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Abstract

We consider the interaction of oscillators with a noninstantaneous coupling ensured by slow traveling waves. Actually,
this particular type of coupling is observed in an experimental system which consists of a bidimensional network of vertical
water jets in the presence of a water—air interface: jets rotate and their motions are coupled together through surface waves.
Depending on the free jet rotation frequency and of the geometry of the array, this system exhibits various collective modes
where the jets synchronise themselves to form phase patterns, rendered sometimes complex by the fact that each jet can rotate
clockwise or anticlockwise. A model is proposed which explains many features of the experiment. The dynamics of jets is
described by amplitude equations with retarded interaction terms. An interesting point is that the dispersion relation of the
surface waves renders the interaction term non linear in a subtle way since its effect depends on the frequency of the limit
cycle of the array. This model allows one to determine the possible phase patterns and provides a criterion for the selection
process. ©2000 Elsevier Science B.V. All rights reserved.

PACS:47.20; 68.10; 68.15

1. Introduction

A vertical jet impinging from below on a water—air interface first pushes upwards a little bump so that the water
surface tension equilibrates the jet pressure. For a critical value of the jet valdiyhich depends on the depth
of the jet nozzle), this bump starts rotating while generating spiral waves which propagate at the surface as shown
in Fig. 1. The motion frequency range is between 15 and 50 Hz. As discussed in [1], the jet actually constitutes an
“excitator” (it undergoes an helical instability) and, associated to the elastic interface which can be assimilated to
a resonator, it oscillates at a frequengydepending on the interface (surface tension, of fluid) and jet properties
(velocity). Then, beyond a jet velocity;, the bump is broken and the system enters the “fountain regime”.

This paper deals with bumps in the rotating regime. The remarkable feature of such a system is that it can be
assembled in arrays [2,11]. As shown in [1], each jet is coupled to the other ones through surface waves and thus,
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Fig. 1. Pictures of the bump at the vertical of one jet. (a) The asymmetric rotating burtp folU. and (b) the spiral wave generated at the
interface by a rotating bump.

through a retarded coupling. Jets can be described as coupled oscillators close to their limit cycle. Such systems
have been investigated from a theoretical point of view (see, for instance, [3-6]) and there have been some attempts
to achieve experiments based on hydrodynamics which behave as coupled oscillators. This is the case, for instance,
of coupled jets [7], wakes [8], boundary layers [9], or vortices [10]. Actually, in experiments with jet arrays,
jets synchronize themselves and form various phase patterns with co- or counter-rotating configurations. The jet
system described here has some well known properties of “standard” coupled oscillators like synchronisation, and
robustness with respect to slight differences between elements. However, jet arrays exhibit three differences with
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respect to “standard” coupled oscillators. First the coupling is not instantaneous but ensured by traveling waves
propagating at finite velocity while in most of the cases the coupling is either diffusive, i.e. a given jet is sensitive to
the information from its neighbours [10] or global when each oscillator is coupled to all the other ones as in many
theoretical models. Second, due to the dispersion relation of the waves, the nature of the coupling depends on the
frequency of the waves, i.e. of the synchronisation frequency through a phase factor. Finally a rotating jet admits
two limit cycles, both signs abg rendering the collective behaviour richer.

The aim of this paper is to present a model of a coupled oscillator with delayed interaction explaining the
experimental results obtained in large arrays. In Section 2, experiments with sets of two jets and periodic triangular
or square networks are presented and the main results are summarised. Then, the effect of defects (some jets are
lacking) is briefly discussed as on the phase pattern. In Section 3, the model is described. In a first step, the main
features of interaction between jets deduced from two jet experiments are recalled. Then the model is extended to
large arrays of jets rotating in the same direction. The amplitude equation is solved using an eigenmode analysis
valid for infinite networks allowing one to identify possible phase patterns and to discuss the selection mechanisms
for the dominant one. Then the model is generalised to situations where the network splits into two counter-rotating
subnetworks. In this case no amplitude equation can be found, however a conjecture allowing one to determine the
dominant pattern is proposed. In Section 4, experimental results are compared with the predictions of the model. In
Section 5, the eigenmode analysis is compared to the result of a direct simulation of coupled oscillators.

2. Experiments

The experimental set up which is similar to the one used in[1,2,11]is presented in Fig. 2. Water enters the injection
chamber and gets out through the holes (diameter 1 mm) of the perforated plate. Then the resulting jets impinge from
below the water-air interface. The depth of the plates h can be controlled by a micropositioner typically between
5 and 25mm. The flow velocity/ of the jets lie between 0.5-0.7 m/s (the Reynolds numbers are in the range
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Fig. 2. Experimental setup. is the depth of the jets under the surface, the holes of the perforated plate are of 1 mm diameter. Only one jet is
represented.
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250-350). The bump frequencies (15-50 Hz) are measured using a photodiode intercepting the modulated light
reflected by the water surface. As shown in [1], the single jet frequepewries as LU . Experiments in which the

phase pattern in determined as a functiob/df.e. wg) are made for various arrays. For this a video camera coupled

to a stroboscope is used. For each network a depth is selected and then the velocity of the jet is increased from the
critical valueU. to Uy, i.e. the free rotation frequeneyy is decreased. Depending on the geometric characteristics

of the perforated plate, the depth of the jets and the velocities, various modes are observed. Preliminary experiments
have been made with two jet configurations to explain and characterise precisely the nature of the coupling. Then,

experiments have been made using square and triangular networks of about 50 jets.

2.1. Observed modes

2.1.1. Two jet configuration

The two jets were separated by distances B03m < a < 12 x 103 m, the plate being at a constant depth.
The coupling between the jets exists fox 12 x 10~3m. The bumps have always the same direction of rotation
and oscillate at the same frequency. When varying the flowlyabe jet spacing, two synchronisation modes are
observed: an acoustic mode where the two bumps oscillate in phase and an optical mode where the bumps oscillate
in phase opposition. Other effects of the coupling are that the frequency at a given flow rate is different from the
free jet one and the critical flow rate, where the bumps start oscillating, is lower for the two coupled bumps than
for a single one. The transition between the two modes is accompanied by a phase and frequency jump (see dots
in Fig. 5) but this transition is not sudden. Indeed the system hesitates between the two modes in a transition zone.
More details can be found in [1].

2.1.2. Square network

We consider now periodic networks. With a square network, defined by the two vecaoidv (see Table 1),
at low velocities(Us = 0.59m/s < U < 0.61m/s), a first mode is observed: the optical mode (“diagonal” mode
using the terminology of [2,11]) which is represented in Fig. 3(a). All the bumps rotate in the same direction with
a frequency between 29 Hz (for 0.61 m/s) and 34 Hz (for 0.59 m/s), and any bump is in phase opposition with its
nearest neighbours. If the velocity is increased from 0.6165 B/s = Us, a new mode appears: the “gearing”
mode (Fig. 3(b)). Two directions of rotation now coexist, and the network is divided into two sublattices each of
them with different directions of rotation. These two sublattices are defined by the two végters) and(u — v),
and each of them undergoes an optical mode. The frequency of this mode lies between 22ZHz(fb2 m/s)
and 20 Hz (forU = Us).

2.1.3. Triangular network

With a triangular network (Table 1), depending on the velocity, two kinds of modes are seen. At low flow rate,
Uc = 0.58m/s < U < 0.63m/s, a mode with two sublattices and two directions of rotation is identified (Fig.
4(a)). Each sublattice is a rectangular mesh defined by the two ve@orand v. It is in an “optical mode”.
In this “parallel” mode, the bumps rotate with frequencies between 28 Hzl{fet 0.62 m/s) and 33 Hz (for

Table 1
Jet arrays used in the experiments
a u v N h(depth) Uc Us
Square 12mm a,(1,0) a,(0,1) 57 jets 27 mm 0.59m/s 0.65m/s

Triangular 12mm a,((1/2),/3/2) a,(1,0) 48 jets 22mm 0.58m/s 0.64m/s
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Fig. 3. Various modes observed with a square network: each symbol represents a bump; the symbols “plus” or “minus” define the two different
subnetworks; one subnetwork turns clockwise and the other one anticlockwise; in each subnetwork, the different colors mean phase opposition.
(a) the optical mode or the optical full network, (b) the gearing mode or the optical subnetwork.
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Fig. 4. Various modes observed with a triangular network: (a) the parallel mode and (b) the acoustic mode.

U = 0.58 m/s). For higher velocities.82 m/s < U < Us = 0.64 m/s, an “acoustic mode” is selected (Fig. 4(b)).
All the bumps have the same direction of rotation and are in phase all together. The frequencies of this mode remain
bounded in the range 20 Hz (Et= 0.64 m/s) to 22 Hz (at/ = 0.63 m/s).

2.2. Role of defects in the structure

We have investigated the role of defects in the large networks, by suppressing holes. The results obtained are qual-
itative because of the nonstationary character of the motion preventing reliable measurements (a faster videocamera
or operation with a low surface tension fluid to reduceould be required). Whatever the number of blocked holes
introduced, the modes corresponding to the upper range of flow rates, acoustic and gearing modes, are robust and are
not perturbed by the defects. At low flow rate, where the two subnetworks modes (“optical” or “parallel”) appear,
consquences are observed, more or less severe depending on the number of defects introduced. For one blocked hole,
there is an irresoluteness in the direction of rotation for the nearest bumps of the defect. These particular bumps,
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“hesitate” changing their directions of rotation for a few seconds before recovering the “right” one. Concerning the
other bumps, the second neighbours of the defect and the others, they are not affected and keep moving as in the
absence of defects either in an “optical” mode or in a “parallel” mode. If several defects are introduced, the second
or the third neighbours may be affected by the first neighbours. But, nevertheless, considering an average in time
and in space, the mode which is recovered is the same as for the configuration with no defect.

3. Modelisation
3.1. Interaction between jets. Case of two-jet systems

When the jet velocityy exceeds the threshold., the bump at the interface is unstable and it starts rotating
at frequencywo which is a function ofU. In two jet configurations, experiments show that rotation couple at
frequencyw slightly different fromwg. The displacement of jet (= 1, 2) with respect to its axis can be expressed
as:xy, + iym = o ()€ with a,, (1) = ae@—@0)+¢n  Two synchronization modes exist, optical with= m
or acoustic withp,, = 0, depending either on jet spaciagr jet velocityU (or wp). The dependence on the phase
of the coupling and the fact that jets radiate surface waves (see Fig. 1) or can be synchronized by such waves led
us to consider a model where the jets were coupled through waves [1]. The simplest equation to describe such a
system consists of oscillators close to their limit cycle and coupled by surface waves:

doq dao

5 —ra- la1[2)ar + Af (@)aze K@a = 0, 5 —ra- 2Dz + Af (@are¥@ = 0. (1a)

Or substituting the envelope function by its expression:

i(@ — wo) — y (1 — |a]?) + Af (@)~ K@atilve=e) = q,

(@ — wo) — y(1— |af?) + if (@) K@atiGre2) — g (1b)

The twofirsttermsin (1a) describe the behaviour of a simple oscillator reaching its limiteyelel (the amplitudes
are normalized so that the coefficient is 1) and the growth rateTée last term accounts for the coupling through
waves. The complex parameteis a measure of the strength of the coupling. The wave characteristics are described
by an attenuation through the real numiygr) and a phase shift(w)a. The wavenumbek(w) is obtained from
the dispersion equation of the surface wave in deep water taking the actual jet frequenéy= gk (1 + kzlg) (g
is the gravity constant arid is the capillary length). It should be noted that the wave propagation may be affected
by the radial water flow from the jets. However its average during the propagation between the two jets cancels.
So the behaviour of the jet array is specified by three data: (€al), the growth rate of the single jet instability,
(2) » (complex), the coupling parameter which governs the interaction between jets and (3) the fiiiei(neal).
It is easy to see that the amplitude equation (1b) admits solutions orly of 2 = 0 or x corresponding to
frequencies and amplitudes given by

® = wo = ef (@)|A] SiN(—k(w)a + argh)),
la| = \/1 — 2l f(a) cos(—k(w)a + arg2)

)

with € = 1 for 91 — @2 = 0 or —1 in the other case. It can be shown (see [1]) that only the mode with the largest
amplitude is stable and hence should be observed. Comparison with two-jet experiments varying the jet spacing and
U allows one to validate this model and to determiyiéa). The argument of determines the value afy at which

the transition occurs (when the cosine in Eq. (2) cancels) between two modes, wheesakf (r) determine the

value of the frequency jump. This has been done in [1]. The experimental data allow one to fit the arguiment of
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Fig. 5. For two jets withu = 8.5 x 10~3m, a comparison between the experimental results (dots) and the model (dotted line for the acoustical
mode and full line for the optical mode) with the numerical values chosen23e71"/8 and f (a) = 1.

to 77 /8 £ 7 /8 while there was some freedom in the choicédff (a). The experimental results are fitted when
this product is in the range 25-30, however the functf@m) could not be determined. Changes in the valug of

had only little importance. An example of comparison of predictions of Eq. (2) with experiment is shown in Fig. 5.
The functionsw (wg) anda (wo) for the two modes defined by Eq. (2) with= 8.5 x 10~3 m, are plotted. Both the
nature of the mode and its frequency correspond to the theoretical prediction.

3.2. Extension of the model to larger networks

One considers now a periodic network of corotating jets which can be generated from a single point with
translations along two vectotsandv of norma, anda,. Any jetm(m = 1,2, ..., oo) will be defined by two
co-ordinatesx,, andY,, (X,, andY,, are integers). Its displacement with respect to the jet axis as a function of time
is given byx,, + iy, = an ()€ wherea,, (7) is a slowly time varying amplitude.

The two jet model can be generalized to such a network. The simplest equation to describe oscillators coupled
by surface waves is

do,,

t
F - yU)a- Olm‘}‘;;)am +A(U) Z /OO Xrmns £ — t/)an(t/) di’ = 0. (3)

m,n#m*

The integral operatog represents the effect (retardation and attenuation) of the propagation of the surface wave
which is a function of — ¢+’ and of the distancs,,, between jets. Actually, sinas, (¢) is a slowly varying function,
the motion occurs at almost constant frequency (i.e. the frequency does not vary significantly during the propagation
time of surface waves between coupled jets). Thus, the integral operator can be simplified so that the effect of the
wave propagation from jets to m is just an attenuatiorf (r,,,,) and a phase shift(w,)r,, wherek(w,) is the
wavevector and,,,, the distance between jetsandm. We obtain then the following equation:
do _ y (L= amog)otm + & Y f(rmn)e @ ma, =0 (4)
dr mYUy ) Om mn n .
n,n#m
The frequencyy, of jetn is the frequency o, ()€, i.e.wg plus, as a correction, the frequencyq{r) averaged
over a timeA¢ (typically the propagation time between coupled jets). The wavevector is given by the dispersion
relation of surface waves. Note that the wave propagation is modified by the large scale horizontal flow of the water
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escaping from the array. Nevertheless, our array is small enough so that this velocity (afem/3) remains
small compared to the wave phase velocity (a fewfi/s). Note that although the correctian — wg can be
small, the effect ok(w,,)r., is oOf the order of several wavelengths. For practical applicatfaing,,) will be taken
as a series of coefficientg; for first neighbours ... , u for the sth neighbour. By adjusting(U) it is always
possible to normalizg; to one. As will be seen later, the shortest series fitting our results consists in the first three
terms. So the behaviour of the jet array is specified by, and f (r) as in the two-jet case.

The free jet rotation rateg, which plays a key role in (4) through{w,,) in the coupling term, varies depending
on the velocity of the water jet. In faafy is considered in the following as a control parameter since it can be easily
tuned during experiments.

The limit cycles of such a system can be investigated analytically in the limit of infinite arrays so that the symetry
of translation can be used. Since all jets lock at the same frequgney v, the appropriate complex amplitudes
are of the form,, (1) = a€(@—®0)+¢mo) \whereq is a real constant. The characteristics of this limit cycle can be
found expressing the fact that « and¢,, should be such that Eq. (4) is fulfilled:

Foranym, i(w— wo)oy, —y (L — o) + A Z f(rmn)e_ik(‘“)r’""an =0. (5)
n,n#m

Eq. (5) is equivalent to the search of eigenvectors of operatbefined by

W) = Clymt =2{ D flrmne K@y, 1 (6)

n,n#m

where{¥,,} is a collection of complex numbers indexed by the jet number. It is convenient to look for solutions
periodic in space, with a arbitrary long periollg andL,. Let us introduce the functions

Fpg(m) = P Xm@/Lgiar¥n@ /L) and p g =0, 41,42, ..., £L,/2a,.

It is easy to check thdtF,, (m)} are eigenvectors af.
D Fmn)e KO EL () = Apg Fpg(m) With Apg = " frun)e X Fpy()F_p_g(m).  (7)

n,n#m n,n#m
This is due to the invariance by translation of the system, so that the sum in (7) does not depend on the ehoice of
In the following the jetn will be taken at the origin. Thusg,, = cxe'(w“”O)’F,,q (m) is a solution of Eq. (5) provided
a andw fulfill the condition:

AA pg (@, ) +i(@ — wg) — y (1 —a?) = 0. (8a)

The imaginary part of (8a) provides an equationdowrhich is a generalisation of Eq. (2):

qu (Cl)) =w—wy+ Im )\Zf(rn)e_ik(w)rnei(2177”11(Xn/Lu)ei(zq”avYn/Lv) . (8b)
n#0

Then the amplitude is given by the real part:

alz)q — 1 _ lReal )\'Zf(rn)e_ik(w)rnei(zpﬂaan/Lu)ei(zqnavYn/Lv) . (8C)
Y n#0
For a given setp, ¢) the functionZ ,, (w) defined by Eq. (8b) has generally one root, but whéslarge enough,
often several solutions exist. However solutions too far feggrare not compatible with the use of the amplitude



F. Giorgiutti, L. Laurent/Physica D 136 (2000) 303-321 311

optical mode
1001 /—f’_\
Zpq

-100

acoustic mode

2001 /—'

Zpq 0
-200C ]
band mode
1 00 T T T =T T T
Zpq O
-100 A . . A . :

140 160 180 ® 200 220 240

Fig. 6. FunctionZ ,, (w) defined by Eq. (8b) fowg = 190 s 1. All cases are presentefl:= g = L/2a (optical mode)p = g = 0 (acoustic

mode),p = 0,¢ = L/2a or p = L/2a, ¢ = 0 (band mode). The other parameters arg)arg= 77/8, u1 = 1, up = 0.67, u3 = 0.2, and

y = 100,a = 12mm. The vertical bars represent the domain where roots are looked for. In the present case these is a solution for the acoustic
mode atw = 2067 51 and for the band mode af = 1933s1.
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Fig. 7. 3D plots of amplitudes and frequencie® — wo of the modes deduced from Egs. (8a)—(8c) as a functig® et 2ap/L, Q = 2aq/L).
The parameters arg:= 30 exg—i77/8), y = 100,71 = 1, u2 = 0.5, u3 = 0.2 and the geometry is a square network wits 12 mm. The
results are displayed for twey values, topwo = 12551, bottom:wg = 190s 1.

equation. For this reason only solutions satisfyiag— wo)/wo < 0.1 will be considered. An example is shown in

Fig. 6. The saturation amplitude of the mode is then given by Eq. (8c) provided the second member of the equation is
positive (otherwise the mode has zero amplitude). Egs. (8a)—(8c) have been solved numerically for various networks
so that the amplitudes and the frequency of the mggeg) are obtained as a function @f. An example is shown

in Fig. 7 which displays the mode amplitudes and frequencies as a functign @f for two values ofwg .
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All these limit cycles are solutions for the coupled jet motion. However it can be shown (see Appendix A) that
only the mode with the largest amplitude should be stable and hence be observed in experiments. It appears that,
depending omug, this mode is such that =0 orp = L, /2a, andg = 0 orq = L,/2a,. These modes with the
extremum amplitudes correspond to three possible combinations:

1. p = g = 0: all the bumps rotate in phase (acoustic mode).

2. p=1L,/2a,,q = L,/2a,: neighbouring bumps rotate in phase opposition (optical mode).

3.p=0,9=L,/2a,0rp=L,/2a,,q = 0: jets are in phase in vertical or horizontal bands (“band” mode).
There are two band modes (horizontal or vertical wavevector) with the same amplitude.

Note that for a givemg, the value of the dominant mode depends also on the relative weights of the interactions
between neighbours, i.e. the serigs(an example is the difference between Figs. 9 and 10).

3.3. Modes with counter-rotating jets

The results obtained in the previous section are compatible to what is obtained in experiments for 2 or 4 jet
sets but slightly different from what is seen on large arrays [2,11]. Indeed, in large arrays, it appears that modes
with counter-rotating jets are often preferred. An attempt has been made to explain these features assuming that
the coupling term of Eq. (4) had some generality. If the amplitude equation can be generalised to jets rotating in
opposite direction, these are to first order not coupled. Indeed the “force” appliedmrbjetr counter-rotating
jetn is: Fp(t) = Ady f (rpn)e k@rmn—ioot=idn \yhile the velocity jetm is V(1) = iwo, €0~ 1% The power
exchanged between jets which is proportionak}oV* cancels at first order when averaged over one period. The
consequences of these properties can easily be seen in a square network by considering the contribution of the eight
first neighbours to the motion of a given jet. Taking= wo for the sake of simplicity, Eq. (4) reads:

z—i[ —y(d—aa™) + G(wg, a)a =0 (9a)
with the following conditions:

For acoustic mode : G (wo, a)a = 4f (a)e K@ 4 43 £ (ay/2)e 1k (@0av2, (9b)

for opticalmode : G(wo, a)a = —4Af (a)e~ k@04 | 43 f (a+/2)e k@o)av2, (9c)

for band mode : G (wo, a)a = 4if (av/2)e k@av2, (9d)

If the network is split into two subnetworks which ignore each other, one can similarly compute these terms just
by considering the four neighbours which are left at a distané®. For each of these subnetworks the functibn
can be expressed as follows:

For acoustic mode : G (wo, a)a = 4.f (av/2)e k@0av2, (9e)
for opticalmode : G (wo, a)a = —4Af (av/2)e " k@av2, (9f)
for band mode : G(wo, a)a = 0. (99)

According to Eg. 9(a), the jet interaction is destabilising (acts in the same directjonifthe real part of these
expressions is negative. Fig. 8 displays for both network and subnetwork geometigathe) of the mode with

the most real negative value. It appears clearly that belpw= 160 s there is only one strongly destabilised
mode for subnetwork geometry (counter-rotating jets) while above 17éhe strongest destabilised mode is for

a full network or co-rotating jets. There is no simple way of simulating the observed jumps from one system with
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Fig. 8. (a) For both network (plain line) and subnetwork geometries (dotted line) i&(Bg a)) of the mode with the most real negative value
as a function ofvg for a square network with = 12 mm. The arrows show the mode with the most real negative value. (b) Description of the
selected modes.

only co-rotating jets to two counter-rotating networks singechanges sign (making impossible the use of simple
amplitude equations). By extension of this case of co-rotating networks we propose the following conjecture which
has to be tested experimentaliiye observed mode is the one with the largest amplitude considering both co-rotating
networks and one half of the network.

4. Comparison with experiments for periodic networks

For the configuration corresponding to experiment the amplitudes of eigenmodes have been computed. For each
geometry (square and triangular) full networks and the relevant partitions into two equal subnetworks are considered.
The full network is defined by the two vectagsand v which can lead to two modes with co-rotating jets. The
subnetworks corresponding to the observations described above are defined by the tw@wectorand (u — v)
in the square network an@u, v) in the triangular geometry. The amplitudes and frequencies of each mode are
computed for the full network or a subnetwork and the dominant mode is sorted.

The parameters must be adjusted to simulate the observed mode configuration and the frequency jumps. If one
adds an additional constraint to fit the two jet experiments discussed in SectiariSdetermined. By comparing
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Fig. 9. Comparison of the results of the eigenmode analysis and time evolution code for a square network as a functidreqfarameters

area = 12mm,» = 30exg—i77/8), y = 100,u1 = 1, u2 = 0.5, uz = 0.2. (a) AmplitudeA of optical mode (full line), acoustic mode

(dashed line) and band mode (dash dotted line) predicted by the eigenmode analysis for an infinite network. (b) Phase pattern obtained from the
evolution code after 12 s (6 6 network): B=band mode, &optical mode, A=acoustic mode, Mmixture of modes. (c) Log® /), where®

is the relative phase variation between the two last time slices for the time evolutiondréan&twork. (d) Measure Iqdz) of the mode purity

as defined in Section 4. If it is larger tha+l, the mode is called “mixed”.

Figs. 9(a) and 10(a), it can be seen that the weightgovern the mode repartition. Various forms fohave been

tested including a direct dependence on distance. However the best results are obtained when the relevant parameter
is the rank of neighbouring network, suggesting that the capillary wave scattering by jets is the dominant loss source
rather than the damping of waves. For jhg a parameter scan has been made in the spaeeus (note thati|

is normalised so that; = 1). The results are shown in Fig. 11 for a square network. We can visualize the zone
where the dominant eigenmodes correspond to the one seen in all experiments. Figs. 12 and 13 show an example:
the chosen parameter set allows us to reproduce both the frequencies and modes observed in the experiment for the
square and the triangular networks.

5. Comparison with simulations
5.1. Description of the evolution code

In experiments the system differs from the infinite network discussed above at least for two reasons: First the
networks used in experiments have finite size (typically 50 jets) and second there is a spreag iratbes (scatter
of a few per cent of the hole diameters). To see how these features may affect the results of the infinite network
theory, a time evolution code has been written to describe the behaviour of a finite array of coupled jets following
Eq. (4). Note that these equations are valid only in quasi-stationary conditions for co-rotating networks, because the
coupling term is only correct when the motion is harmonic sokl@ag )r.., is well defined. Moreover the frequency
and hence the coupling terms are not known a priori so that an interative procedure must be used.
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Fig. 10. Comparison of the results of the eigenmode analysis and time evolution code for a square network as a fagcfidre gfarameters

area = 12mm,» = 30exg—i77/8), y = 100,11 = 1, u2 = 1, u3z = 0. (@) AmplitudeA of the optical mode (full line), acoustic mode

(dashed line) and band mode (dash dotted line) predicted by the eigenmode analysis for an infinite network. (b) Phase pattern obtained from the
evolution code after 12 s (8§ 6 network): B=band mode, &optical mode, A-acoustic mode, Mmixture of modes. (c) Logp /7)) where®

is the relative phase variation between the two last time slices for the time evolution<iréanétwork. (d) Measure Iqdz) of the mode purity

as defined in Section 4. If it is larger thatl, the mode is called “mixed”.

117
09 T S
zone of compatibility with
experimental data
07 T
~ 05T
3.
03T
0.1 1
-0.1 0.1 0.3 0.5 0.7 0.9 1.1
01+ M3

Fig. 11. Domain in thet, — u3 space where results compatible with experimental data are obtained for square networks.
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Fig. 12. Phase and frequency obtained by the eigenmode analygis00.67, 3 = 0.2 for a square network; dotted lireoptical subnetwork
and full line=optical network.
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Fig. 13. Phase and frequency obtained by the eigenmode analygis fer 0.67, u3 = 0.2 for a triangular network; dotted line optical
subnetwork and full line= acoustic network.

1. The amplitudes are initialised with a frequengyand random phasg,, and amplitudg < 0.05). Then the
system is followed during a time of order ofy1 until the amplitude reaches a quasi-stationary value.
2. Thenthe iterative procedure takes place. The system is integrated during a few periods of the rotation motion of
the envelope, typicall AT = 1007 /wo. A Fourier analysis allows one to get the actual frequenejeshich
are used to “refresh” the coupling term which is replaced by a weighted averagaotiw, for the following
time slice.
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3. The same procedure is applied to the following time slices till the system converges. The frequgraies
followed as a function of the number of iterations to check that the code converges. An additional convergence
criterion is obtained by measuring at any time slice the phase difference between the jet and a reference one.
When this phase difference does not depend on time the jets are phase locked. Typically the rquired number of
iterations is 10 in standard cases.

4. For any time slice the dominant mode is identified. The quagity = ard(z, F_x(n)) is computed fork
corresponding to optical, acoustic, both band modes. The identified mode correspondsvaltieeso that the
standard deviation afy, at fixedk is minimum (it is zero for a pure mode). For this identification procedure
the edges which may have sometimes “pathological phases” are eliminated.

Simulations are made for various valuesgfkeeping constant values pfandi. The outputs of the code are
the curvesy (wo) andey, (wo) Which fit the data. An example is given in Fig. 14 with the trajectories obthéor
a 6x 6 square arraya = 12 mm) andwo = 140s 1. The functionf is given byu1 = 1, u» = 0.5 andus = 0.2
(the ones corresponding to Fig. 9). In the time tag 0-0.3 s the amplitude of the jet grows till the limit cycle
is reached (Fig. 14(a)). Then the jets follow this cycle as shown in Fig. 14(b). An acoustic mode can be clearly
identified. However the amplitude is jet-dependent, especially at the edge where it has a lower value. Note that at
the beginning the code is also adjusting the phases of the coupling coefficients*{%)e" so that the trajectory
of the system in Fig. 14(a) is not exactly the actual one while for longer times the system has converged to the
stationary state, i.e. which is an actual solution of Eq. (4). The convergence of the code is illustrated in Fig. 14(c)
where for five runs (the initial conditions are random) the frequency, the logarithm of phase slip between time slice,
log(¢) and the identified mode are plotted as a function of the iteration number. Then the code has been used to
investigate the two following points.

5.2. Effect of the scatter g

The code has been used to test the rubustness of the rotation modes with respect to a scatter in the values of
wo. A modified version of Eq. (4) is also considered in which jets have slightly different free rotation frequencies,
for instance, to account for a scatter in the diameters. This frequency is a random variable centered®iicaind
wo + v(m) wherev(m) is a uniform probability distribution in{8, +45]. Eq. (4) becomes:
da_m +ivpom — y (1 — apa’)a +AZf(r ye K@y
dt mYm V m“m m ’n#n mn n — .

For the seriest1 = 1, u» = 0.5, u3 = 0.2 andr = 30 e 77/8 3 scan i has been performed for variouws. We
have represented in Fig. 15, for a square netwbrk 5), the value of for which there is no more synchronisation
(6max) as a function ofvg. As this was the case for the two-jet case [1] it appears that the system has some robustness
(6max > 55~ 1) with respect to perturbations except close to the transition frequenaypie.170s ! as seen in
Fig. 9(a) when the optical mode amplitude crosses that for the acoustic mode.

5.3. Comparison of the asymptotic regimes predicted by eigenmode analysis and the code

Itis interesting to study the finite size effects by comparing the asymptotic regime predicted by the evolution code
for a finite network with expectations from the selection mechanism discused in Appendix A for infinite networks.
This has been done for two functioifs first u1 = 1, up = 0.5, uz3 = 0.2 and secongky = 1, up = 1, u3 = 0.
According to the eigenmode analysis the first setigfeads to an acoustic mode for 120s< wg < 16552,
optical outside this range. For the second settothe band modes are the ones with the largest amplitude for
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Fig. 14. Square network (6 6, mesh= 12 mm), trajectories of the envelopgsin the complex plane. The parameters are 30 ex{i7z/8),

u1 =1, =05, u3 =02,y =100,09 = 140s L. (a) Example of start up between= 0 and 03 s forwp = 1405 L. The stars represent

the position of the bump at the end of the time slice and the cross is the origin. (b) Asymptotic regifte-52 s forwg = 1405, i.e. when

the expected one is the acoustic one (see also Fig. 9). The star represents the position of the bump at the end of the time slice and the cross is
the origin. (c) For 5 runs: evolution of frequeney of log(® /7), the log of average phase slip between time slices and of the identified mode

as a function of the number of iterationgor wp = 140 s°1. B=band mode, &optical mode, A=acoustic mode, Mmixture of modes.

110s ! < wp < 170s1, while the acoustic mode dominates outside. This mode repartition can be seen in Figs.

9(a) and 10(a). A finite networté x 6) has been evolved for various for both series ofts. Some results of the

time evolution code are displayed in Figs. 9(a) and 10(b). It appears that the evolution code converges to cycles

compatible with the prediction of the eigenmode analysis.

e When the dominant mode is either the optical or the acoustic mode, the evolution code converges most of the
time of this mode. However the mode is somewhat distorted by the presence of the edge as shown by the standard
deviationsz of thes, which stays often in the range 18-10-1 (above 10 the mode is considered to be mixed).
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Fig. 15. Value ofy = dmaxas a function ofvg obtained with the time evolution code running. The other parametergate 1, uo = 0.5,
uz =0.2,» =30e7"/8 andy = 100. The network is a square>55 array witha = 12 mm.

One can also note that when at large frequencies the dominant mode is the optical one the normalised phase slip
¢ /7 between time slices is rather high indicating that the limit cycle remains rather noisy.

e When the dominant mode is the band mode the resulting motion, although coherent (it is phase locked), does not
correspond to a well identified mode but is rather a mixture. This is coherent with the fact that the eigenmode
analysis predicts no stable dominant mode.

6. Conclusion

This work was motivated by experimental results obtained on water jets which exhibit a wide variety of collective
behaviour. This leads us to introduce a new model of coupled, nonlinear and synchronised rotators. It appears that
by fitting two parameters (complex coupling strength and attenuation as a function of jet relative positions) this
model explains a wide variety of observations involving the frequency of rotation, mode structure, spontaneous
splitting into subnetworks, this for various configurations (limited set of jets, large square or triangular networks).
Two ingredients are required to explain the observed behaviour of the rotators:

e An amplitude equation in which the jets are coupled together through a retarded interaction term. For infinite
networks this equation can be transformed into a linear one and the phase patterns observed in the networks are
the eigenmodes of the operator.

o A criterion for the mode selection which is based on consideration of the nonlinear behaviour of the solutions. If
one considers only jets rotating in the same direction, it can be shown analytically for infinite networks that only the
mode with the largest amplitude is stable. This criterion is extended to configurations including counter-rotating
subnetworks.

This new model offers interesting new features. First, due to the fact that the coupling between each element
is due to travelling waves, in a dispersive medium there is a subtle interaction between the limit cycle frequency
and the coupling which in numerical simulation requires the use of an iterative scheme. Second, each rotator can
have positive or negative rotation frequency, i.e. two possible limit cycles are allowed. The system can “select” the
repartition of these two limit cycles to optimise the interactions.
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Appendix A. Phase pattern selection in an infinite network

Above it has been seen that many modes could be possible limit cycles for an infinite network. It is interesting
now to test their stability. Let us assume that the system oscillates around a limit cycle defined by the couple of
wavenumbergpo, go) = ig corresponding to the frequenayo and amplitudey;o. The displacement of jet is
given bya,, = €;0€ (@i0—@0) F(m) wheree;jo = a;o and Fip(m) are defined in Section 3.2. A perturbation of
the displacement can be expressed as a superposition of contributions of the jmedgs;, ¢;) i.e. da, (1) =
Zjej (t)ei(“’f‘“’o)’Fj (m) where thee; (1) are time varying complex amplitudes. The equation of motion of bump
m can be linearized and projected on each made

The nonlinearterm: (o, + Sam)2 (ot + Sam)* = Zeie je ;e @t on=e0d () F; (m) Fyf (m),
i,j,h

can be linearized into: 2 <Ze,";ei((2“’f°_“”' —e0) F2 () Ff (m) 4 2€, (@ —@0D B, (m)> .
h
At this point it is convenient to introduce the mode with the indéx= (2po — px, 2q0 — qx) so thatFi(m) =
Fl%(m)F,j‘, (m), i.e. the mode coupled to thgh through nonlinear effects. Thus the linearized amplitude equation
for the Fourier componerti;, reads:

dex

5~ Y= 2ep)ec+hee Y f e O Fen) Fi(m) = —y ajpep @ B0 men),

m#n

i(wr — wo)er +

(A1)

Note the right-hand side varies in time only because of the nonlinearity of the relation of dispersion of the modes,
i.e. slowly with time. Eq. (5) applied to the modegives

ik — wo)er — ¥ (L — a)ex + Aex Y f (rmn)€ ™ Fy(n) F_y (m) = 0, (A2)
m#n
whereqwy is the saturation level of this model when it is alone. By substracting Eq. (A.2) from (A.1), we obtain an
equation fore;. Similarly an equation can be obtained &jr by permutingc andk” and taking the conjugate. The
resulting equations are:

1 dék i .

S = (of — 2uf)e — afed Gomenment,
14

1 def (20

——d;‘/ = (@2 — 205)ef, — 2 e w0ttt
14

This is a linear system with coefficients varying slowly in time. An approximate (time varying) growth rate can be
found assuming that these coefficients are frozen. The eigenvalues follow the relation:

A% — 1) (@f + af — dal) + (af — 2a5) (@f — 2a%) —ajh =0

The stable zone, i.e. when the real parts of the eigenvaligsre negative, can be drawn in thg/a?) — o2 /o,
space as shown in Fig. 16. It is interesting to note that when the gyclerresponds to one of the three modes
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Fig. 16. Stability domain of a modg = (po, go) of amplitudex;o with respect to a perturbatidn= (p, ¢). Itis plotted as a function aff/alzo
anda,f,/afo whereay anday are the amplitudes at the limit cycle (given by Egs. (8a)—(8c)) of the modedk’ so thatt’ = (2po— p, 2q0—q)-

(acoustic, optical, band) described above, or when modes with the same wavenumbers (but different frequencies)

are considered then, = i and only the first diagonal in Fig. 16 is relevant. The rootsiase a2 — 205 + a4

so that the stability criterion is jusa;.zo > a,f, i.e. to be stable a mode must have the largest amplitude. According
to these computations one should expect that the selected mode is the one with the largest amplitude. Note that the

band mode should never be stable since two modes exist with similar amplitude.
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