ans (the 10th values of the vigintiles) are really close. However
for t > 2, the mean flow seems to organize into more robust cells,
anticlockwise forx = L/(4e) (< vξ > (x = L/(4e),1, t) < 0) and
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clockwise forx = 3L/(4e) (< vξ > (x = 3L/(4e),1, t) > 0). The
center of the interface keeps a zero mean velocity. Except for
very short times less than or of order 0.1, the different approaches
give the same evolution for the number of cells at mid-thickness
of the fluid layer (Fig. 6d). As expected, the number of cells
decreases and should tend to zero when the solution converges to
the final equilibrium state.

Diffusive/Convective transition
The characterization of the flow is achieved by the Péclet

number. If Peξ(t) + σPeξ(t) < 1, the solutions are considered
purely diffusive. On the other hand, if Peξ(t)−σPeξ(t) > 1, the
flow is said convective. The buffer zone between the diffusive
and convective states defines the transition.
In the simulations presented here the layer thickness is fixed and
the initial viscosity of the solution is variable. For a meanin-
jected thermal energy equals to 2·10−5, λ = 1 and model (11),
the transition occurs for 5.9mPa· s < µ < 6.2mPa· s (Fig. 7a).
Notice that the confidence intervals are almost similar to the
standard deviations (Fig. 7b). The transition region does not

depend significantly on the model adopted and on the value
of the correlation lengthλ. The most significant parameter is
the value of the mean injected energy at the initial condition,
< E0 >. For the model (11) and withλ = 1, the transition zone
goes from 5.9mPa· s< µ < 6.2mPa· s for < E0 >= 2 ·10−5 to
4.4mPa·s< µ< 4.6mPa·s for < E0 >= 2·10−13. By consider-
ing an average viscosity value ofµ = 5.3mPa·s, the uncertainty
is less than 20% whereas the energy injected was multiplied by
108 what corresponds to a factor 1000 between the highest and
lowest magnitudes of the mean disturbances.

CONCLUSIONS
We have studied, by means of three probabilistic ap-

proaches, the sensitivity of the thermal model in a drying pro-
cess, to the uncertainties of the initial thermal conditions. No
significant difference has really been observed on mean values,
standard deviations or vigintiles for the evolution of the Péclet
number, of some local velocities and of the average temperature
variation between the top and bottom of the fluid layer. We have
highlighted mixing effect of the fluid flow on the temperature
field and that the convection occurs for a Péclet number value of
unit order. We have also shown that the transition between the
conductive and convective states was finally relatively fewsensi-
tive to the mean thermal energy injected at the initial condition.
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