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Abstract

We consider the interaction of oscillators with a noninstantaneous coupling ensured by slow traveling waves. Actually,
this particular type of coupling is observed in an experimental system which consists of a bidimensional network of vertical
water jets in the presence of a water–air interface: jets rotate and their motions are coupled together through surface waves.
Depending on the free jet rotation frequency and of the geometry of the array, this system exhibits various collective modes
where the jets synchronise themselves to form phase patterns, rendered sometimes complex by the fact that each jet can rotate
clockwise or anticlockwise. A model is proposed which explains many features of the experiment. The dynamics of jets is
described by amplitude equations with retarded interaction terms. An interesting point is that the dispersion relation of the
surface waves renders the interaction term non linear in a subtle way since its effect depends on the frequency of the limit
cycle of the array. This model allows one to determine the possible phase patterns and provides a criterion for the selection
process. ©2000 Elsevier Science B.V. All rights reserved.

PACS:47.20; 68.10; 68.15

1. Introduction

A vertical jet impinging from below on a water–air interface first pushes upwards a little bump so that the water
surface tension equilibrates the jet pressure. For a critical value of the jet velocityUc (which depends on the depth
of the jet nozzle), this bump starts rotating while generating spiral waves which propagate at the surface as shown
in Fig. 1. The motion frequency range is between 15 and 50 Hz. As discussed in [1], the jet actually constitutes an
“excitator” (it undergoes an helical instability) and, associated to the elastic interface which can be assimilated to
a resonator, it oscillates at a frequencyω0 depending on the interface (surface tension, of fluid) and jet properties
(velocity). Then, beyond a jet velocityUf , the bump is broken and the system enters the “fountain regime”.

This paper deals with bumps in the rotating regime. The remarkable feature of such a system is that it can be
assembled in arrays [2,11]. As shown in [1], each jet is coupled to the other ones through surface waves and thus,
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Fig. 1. Pictures of the bump at the vertical of one jet. (a) The asymmetric rotating bump forU > Uc and (b) the spiral wave generated at the
interface by a rotating bump.

through a retarded coupling. Jets can be described as coupled oscillators close to their limit cycle. Such systems
have been investigated from a theoretical point of view (see, for instance, [3–6]) and there have been some attempts
to achieve experiments based on hydrodynamics which behave as coupled oscillators. This is the case, for instance,
of coupled jets [7], wakes [8], boundary layers [9], or vortices [10]. Actually, in experiments with jet arrays,
jets synchronize themselves and form various phase patterns with co- or counter-rotating configurations. The jet
system described here has some well known properties of “standard” coupled oscillators like synchronisation, and
robustness with respect to slight differences between elements. However, jet arrays exhibit three differences with
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respect to “standard” coupled oscillators. First the coupling is not instantaneous but ensured by traveling waves
propagating at finite velocity while in most of the cases the coupling is either diffusive, i.e. a given jet is sensitive to
the information from its neighbours [10] or global when each oscillator is coupled to all the other ones as in many
theoretical models. Second, due to the dispersion relation of the waves, the nature of the coupling depends on the
frequency of the waves, i.e. of the synchronisation frequency through a phase factor. Finally a rotating jet admits
two limit cycles, both signs ofω0 rendering the collective behaviour richer.

The aim of this paper is to present a model of a coupled oscillator with delayed interaction explaining the
experimental results obtained in large arrays. In Section 2, experiments with sets of two jets and periodic triangular
or square networks are presented and the main results are summarised. Then, the effect of defects (some jets are
lacking) is briefly discussed as on the phase pattern. In Section 3, the model is described. In a first step, the main
features of interaction between jets deduced from two jet experiments are recalled. Then the model is extended to
large arrays of jets rotating in the same direction. The amplitude equation is solved using an eigenmode analysis
valid for infinite networks allowing one to identify possible phase patterns and to discuss the selection mechanisms
for the dominant one. Then the model is generalised to situations where the network splits into two counter-rotating
subnetworks. In this case no amplitude equation can be found, however a conjecture allowing one to determine the
dominant pattern is proposed. In Section 4, experimental results are compared with the predictions of the model. In
Section 5, the eigenmode analysis is compared to the result of a direct simulation of coupled oscillators.

2. Experiments

The experimental set up which is similar to the one used in [1,2,11] is presented in Fig. 2. Water enters the injection
chamber and gets out through the holes (diameter 1 mm) of the perforated plate. Then the resulting jets impinge from
below the water-air interface. The depth of the plates h can be controlled by a micropositioner typically between
5 and 25 mm. The flow velocityU of the jets lie between 0.5–0.7 m/s (the Reynolds numbers are in the range

Fig. 2. Experimental setup.h is the depth of the jets under the surface, the holes of the perforated plate are of 1 mm diameter. Only one jet is
represented.
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250–350). The bump frequencies (15–50 Hz) are measured using a photodiode intercepting the modulated light
reflected by the water surface. As shown in [1], the single jet frequencyω0 varies as 1/U . Experiments in which the
phase pattern in determined as a function ofU (i.e.ω0) are made for various arrays. For this a video camera coupled
to a stroboscope is used. For each network a depth is selected and then the velocity of the jet is increased from the
critical valueUc toUf , i.e. the free rotation frequencyω0 is decreased. Depending on the geometric characteristics
of the perforated plate, the depth of the jets and the velocities, various modes are observed. Preliminary experiments
have been made with two jet configurations to explain and characterise precisely the nature of the coupling. Then,
experiments have been made using square and triangular networks of about 50 jets.

2.1. Observed modes

2.1.1. Two jet configuration
The two jets were separated by distances 6× 10−3 m < a < 12× 10−3 m, the plate being at a constant depth.

The coupling between the jets exists fora < 12× 10−3 m. The bumps have always the same direction of rotation
and oscillate at the same frequency. When varying the flow rateU or jet spacing, two synchronisation modes are
observed: an acoustic mode where the two bumps oscillate in phase and an optical mode where the bumps oscillate
in phase opposition. Other effects of the coupling are that the frequency at a given flow rate is different from the
free jet one and the critical flow rate, where the bumps start oscillating, is lower for the two coupled bumps than
for a single one. The transition between the two modes is accompanied by a phase and frequency jump (see dots
in Fig. 5) but this transition is not sudden. Indeed the system hesitates between the two modes in a transition zone.
More details can be found in [1].

2.1.2. Square network
We consider now periodic networks. With a square network, defined by the two vectorsu andv (see Table 1),

at low velocities(Uc = 0.59 m/s< U < 0.61 m/s), a first mode is observed: the optical mode (“diagonal” mode
using the terminology of [2,11]) which is represented in Fig. 3(a). All the bumps rotate in the same direction with
a frequency between 29 Hz (for 0.61 m/s) and 34 Hz (for 0.59 m/s), and any bump is in phase opposition with its
nearest neighbours. If the velocity is increased from 0.61 to 0.65 m/s = Uf , a new mode appears: the “gearing”
mode (Fig. 3(b)). Two directions of rotation now coexist, and the network is divided into two sublattices each of
them with different directions of rotation. These two sublattices are defined by the two vectors:(u+ v) and(u− v),
and each of them undergoes an optical mode. The frequency of this mode lies between 22 Hz (forU = 0.2 m/s)
and 20 Hz (forU = Uf ).

2.1.3. Triangular network
With a triangular network (Table 1), depending on the velocity, two kinds of modes are seen. At low flow rate,

Uc = 0.58 m/s < U < 0.63 m/s, a mode with two sublattices and two directions of rotation is identified (Fig.
4(a)). Each sublattice is a rectangular mesh defined by the two vectors(2u) andv. It is in an “optical mode”.
In this “parallel” mode, the bumps rotate with frequencies between 28 Hz (forU = 0.62 m/s) and 33 Hz (for

Table 1
Jet arrays used in the experiments

a u v N h(depth) Uc Uf

Square 12 mm au(1,0) av(0,1) 57 jets 27 mm 0.59 m/s 0.65 m/s
Triangular 12 mm au((1/2),

√
3/2) av(1,0) 48 jets 22 mm 0.58 m/s 0.64 m/s
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Fig. 3. Various modes observed with a square network: each symbol represents a bump; the symbols “plus” or “minus” define the two different
subnetworks; one subnetwork turns clockwise and the other one anticlockwise; in each subnetwork, the different colors mean phase opposition.
(a) the optical mode or the optical full network, (b) the gearing mode or the optical subnetwork.

Fig. 4. Various modes observed with a triangular network: (a) the parallel mode and (b) the acoustic mode.

U = 0.58 m/s). For higher velocities 0.62 m/s< U < Uf = 0.64 m/s, an “acoustic mode” is selected (Fig. 4(b)).
All the bumps have the same direction of rotation and are in phase all together. The frequencies of this mode remain
bounded in the range 20 Hz (atU = 0.64 m/s) to 22 Hz (atU = 0.63 m/s).

2.2. Role of defects in the structure

We have investigated the role of defects in the large networks, by suppressing holes. The results obtained are qual-
itative because of the nonstationary character of the motion preventing reliable measurements (a faster videocamera
or operation with a low surface tension fluid to reduceω would be required). Whatever the number of blocked holes
introduced, the modes corresponding to the upper range of flow rates, acoustic and gearing modes, are robust and are
not perturbed by the defects. At low flow rate, where the two subnetworks modes (“optical” or “parallel”) appear,
consquences are observed, more or less severe depending on the number of defects introduced. For one blocked hole,
there is an irresoluteness in the direction of rotation for the nearest bumps of the defect. These particular bumps,
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“hesitate” changing their directions of rotation for a few seconds before recovering the “right” one. Concerning the
other bumps, the second neighbours of the defect and the others, they are not affected and keep moving as in the
absence of defects either in an “optical” mode or in a “parallel” mode. If several defects are introduced, the second
or the third neighbours may be affected by the first neighbours. But, nevertheless, considering an average in time
and in space, the mode which is recovered is the same as for the configuration with no defect.

3. Modelisation

3.1. Interaction between jets. Case of two-jet systems

When the jet velocityU exceeds the thresholdUc, the bump at the interface is unstable and it starts rotating
at frequencyω0 which is a function ofU . In two jet configurations, experiments show that rotation couple at
frequencyω slightly different fromω0. The displacement of jetm(= 1,2) with respect to its axis can be expressed
as:xm + iym = αm(t)eiω0t with αm(t) = αei(ω−ω0)t+iϕm . Two synchronization modes exist, optical withϕ = mπ

or acoustic withϕm = 0, depending either on jet spacinga or jet velocityU (orω0). The dependence on the phase
of the coupling and the fact that jets radiate surface waves (see Fig. 1) or can be synchronized by such waves led
us to consider a model where the jets were coupled through waves [1]. The simplest equation to describe such a
system consists of oscillators close to their limit cycle and coupled by surface waves:

dα1

dt
− γ (1 − |α1|2)α1 + λf (a)α2e−ik(ω)a = 0,

dα2

dt
− γ (1 − |α2|2)α2 + λf (a)α1e−ik(ω)a = 0. (1a)

Or substituting the envelope function by its expression:

i(ω − ω0)− γ (1 − |α|2)+ λf (a)e−ik(ω)a+i(ϕ2−ϕ1) = 0,
i(ω − ω0)− γ (1 − |α|2)+ λf (a)e−ik(ω)a+i(ϕ1−ϕ2) = 0.

(1b)

The two first terms in (1a) describe the behaviour of a simple oscillator reaching its limit cycle|α| = 1 (the amplitudes
are normalized so that the coefficient is 1) and the growth rate isγ . The last term accounts for the coupling through
waves. The complex parameterλ is a measure of the strength of the coupling. The wave characteristics are described
by an attenuation through the real numberf (a) and a phase shiftk(ω)a. The wavenumberk(ω) is obtained from
the dispersion equation of the surface wave in deep water taking the actual jet frequencyω : ω2 = gk(1+ k2l2c) (g
is the gravity constant andlc is the capillary length). It should be noted that the wave propagation may be affected
by the radial water flow from the jets. However its average during the propagation between the two jets cancels.

So the behaviour of the jet array is specified by three data: (1)γ (real), the growth rate of the single jet instability,
(2)λ (complex), the coupling parameter which governs the interaction between jets and (3) the functionf (a) (real).

It is easy to see that the amplitude equation (1b) admits solutions only ofϕ1 = ϕ2 = 0 or π corresponding to
frequencies and amplitudes given by

ω = ω0 = εf (a)|λ| sin(−k(ω)a + arg(λ)),

|α| =
√

1 − ε
|λ|
γ
f (a) cos(−k(ω)a + arg(λ))

(2)

with ε = 1 for ϕ1 − ϕ2 = 0 or −1 in the other case. It can be shown (see [1]) that only the mode with the largest
amplitude is stable and hence should be observed. Comparison with two-jet experiments varying the jet spacing and
U allows one to validate this model and to determineλf (a). The argument ofλ determines the value ofω0 at which
the transition occurs (when the cosine in Eq. (2) cancels) between two modes, whereas|λ| andf (r) determine the
value of the frequency jump. This has been done in [1]. The experimental data allow one to fit the argument ofλ
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Fig. 5. For two jets witha = 8.5 × 10−3 m, a comparison between the experimental results (dots) and the model (dotted line for the acoustical
mode and full line for the optical mode) with the numerical values chosen:λ = 23e−7iπ/8 andf (a) = 1.

to 7π/8 ± π/8 while there was some freedom in the choice of|λ|f (a). The experimental results are fitted when
this product is in the range 25–30, however the functionf (a) could not be determined. Changes in the value ofγ

had only little importance. An example of comparison of predictions of Eq. (2) with experiment is shown in Fig. 5.
The functionsω(ω0) andα(ω0) for the two modes defined by Eq. (2) witha = 8.5× 10−3 m, are plotted. Both the
nature of the mode and its frequency correspond to the theoretical prediction.

3.2. Extension of the model to larger networks

One considers now a periodic network of corotating jets which can be generated from a single point with
translations along two vectorsu andv of normau andav. Any jetm(m = 1,2, . . . ,∞) will be defined by two
co-ordinatesXm andYm (Xm andYm are integers). Its displacement with respect to the jet axis as a function of time
is given byxm + iym = αm(t)eiω0t whereαm(t) is a slowly time varying amplitude.

The two jet model can be generalized to such a network. The simplest equation to describe oscillators coupled
by surface waves is

dαm
dt

− γ (U)(1 − αmα
∗
m)αm + λ(U)

∑
m,n6=m

∫ t

−∞
χ(rmn, t − t ′)αn(t ′)dt ′ = 0. (3)

The integral operatorχ represents the effect (retardation and attenuation) of the propagation of the surface wave
which is a function oft − t ′ and of the distancermn between jets. Actually, sinceαn(t) is a slowly varying function,
the motion occurs at almost constant frequency (i.e. the frequency does not vary significantly during the propagation
time of surface waves between coupled jets). Thus, the integral operator can be simplified so that the effect of the
wave propagation from jetsn to m is just an attenuationf (rmn) and a phase shiftk(ωn)rmn wherek(ωn) is the
wavevector andrmn the distance between jetsn andm. We obtain then the following equation:

dαm
dt

− γ (1 − αmα
∗
m)αm + λ

∑
n,n6=m

f (rmn)e
−ik(ωn)rmnαn = 0. (4)

The frequencyωn of jetn is the frequency ofαn(t)eiω0t , i.e.ω0 plus, as a correction, the frequency ofαn(t) averaged
over a time1t (typically the propagation time between coupled jets). The wavevector is given by the dispersion
relation of surface waves. Note that the wave propagation is modified by the large scale horizontal flow of the water
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escaping from the array. Nevertheless, our array is small enough so that this velocity (a few 10−2 m/s) remains
small compared to the wave phase velocity (a few 10−1 m/s). Note that although the correctionωn − ω0 can be
small, the effect ofk(ωn)rmn is of the order of several wavelengths. For practical applicationsf (rmn) will be taken
as a series of coefficients:µ1 for first neighbours, . . . , µs for the sth neighbour. By adjustingλ(U) it is always
possible to normalizeµ1 to one. As will be seen later, the shortest series fitting our results consists in the first three
terms. So the behaviour of the jet array is specified byγ, λ, andf (r) as in the two-jet case.

The free jet rotation rateω0, which plays a key role in (4) throughk(ωn) in the coupling term, varies depending
on the velocity of the water jet. In factω0 is considered in the following as a control parameter since it can be easily
tuned during experiments.

The limit cycles of such a system can be investigated analytically in the limit of infinite arrays so that the symetry
of translation can be used. Since all jets lock at the same frequencyωn = ω, the appropriate complex amplitudes
are of the formαm(t) = αei((ω−ω0)t+ϕmo), whereα is a real constant. The characteristics of this limit cycle can be
found expressing the fact thatω, α andφm should be such that Eq. (4) is fulfilled:

For anym, i(ω − ω0)αm − γ (1 − α2)αm + λ
∑
n,n 6=m

f (rmn)e
−ik(ω)rmnαn = 0. (5)

Eq. (5) is equivalent to the search of eigenvectors of operatorC defined by

{ψm} → C{ψm} = λ



∑
n,n6=m

f (rmn)e
−ik(ω)rmn9n


 , (6)

where{Ψm} is a collection of complex numbers indexed by the jet number. It is convenient to look for solutions
periodic in space, with a arbitrary long periodsLu andLv. Let us introduce the functions

Fpq(m) = e2ipπXm(au/Lu)e2iqπYm(av/Lv) and p, q = 0,±1,±2, . . . ,±Lu/2au.
It is easy to check that{Fpq(m)} are eigenvectors ofC.∑

n,n6=m
f (rmn)e

−ik(ω)rmnFpq(n) = ΛpqFpq(m) with Λpq =
∑
n,n 6=m

f (rmn)e
−ik(ω)rmnFpq(n)F−p−q(m). (7)

This is due to the invariance by translation of the system, so that the sum in (7) does not depend on the choice ofm.
In the following the jetm will be taken at the origin. Thusαm = αei(ω−ω0)tFpq(m) is a solution of Eq. (5) provided
α andω fulfill the condition:

λΛpq(α, ω)+ i(ω − ω0)− γ (1 − α2) = 0. (8a)

The imaginary part of (8a) provides an equation forω which is a generalisation of Eq. (2):

Zpq(ω) = ω − ω0 + Im


λ∑

n6=0

f (rn)e
−ik(ω)rnei(2pπauXn/Lu)ei(2qπavYn/Lv)


 . (8b)

Then the amplitude is given by the real part:

α2
pq = 1 − 1

γ
Real


λ∑

n6=0

f (rn)e
−ik(ω)rnei(2pπauXn/Lu)ei(2qπavYn/Lv)


 . (8c)

For a given set(p, q) the functionZpq(ω) defined by Eq. (8b) has generally one root, but whenλ is large enough,
often several solutions exist. However solutions too far fromω0 are not compatible with the use of the amplitude
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Fig. 6. FunctionZpq(ω) defined by Eq. (8b) forω0 = 190 s−1. All cases are presented:p = q = L/2a (optical mode),p = q = 0 (acoustic
mode),p = 0, q = L/2a or p = L/2a, q = 0 (band mode). The other parameters are arg(λ) = 7π/8, µ1 = 1, µ2 = 0.67,µ3 = 0.2, and
γ = 100,a = 12 mm. The vertical bars represent the domain where roots are looked for. In the present case these is a solution for the acoustic
mode atω = 206.7 s−1 and for the band mode atω0 = 193.3 s−1.

Fig. 7. 3D plots of amplitudesα and frequenciesω−ω0 of the modes deduced from Eqs. (8a)–(8c) as a function of(P = 2ap/L,Q = 2aq/L).
The parameters are:λ = 30 exp(−i7π/8), γ = 100,µ1 = 1,µ2 = 0.5,µ3 = 0.2 and the geometry is a square network witha = 12 mm. The
results are displayed for twoω0 values, top:ω0 = 1255 s−1, bottom:ω0 = 190 s−1.

equation. For this reason only solutions satisfying(ω− ω0)/ω0 < 0.1 will be considered. An example is shown in
Fig. 6. The saturation amplitude of the mode is then given by Eq. (8c) provided the second member of the equation is
positive (otherwise the mode has zero amplitude). Eqs. (8a)–(8c) have been solved numerically for various networks
so that the amplitudes and the frequency of the modes(p, q) are obtained as a function ofω0. An example is shown
in Fig. 7 which displays the mode amplitudes and frequencies as a function of(p, q) for two values ofω0 .
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All these limit cycles are solutions for the coupled jet motion. However it can be shown (see Appendix A) that
only the mode with the largest amplitude should be stable and hence be observed in experiments. It appears that,
depending onω0, this mode is such thatp = 0 orp = Lu/2au andq = 0 or q = Lv/2av. These modes with the
extremum amplitudes correspond to three possible combinations:
1. p = q = 0: all the bumps rotate in phase (acoustic mode).
2. p = Lu/2au, q = Lv/2av: neighbouring bumps rotate in phase opposition (optical mode).
3. p = 0, q = Lv/2av or p = Lu/2au, q = 0: jets are in phase in vertical or horizontal bands (“band” mode).

There are two band modes (horizontal or vertical wavevector) with the same amplitude.
Note that for a givenω0, the value of the dominant mode depends also on the relative weights of the interactions

between neighbours, i.e. the seriesµs (an example is the difference between Figs. 9 and 10).

3.3. Modes with counter-rotating jets

The results obtained in the previous section are compatible to what is obtained in experiments for 2 or 4 jet
sets but slightly different from what is seen on large arrays [2,11]. Indeed, in large arrays, it appears that modes
with counter-rotating jets are often preferred. An attempt has been made to explain these features assuming that
the coupling term of Eq. (4) had some generality. If the amplitude equation can be generalised to jets rotating in
opposite direction, these are to first order not coupled. Indeed the “force” applied on jetm by a counter-rotating
jet n is: Fm(t) = λαnf (rmn)e−ik(ω)rmn−iω0t−iφn while the velocity jetm is V (t) = iω0αme+iω0t−iφn . The power
exchanged between jets which is proportional toFmV

∗ cancels at first order when averaged over one period. The
consequences of these properties can easily be seen in a square network by considering the contribution of the eight
first neighbours to the motion of a given jet. Takingω = ω0 for the sake of simplicity, Eq. (4) reads:

dα

dt
− γ (1 − αα∗)+G(ω0, a)α = 0 (9a)

with the following conditions:

For acoustic mode :G(ω0, a)α = 4λf (a)e−ik(ω0)a + 4λf (a
√

2)e−ik(ω0)a
√

2, (9b)

for optical mode : G(ω0, a)α = −4λf (a)e−ik(ω0)a + 4λf (a
√

2)e−ik(ω0)a
√

2, (9c)

for band mode : G(ω0, a)α = 4λf (a
√

2)e−ik(ω0)a
√

2. (9d)

If the network is split into two subnetworks which ignore each other, one can similarly compute these terms just
by considering the four neighbours which are left at a distancea

√
2. For each of these subnetworks the functionG

can be expressed as follows:

For acoustic mode :G(ω0, a)α = 4λf (a
√

2)e−ik(ω0)a
√

2, (9e)

for optical mode : G(ω0, a)α = −4λf (a
√

2)e−ik(ω0)a
√

2, (9f)

for band mode : G(ω0, a)α = 0. (9g)

According to Eq. 9(a), the jet interaction is destabilising (acts in the same direction asγ ) if the real part of these
expressions is negative. Fig. 8 displays for both network and subnetwork geometries theG(ω0, a) of the mode with
the most real negative value. It appears clearly that belowω0 = 160 s−1 there is only one strongly destabilised
mode for subnetwork geometry (counter-rotating jets) while above 170 s−1 the strongest destabilised mode is for
a full network or co-rotating jets. There is no simple way of simulating the observed jumps from one system with
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Fig. 8. (a) For both network (plain line) and subnetwork geometries (dotted line) the Re(G(ω0, a)) of the mode with the most real negative value
as a function ofω0 for a square network witha = 12 mm. The arrows show the mode with the most real negative value. (b) Description of the
selected modes.

only co-rotating jets to two counter-rotating networks sinceω0 changes sign (making impossible the use of simple
amplitude equations). By extension of this case of co-rotating networks we propose the following conjecture which
has to be tested experimentally:the observed mode is the one with the largest amplitude considering both co-rotating
networks and one half of the network.

4. Comparison with experiments for periodic networks

For the configuration corresponding to experiment the amplitudes of eigenmodes have been computed. For each
geometry (square and triangular) full networks and the relevant partitions into two equal subnetworks are considered.
The full network is defined by the two vectorsu andv which can lead to two modes with co-rotating jets. The
subnetworks corresponding to the observations described above are defined by the two vectors(u+ v) and(u− v)

in the square network and(2u, v) in the triangular geometry. The amplitudes and frequencies of each mode are
computed for the full network or a subnetwork and the dominant mode is sorted.

The parameters must be adjusted to simulate the observed mode configuration and the frequency jumps. If one
adds an additional constraint to fit the two jet experiments discussed in Section 3.1,λ is determined. By comparing
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Fig. 9. Comparison of the results of the eigenmode analysis and time evolution code for a square network as a function ofω0. The parameters
area = 12 mm,λ = 30 exp(−i7π/8), γ = 100,µ1 = 1, µ2 = 0.5, µ3 = 0.2. (a) AmplitudeA of optical mode (full line), acoustic mode
(dashed line) and band mode (dash dotted line) predicted by the eigenmode analysis for an infinite network. (b) Phase pattern obtained from the
evolution code after 12 s (6× 6 network): B=band mode, O=optical mode, A=acoustic mode, M=mixture of modes. (c) Log(Φ/π), whereΦ
is the relative phase variation between the two last time slices for the time evolution in a 6× 6 network. (d) Measure log(δz) of the mode purity
as defined in Section 4. If it is larger than−1, the mode is called “mixed”.

Figs. 9(a) and 10(a), it can be seen that the weightsµs govern the mode repartition. Various forms forµ have been
tested including a direct dependence on distance. However the best results are obtained when the relevant parameter
is the rank of neighbouring network, suggesting that the capillary wave scattering by jets is the dominant loss source
rather than the damping of waves. For theµs, a parameter scan has been made in the spaceµ2 − µ3 (note that|λ|
is normalised so thatµ1 = 1). The results are shown in Fig. 11 for a square network. We can visualize the zone
where the dominant eigenmodes correspond to the one seen in all experiments. Figs. 12 and 13 show an example:
the chosen parameter set allows us to reproduce both the frequencies and modes observed in the experiment for the
square and the triangular networks.

5. Comparison with simulations

5.1. Description of the evolution code

In experiments the system differs from the infinite network discussed above at least for two reasons: First the
networks used in experiments have finite size (typically 50 jets) and second there is a spread in theω0 values (scatter
of a few per cent of the hole diameters). To see how these features may affect the results of the infinite network
theory, a time evolution code has been written to describe the behaviour of a finite array of coupled jets following
Eq. (4). Note that these equations are valid only in quasi-stationary conditions for co-rotating networks, because the
coupling term is only correct when the motion is harmonic so thatk(ωn)rmn is well defined. Moreover the frequency
and hence the coupling terms are not known a priori so that an interative procedure must be used.
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Fig. 10. Comparison of the results of the eigenmode analysis and time evolution code for a square network as a function ofω0. The parameters
area = 12 mm,λ = 30 exp(−i7π/8), γ = 100,µ1 = 1, µ2 = 1, µ3 = 0. (a) AmplitudeA of the optical mode (full line), acoustic mode
(dashed line) and band mode (dash dotted line) predicted by the eigenmode analysis for an infinite network. (b) Phase pattern obtained from the
evolution code after 12 s (6× 6 network): B=band mode, O=optical mode, A=acoustic mode, M=mixture of modes. (c) Log(Φ/π) whereΦ
is the relative phase variation between the two last time slices for the time evolution in a 6× 6 network. (d) Measure log(δz) of the mode purity
as defined in Section 4. If it is larger than−1, the mode is called “mixed”.

Fig. 11. Domain in theµ2 − µ3 space where results compatible with experimental data are obtained for square networks.
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Fig. 12. Phase and frequency obtained by the eigenmode analysis forµ2 = 0.67,µ3 = 0.2 for a square network; dotted line= optical subnetwork
and full line=optical network.

Fig. 13. Phase and frequency obtained by the eigenmode analysis forµ2 = 0.67,µ3 = 0.2 for a triangular network; dotted line= optical
subnetwork and full line= acoustic network.

1. The amplitudes are initialised with a frequencyω0 and random phaseφm and amplitude(< 0.05). Then the
system is followed during a time of order of 1/γ until the amplitude reaches a quasi-stationary value.

2. Then the iterative procedure takes place. The system is integrated during a few periods of the rotation motion of
the envelope, typically1T = 100π/ω0. A Fourier analysis allows one to get the actual frequenciesωn which
are used to “refresh” the coupling term which is replaced by a weighted average ofω0 andωn for the following
time slice.
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3. The same procedure is applied to the following time slices till the system converges. The frequenciesωn are
followed as a function of the number of iterations to check that the code converges. An additional convergence
criterion is obtained by measuring at any time slice the phase difference between the jet and a reference one.
When this phase difference does not depend on time the jets are phase locked. Typically the rquired number of
iterations is 10 in standard cases.

4. For any time slice the dominant mode is identified. The quantityφkn = arg(znF−k(n)) is computed fork
corresponding to optical, acoustic, both band modes. The identified mode corresponds to thek value so that the
standard deviation ofφkn at fixedk is minimum (it is zero for a pure mode). For this identification procedure
the edges which may have sometimes “pathological phases” are eliminated.

Simulations are made for various values ofω0 keeping constant values ofγ andλ. The outputs of the code are
the curvesω(ω0) andφkn(ω0) which fit the data. An example is given in Fig. 14 with the trajectories of theαm for
a 6× 6 square array(a = 12 mm) andω0 = 140 s−1. The functionf is given byµ1 = 1,µ2 = 0.5 andµ3 = 0.2
(the ones corresponding to Fig. 9). In the time lagt = 0–0.3 s the amplitude of the jet grows till the limit cycle
is reached (Fig. 14(a)). Then the jets follow this cycle as shown in Fig. 14(b). An acoustic mode can be clearly
identified. However the amplitude is jet-dependent, especially at the edge where it has a lower value. Note that at
the beginning the code is also adjusting the phases of the coupling coefficients, i.e. e−ik(ωn)rmn so that the trajectory
of the system in Fig. 14(a) is not exactly the actual one while for longer times the system has converged to the
stationary state, i.e. which is an actual solution of Eq. (4). The convergence of the code is illustrated in Fig. 14(c)
where for five runs (the initial conditions are random) the frequency, the logarithm of phase slip between time slice,
log(φ) and the identified mode are plotted as a function of the iteration number. Then the code has been used to
investigate the two following points.

5.2. Effect of the scatter inω0

The code has been used to test the rubustness of the rotation modes with respect to a scatter in the values of
ω0. A modified version of Eq. (4) is also considered in which jets have slightly different free rotation frequencies,
for instance, to account for a scatter in the diameters. This frequency is a random variable centered aroundω0, i.e.
ω0 + ν(m) whereν(m) is a uniform probability distribution in [−δ,+δ]. Eq. (4) becomes:

dαm
dt

+ iνmαm − γ (1 − αmα
∗
m)αm + λ

∑
m6=n

f (rmn)e
−ik(ωn)rmnαn = 0.

For the seriesµ1 = 1,µ2 = 0.5,µ3 = 0.2 andλ = 30 e−7iπ/8 a scan inδ has been performed for variousω0. We
have represented in Fig. 15, for a square network(5× 5), the value ofδ for which there is no more synchronisation
(δmax) as a function ofω0. As this was the case for the two-jet case [1] it appears that the system has some robustness
(δmax > 5 s−1) with respect to perturbations except close to the transition frequency, i.e.ω0 ∼ 170 s−1 as seen in
Fig. 9(a) when the optical mode amplitude crosses that for the acoustic mode.

5.3. Comparison of the asymptotic regimes predicted by eigenmode analysis and the code

It is interesting to study the finite size effects by comparing the asymptotic regime predicted by the evolution code
for a finite network with expectations from the selection mechanism discused in Appendix A for infinite networks.
This has been done for two functionsf , firstµ1 = 1,µ2 = 0.5,µ3 = 0.2 and secondµ1 = 1,µ2 = 1,µ3 = 0.
According to the eigenmode analysis the first set ofµs leads to an acoustic mode for 120 s−1 < ω0 < 165 s−1,
optical outside this range. For the second set ofµs the band modes are the ones with the largest amplitude for
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Fig. 14. Square network (6× 6, mesh= 12 mm), trajectories of the envelopesαn in the complex plane. The parameters areλ = 30 exp(i7π/8),
µ1 = 1,µ2 = 0.5,µ3 = 0.2, γ = 100,ω0 = 140 s−1. (a) Example of start up betweent = 0 and 0.3 s forω0 = 140 s−1. The stars represent
the position of the bump at the end of the time slice and the cross is the origin. (b) Asymptotic regimet = 51–52 s forω0 = 140 s−1, i.e. when
the expected one is the acoustic one (see also Fig. 9). The star represents the position of the bump at the end of the time slice and the cross is
the origin. (c) For 5 runs: evolution of frequencyω, of log(Φ/π), the log of average phase slip between time slices and of the identified mode
as a function of the number of iterationsu for ω0 = 140 s−1. B=band mode, O=optical mode, A=acoustic mode, M=mixture of modes.

110 s−1 < ω0 < 170 s−1, while the acoustic mode dominates outside. This mode repartition can be seen in Figs.
9(a) and 10(a). A finite network(6 × 6) has been evolved for variousω0 for both series ofµs. Some results of the
time evolution code are displayed in Figs. 9(a) and 10(b). It appears that the evolution code converges to cycles
compatible with the prediction of the eigenmode analysis.
• When the dominant mode is either the optical or the acoustic mode, the evolution code converges most of the

time of this mode. However the mode is somewhat distorted by the presence of the edge as shown by the standard
deviationδz of theφn which stays often in the range 10−3–10−1 (above 10−1 the mode is considered to be mixed).
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Fig. 15. Value ofY = δmax as a function ofω0 obtained with the time evolution code running. The other parameters areµ1 = 1, µ2 = 0.5,
µ3 = 0.2, λ = 30 e−i7π/8 andγ = 100. The network is a square. 5× 5 array witha = 12 mm.

One can also note that when at large frequencies the dominant mode is the optical one the normalised phase slip
φ/π between time slices is rather high indicating that the limit cycle remains rather noisy.

• When the dominant mode is the band mode the resulting motion, although coherent (it is phase locked), does not
correspond to a well identified mode but is rather a mixture. This is coherent with the fact that the eigenmode
analysis predicts no stable dominant mode.

6. Conclusion

This work was motivated by experimental results obtained on water jets which exhibit a wide variety of collective
behaviour. This leads us to introduce a new model of coupled, nonlinear and synchronised rotators. It appears that
by fitting two parameters (complex coupling strength and attenuation as a function of jet relative positions) this
model explains a wide variety of observations involving the frequency of rotation, mode structure, spontaneous
splitting into subnetworks, this for various configurations (limited set of jets, large square or triangular networks).
Two ingredients are required to explain the observed behaviour of the rotators:
• An amplitude equation in which the jets are coupled together through a retarded interaction term. For infinite

networks this equation can be transformed into a linear one and the phase patterns observed in the networks are
the eigenmodes of the operator.

• A criterion for the mode selection which is based on consideration of the nonlinear behaviour of the solutions. If
one considers only jets rotating in the same direction, it can be shown analytically for infinite networks that only the
mode with the largest amplitude is stable. This criterion is extended to configurations including counter-rotating
subnetworks.
This new model offers interesting new features. First, due to the fact that the coupling between each element

is due to travelling waves, in a dispersive medium there is a subtle interaction between the limit cycle frequency
and the coupling which in numerical simulation requires the use of an iterative scheme. Second, each rotator can
have positive or negative rotation frequency, i.e. two possible limit cycles are allowed. The system can “select” the
repartition of these two limit cycles to optimise the interactions.
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Appendix A. Phase pattern selection in an infinite network

Above it has been seen that many modes could be possible limit cycles for an infinite network. It is interesting
now to test their stability. Let us assume that the system oscillates around a limit cycle defined by the couple of
wavenumbers(p0, q0) = i0 corresponding to the frequencyωi0 and amplitudeαi0. The displacement of jetm is
given byαm = εi0ei(ωi0−ω0)tFi0(m) whereεi0 = αi0 andFi0(m) are defined in Section 3.2. A perturbation of
the displacement can be expressed as a superposition of contributions of the modesj = (pj , qj ) i.e. δαm(t) =∑
j εj (t)e

i(ωj−ω0)tFj (m) where theεj (t) are time varying complex amplitudes. The equation of motion of bump
m can be linearized and projected on each modek.

The non linear term : (αm + δαm)
2(αm + δαm)

∗ =
∑
i,j,h

εiεj ε
∗
j ei((ωi+ωj−ωh−ω0)t)Fi(m)Fj (m)F

∗
h (m),

can be linearized into: α2
i0

(∑
h

ε∗hei((2ωi0−ωh−ω0)ti )F 2
i0(m)F

∗
h (m)+ 2εhe

i((ωh−ω0)t)Fh(m)

)
.

At this point it is convenient to introduce the mode with the indexk′ = (2p0 − pk,2q0 − qk) so thatFk(m) =
F 2
i0(m)F

∗
k′(m), i.e. the mode coupled to thekth through nonlinear effects. Thus the linearized amplitude equation

for the Fourier componentFk reads:

i(ωk − ω0)εk + dεk
dt

− γ (1 − 2α2
i0)εk + λεk

∑
m6=n

f (rmn)e
−ik(ωk)rmnFk(n)F−k(m) = −γα2

i0ε
∗
k′e

i(2ωi0−ωk′−ωk)t .

(A.1)

Note the right-hand side varies in time only because of the nonlinearity of the relation of dispersion of the modes,
i.e. slowly with time. Eq. (5) applied to the modek gives

i(ωk − ω0)εk − γ (1 − α2
k )εk + λεk

∑
m6=n

f (rmn)e
−ik(ωk)rmnFk(n)F−k(m) = 0, (A.2)

whereαk is the saturation level of this model when it is alone. By substracting Eq. (A.2) from (A.1), we obtain an
equation forεk. Similarly an equation can be obtained forε∗

k′ by permutingk andk′ and taking the conjugate. The
resulting equations are:

1

γ

dεk
dt

= (α2
k − 2α2

i0)εk − α2
i0ε

∗
k′e

i(2ωi0−ωk′−ωk)t ,

1

γ

dε∗
k′

dt
= (α2

k′ − 2α2
i0)ε

∗
k′ − 2α2

i0εke
i(2ωi0+ωk′+ωk)t .

This is a linear system with coefficients varying slowly in time. An approximate (time varying) growth rate can be
found assuming that these coefficients are frozen. The eigenvalues follow the relation:

λ(t)2 − λ(t)(α2
k + α2

k′ − 4α2
i0)+ (α2

k′ − 2α2
i0)(α

2
k − 2α2

i0)− α4
i0 = 0

The stable zone, i.e. when the real parts of the eigenvaluesλ(t) are negative, can be drawn in theα2
k/α

2
i0 − α2

k′/α
2
i0

space as shown in Fig. 16. It is interesting to note that when the cyclei0 corresponds to one of the three modes
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Fig. 16. Stability domain of a modei0 = (p0, q0) of amplitudeαi0 with respect to a perturbationk = (p, q). It is plotted as a function ofα2
κ/α

2
ι0

andα2
k′/α

2
ι0 whereαk andαk′ are the amplitudes at the limit cycle (given by Eqs. (8a)–(8c)) of the modesk andk′ so thatk′ = (2p0−p,2q0−q).

(acoustic, optical, band) described above, or when modes with the same wavenumbers (but different frequencies)
are considered thenαk = αk′ and only the first diagonal in Fig. 16 is relevant. The roots areλ = α2

k − 2α2
i0 ± α2

i0
so that the stability criterion is justα2

i0 > α2
k , i.e. to be stable a mode must have the largest amplitude. According

to these computations one should expect that the selected mode is the one with the largest amplitude. Note that the
band mode should never be stable since two modes exist with similar amplitude.
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