
ELSEVIER Physica D 103 (1997) 590-604 

PHYSICA 

Solitary dilation waves in a circular array of liquid columns 

F. Giorgiutti *, L. Limat 
Laboratoire PMMH. URA CNRS 857, ESPCI, 10 rue Vauquelin. 75231 Paris Cedex 05, France 

Abstract 

Solitary dilation waves and self-sustained oscillations ("optical" mode) are observed in a one dimensional pattern of liquid 
columns produced in the pouring of a liquid film from a solid ceiling. A new experiment carried out on a circular fountain 
allows us to achieve periodic boundary conditions, and thus to observe free propagation of the dilation waves in an infinite 
medium. Measurements of the drift and group velocities of the dilation waves, and of the "optical" pulsation, are presented 
as functions of the flow rate. In addition, starting from qualitative observations and order of magnitude estimates, we build 
a discrete model of non-linear dynamics in this system in which dissipation is compensated by an external energy supply 
(transient drop formation). This model allows us to recover the appearance of the "optical mode" induced by a wavelength 
increase and predicts the "focusing" of this mode into a localized "kink" traveling at a constant speed along the column array. 
The kink structure is reminiscent of the "dilation" waves observed experimentally. Both the model and experiment support a 
relationship between the wave velocity and the oscillation frequency similar to that observed by Michalland and Rabaud in 
the "printer's instability". 

PACS: 47.20 Ma; 47.54 +r; 46. l0 +z; 63.20 Ry 

1. Introduct ion 

The observation of  localized coherent structures in spatially extended systems is one of the most fascinating 

discovery of  non-linear physics. The initial interest was focused on the "soliton" concept emerging from the study 

of  conservative dynamics [ 1]. Later, the activity around "pattern forming" instabilities has contributed to open 

new fields based upon the study of  systems with both dispersion and dissipation [2]. In this context, studies of  

the complex Ginzburg-Landau equation [3] revealed very rich dynamics involving localized structures such as the 

so-called "pulses", "fronts", "holes", and "spirals" in two dimensions. In another direction, localized objects were 

also identified in various one-dimensional cellular patterns generated by instabilities, as elementary mechanisms 

of  wave length selection, associated with secondary instabilities of  the pattern [4-8]. A typical example is the 

well known "drift state" observed in solidification front [4,5] and in various hydrodynamic instabilities [6-8], also 

called "dilation waves" [7] in directional viscous fingering (parity breaking instability). In this case, a local "parity 
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breaking" of the pattern (left-right symmetry loss) is accompanied by a drift at a constant speed of the cells, the 

boundary of the drifting "bubble" propagating also at a constant speed but in a direction opposite to the drift motion. 

Very often, this drift state coexists with other dynamical states of the pattern that can be oscillatory. For instance, 
an "optical" mode in which the position of the cells oscillates, while remaining out of phase with that of its 

nearest neighbors has been identified in solidification fronts [4,5] and in the "printer's instability" (cellular fingering 

observed on a liquid meniscus confined between two rotating cylinders) [7]. Usually, the theoretical description of 
both states (drift and oscillations) involves non-linear equations that couple the spatial phase of the pattern to the 

real or complex order amplitude associated with the relevant secondary instability of the pattern [ 11 ]. The structure 
of these equations is generally deduced from symmetry arguments, each of the two phenomena being described by 

its own set of equations with a priori unknown coefficients. This description is most often sufficient but forgets the 

possible physical relationships between the two phenomena, and remains difficult to extend to situations involving 

their coexistence and interactions between them. 
Recently, Michalland and Rabaud [12] have shown experimentally that, at least for the printer's instability, a 

physical connection seems to exist between the optical mode and the dilation waves. More precisely, the "group" 
velocity ~ of the dilation waves (motion of the "bubble") is proportional to the natural velocity built upon the 

frequency of the optical mode COopt and upon the pattern wavelength ;k observed in the vicinity of both dynamical 

states: 

Vg = p~O)opt, ( 1 ) 

in which p is of order 0.4. They have ascribed this behavior to what they called an "elasticity" of the pattern similar 
to that of a one-dimensional chain of mass and springs (phonon model). More precisely, if one identifies Vg to 

the long wavelength approximate of the phonon velocity (sound velocity) and COopt to the pulsation observed in 
the boundary of the Brilloin zone (where out of phase stationary oscillations usually occur), one obtains a similar 

relationship with p = 0.5. Rather than a "pattern elasticity" this "phonon model" introduces inertia in the pattern 

dynamics which can be surprising in a context largely dominated by dissipation. To our knowledge this possible 

relation between drifting and oscillatory states has never been evidenced in any other pattern, and the generality of 

Michalland and Rabaud result remains to be proved. 
In the present article we reconsider this problem on another pattern, that we studied in two previous papers [8,9], 

and which we called "the liquid column array" [10]. An example of this pattern is reproduced in Fig. 1. Such a 
structure consists of parallel liquid columns observed in the pouring of a liquid from a horizontal rectilinear ceiling. 

This ceiling can be for instance the lower extremity of an inclined plane along which a liquid is flowing, or as in our 

case in a horizontal cylinder, the liquid flowing from the upper generating line towards the lower one [ 13 ]. These 
columns are not independent from each other as they remain connected by a thin liquid film: our experiments on a 

cylindrical ceiling [8-10] revealed that the spatial periodicity of this pattern ,k, usually of order 10 times the capillary 
length l, = V ' 7 / P g  -~ 1 mm (y surface tension, p mass density, g gravity), was in fact perturbed by collective 
phenomena. When the local wavelength exceeded a given threshold, a secondary oscillatory instability occurred 

leading to the appearance of a self-sustained optical mode, illustrated by the spatio-temporal diagram inserted in 

Fig. I. As usual, this diagram is obtained by recording a line of the picture of the pattern recorded by a video camera 
at successive times separated by a constant interval. In this state, the position of each column oscillates, its motion 

and that of its nearest neighbors remaining out of phase. Imposed sinusoidal motions of one boundary column 
were also investigated in our experiments [9] and revealed a phase diffusion regime at low frequency, progressively 
replaced by the emission of localized "dilation" waves when the forcing parameters were increased (see Fig. 2). 

We present here a new study of these dilation waves carried out in a different geometry [10]: we used a circular 
overflowing container (a circular "fountain") instead of a horizontal cylinder, in order to realize periodic boundary 
conditions. In these conditions the propagation can be studied without any perturbations of the boundaries over 
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Fig. 1. Liquid column array formed in the pouring of a liquid from an horizontal cylinder (length 28 cm), and typical spatio-temporal 
diagram giving the horizontal motions of the column as functions of time (running towards the bottom). This diagram is built in the case 
of an "optical mode" induced by an imposed mean wavelength dilation of the pattern (the position of the boundary columns are imposed 
by capillary contact with fixed needles). 

X 

tl 

Fig. 2. Spatio-temporal diagram obtained by forcing a sinusoidal motion of a boundary column, in the experiment of Fig. 1. The imposed 
frequency (0.15 Hz) is 10 times smaller than the "natural" pulsation of the "optical" mode (2 Hz). 
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very long distances. In addition, starting from the "phonon analogy" [12] and from our qualitative observations 

in the case of  the liquid column array, we try to suggest a new model of the dynamics of a cellular structure that 

captures both the existence of  a "self-sustained" optical mode and that of  the dilation waves. Our experimental 

results are presented in Section 2, in which we investigate the properties of  these dilation waves (drift and group 

velocity) by varying the imposed flow rate. These results are compared to the "natural" velocity ~coopt, the optical 

pulsation COopt being measured on localized oscillatory states observed for suitable conditions. As for the printer's 

instability, a law of  the kind Vg = P)~coopt is obtained with p ___ 0.4. In Section 3, we develop our phenomenological 

model of  the array dynamics: in summary, the array is treated as a one-dimensional chain of  mass and springs 

to which we add a friction term (dissipation), anharmonicity, and additional variables describing the state of the 

interface connecting two columns. This interface is supposed to undergo a possible localized instability leading to 

the appearance of a transient drop (experimentally observed), the force exerted by this drop on the liquid column 

being able to compensate in average the dissipation. Numerical simulations of this model are presented in Section 4, 

in the case of  an array submitted to a uniform wavelength dilation, and placed under periodic boundary conditions. 

The results are similar to those observed in our experiment: for a suitable choice of the model parameters, a natural 

state of  this system consists of  an optical mode that progressively evolves into a solitary kink traveling at constant 

speed along the column array, the structure of  this kink being similar to that of  the dilation waves. The speed of 

this kink is again proportional to the "natural" velocity )~coopt but with p ---- 0.5 as expected from the initial phonon 

model. 

By nature our model is discrete, which is in contrast with the usual Ginzburg-Landau type approach most often 

developed at a continuous level [ 11 ]. To our knowledge, rather few studies of cellular patterns involved discreteness. 

Two exceptions are the arrays of  vortices forced by magnetic effects in a flowing electrolyte [ 14], and the arrays of 

coupled jets in open flows [ 15]. Although in this paper we do not discuss explicitly the influence of  discreteness, 

specific effects are presumably to be expected in analogy with what happens in the case of  conservative dynamics. 

For instance, in this other field unusual behaviors were identified such as the Peierls-Nabarro barrier encountered 

by solitons moving on a lattice [16], the unusual breather dynamics in DNA molecules [17], or the spontaneous 

fi~rmation of coherent objects in two-dimensional sine-Gordon lattices [18]. With some respects, cellular structures 

encountered in diverse instabilities [4-13] can be viewed as equivalents in the "dissipative world" of these discrete 

materials. We therefore suggest that future studies of  our model or of appropriate generalizations of  this one could 

help to understand phenomena occurring on cellular patterns at a very localized scale. 

2. Experiment 

A picture of  our experiment is reproduced in Fig. 3, In comparison, with our previous studies (liquid columns 

formed below a horizontal cylinder [8,9]), we worked in the same conditions (silicon oil of viscosity 20cP, same 

method of flow control), except that the horizontal cylinder was replaced by a plexiglas container of circular perimeter 

placed at the top of a vertical tube. The container of  external radius R = 5 cm is supplied with liquid at a constant 

rate Q (varying in the range 1-10 cm 3 s -  1 ), the liquid rising inside the tube. The liquid fills the container, overflows, 

runs over its vertical external sides, and falls into the expected spatially periodic array of liquid columns. 

The bottom of the container being rigorously flat, we observed that the column center remained distributed on a 
circle of  radius R' "" 4.4 cm, slightly smaller than R. In these conditions, the most natural state observed was 24 
static columns separated by a mean wavelength equal to 1.2 cm. We have tried to perturb the column array as we 

did in [8,9]: the motion of  a column was forced by touching it with a needle, then by moving this needle before 
removing it in a very short time. Coalescences between columns are forced along the needle trajectory (increase of 

the mean wavelength) while a few columns following the first one begin to move. After a short transient, a solitary 



594 E Giorgiutti, L. Limat/Physica D 103 (1997) 590-604 

Fig. 3. Picture of the experiment under periodic boundary conditions. The columns are formed in the pouring of a liquid from an overflowing 
circular container (radius 5 cm) continuously supplied with liquid, the liquid rising inside the central columns supporting the container 
(circular fountain). 

dilation wave was formed and propagate at constant speed along the container perimeter. We followed this motion 

by building "spatio-temporal" diagrams such as that reproduced in Fig. 4, from video pictures taken from above: 

owing to the transparency of  the container and to the refraction index of the liquid, the column appears as black 

circles when viewed from above, and gray levels were recorded along a circle cutting all the column centers. We 

explored the properties of  the dilation waves, by varying the flow rate and the launching conditions. We found that 

different numbers of drifting columns (from one to four in practice) could be forced: as a result, the position jump 

of the columns introduced after one kink rotation can vary ( 1 to 4Z) but the group velocity Vg of  the wave (motion 

of  the wave boundaries) as well as the individual drift velocity Vd of  the columns were the same in all cases. A few 

measurements of  these velocities are plotted in Fig. 5(a) as functions of  the flow rate. Both velocities are of order of 

a few centimeter per second. The group velocity Vg increases with the flow rate, while the drift velocity Vd slightly 
decreases. 

The pulsation of  the optical mode OJopt was measured in separate experiments by slightly tilting the container. This 
inclination induces a weak gravity component parallel to the cylinder perimeter that slightly increases the wavelength 

in the upper region of  the container. When this local wavelength dilation exceeded the optical threshold, the optical 
mode appeared and its frequency was measured using again spatio-temporal diagrams. These measurements are 

displayed in Fig. 5(a), Just like the group velocity of  the dilation waves, the optical frequency I)op t increases with the 
flow rate. We have tried to establish a connection between both variations by comparing the group velocity Vg to the 

natural velocity V0 = gg/~ .O)opt  built upon the wavelength k left outside of the dilation waves (nearly constant and 
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F~g. 4. Spatio-temporal diagram obtained from video pictures recorded from above, across the circular container. Time runs toward the 
b~ttom, the horizontal axis being the angular position of the columns. At the beginning of the experiment, a column motion is forced by 
a ,;udden motion of a needle in contact with the top of a column. 

equal to 1.1 cm), and upon the optical pulsation O)op t = 2rr I)op t .  The result of this comparison appears in Fig. 5(b). 

Our measurements (performed in the range 5-10 cm 3 s - I  ) suggest that the ratio Vg/Vo remains constant and equal 

to 0.4 + 0.05 in agreement with Eq. (1). The slope value (p = 0.4) is close to that obtained by Michalland and 

Rabaud for the printer's instability. Their result seems therefore to possess a high degree of generality, as was to be 

expected in view of the simplicity and generality of  the phonon analogy. 

3. Model 

3.1. General ideas 

Visualizations of the column motions are presented in Figs. 6(a) and (b), respectively in the case of the optical 

mode and in that of the propagating dilation waves, The basic idea of  our model consists in treating each column 

"meniscus" (top of a column), of  index i, as a moving object described by its horizontal position Xi(t). Each 

meniscus i is supposed to interact with its nearest neighbors of  indices i + 1 and i - 1 by an harmonic potential 

possibly completed by anharmonicity terms, and also with transient drops formed between each pair of neighbors. 

These transient drops are visible in Figs. 6(a) and (b). In the case of  the optical mode, the structure of this drop is 
symmetrical with respect to the center of the two neighboring columns, this symmetry being lost in the case of the 
dilation waves. We, therefore conjectured that the description of  the drop dynamics required at least two independent 

variables (see Fig. 7) Yi and Zi. Intuitively, the first variable Yi measures the drop height or equivalently the total 

amount of liquid contained in the drop, while the second one Zi measures the degree of asymmetry of the liquid 
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Fig. 5. (a) Measurements of the group velocity Vg and of the drift velocity Vd of the dilation waves for different values of the total flow 
rate Q, in the experiment of Fig. 3. Measurements of the frequency of the "optical mode" Vopt are also displayed. (b) Comparison of the 
group velocity Vg to  the "natural" velocity V 0 ---- ~.Ogopt built on the "optical" pulsation O)op t = Pop t and on the wavelength ~. left behind 
the dilation wave. The slope of the solid line is equal to 0.4. 

mass distribution. A simple interpretation of these two quantities is given in Fig. 7, based on a two-point description 

of  the interface connecting two liquid columns: one may decide that a quantity Yi - Zi of liquid is located near the 

column i - 1, while the amount Y /+  Zi is located near the other column i + 1. In the following sections we present 

the details of  our model and try to justify some of  the approximations by a few order of  magnitude estimates. 

3.2. Column dynamics 

One has to suggest plausible equations governing the column motion and its coupling with the drop coordinates. 

The simplest idea consists in completing the phonon model by a friction term, and by possible anharmonicity effects: 

d2Xi dXi  
m - - d ~  + f dt = g ( X i + l  - 2Xi q- S i - l )  q- K~[(Xi+I - X i )  3 + ( X i - I  - -  Xi) 3] -k- Fi (2) 

in which m is an effective mass that will be estimated later, f is a phenomenological  friction coefficient and F,- are 

the forces exerted on the columns by the transient drops. The physical origin of  the harmonic interaction described 
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(a) 

(b) 

Fig. 6. (a) Successive snapshots of the column motion in the case of the optical mode. Only the top of the columns and the tree surface of 
the film hanging below the horizontal cylinder of Fig, 1 are made visible. The column motion is coupled with the appearance of transient 
pendant drops. (b) Drifting columns in the case of a "dilation" wave. 

by the rigidity constant  K is not  obvious but is presumably  related to surface tension effects. This  can be made 

more quanti tat ive by est imating the typical pulsat ion ~ j  defined as ~2 = K / m .  Fig. 6 suggests a typic~l mass of  

order m ~_ 87rpl 3, le being a typical size close to the capil lary length lc (0.1 cm in [8-10]).  Dimensional ly ,  one can 

hope that K is of  order of  the surface tension V "~ 20 dyn cm -1 .  With p _~ I g cm -3,  one gets co~) _~ 30 s-J  which 
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Yi+Zi 

r 

Xi_ 1 Xi 
Fig. 7. Notations and geometry involved in the model. The displacement Xi of a column (i) is coupled with that of its nearest neighbors 
and with variables describing a possible transient drop formation (instability of the interface connecting two columns): Yi drop amplitude, 
Zi drop asymmetry. 

is a bit large but remains comparable to the data obtained in [8], coopt --- 12 s - j  . Concerning the anharmonicity, the 

selected form is arbitrary but other choices did not seem to modify appreciably the obtained results. 

The most important feature of our model is the coexistence of  an inertia term and of  a dissipative one in the 

left-hand member of Eq. (2). The presence of  a first-order time derivative (friction term) ensures us to recover at 

low frequency the classical phase diffusion behavior explored in [9,10], while the second-order one should allow us 

to recover the "phonon properties" invoked by Michalland and Rabaud [ 12]. The coexistence of  both terms (inertia 

and friction) can also be justified with a few orders of magnitude: the dissipation constant f includes the effects of  

viscosity and of the momentum flux communicated to the liquid ejected in the column. The first contribution to f 

should be of  order f l  "~ zr r/le, the second contribution being equal to the mass flux per column f2 = q (q -~ 0.2 g s - I  

in [8]). Using the mass estimate discussed above, and available data [8] relative to the optical mode (amplitude 

A ~ 0.1 cm, pulsation co _~ 6 s -  l) and to the liquid properties (p _~ 1 g cm -3, 1/ = 20 cP ) give typical ratios 

between inertia and the two dissipative terms of  order m A c o 2 / f l  Aco ~-- pcol2/o --~ 2 and f j / f 2  ~- q / ( z r lco)  ~- 3. 

This confirms that both inertia and dissipation had to be included in the model. 

3.3. D r o p - c o l u m n  interaction 

The dissipation term added to the phonon model in the previous part allows us to recover the phase diffusion 

behavior at low frequency but should obviously lead to a damping of  the column oscillations. One, therefore, needs 

an "external" source of  energy that should be contained in the drop-column interaction. Previous investigations 

of  the behavior of  ordered lattices of  pendant drop [19] have revealed that two overlapping pendant drops-exhibit 

a pronounced tendancy to coalesce. In analogy with this simple observation we have conjectured that the drop- 
column interaction was attractive. For simplicity, we have also assumed that the drop-column interaction was a 

linear function of  the drop amplitude Yi and of the drop asymmetry Zi .  This is of course somewhat arbitrary but 
constitutes the simplest available choice: 

Fi = AI[Yi+I  - Yi] - A2[Zi  + Zi+I] (3) 

in which A1 and A2 are two positive constants. The sign choices are made in order that the drops (i) and (i + 1) 

exert antagonist attractive forces on column (i), and also in order that an asymmetric drop exerts a larger force on 
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the nearest of  its two neighboring columns. This expression can also be justified in the case A I = A2 by assuming 

that the force exerted on the right-hand side of the column i is proportional to Yi+l - Zi+l, while the left hand one 

is proportional to Yi -4- Zi. With some respect, the Z-component of  the force plays the role of the parity breaking 

terms governing the spatial phase drift in the theory developed by Coullet, and Gunaratne and coworkers [ 11 ]. 

3.4. Drop dynamics 

In the description of  the drop dynamics, we assumed that the drop formation was in fact the result of an instability 

of the interface connecting two neighboring columns. We, therefore, retained a Landau type equation for the growth 

equation of Yi, in which the local distance Xi - X i -  l between columns plays the role of  a control parameter: 

d Yi 
(1 /c r ) -~ -  = [Xi - X i - I  - ~c - q3Z2i ]Yi +/41Yi- - /42Yi  3" (4) 

In this equation, ~e designates the threshold of drop formation, rr the typical growth rate of the drop,/4j and/4 2 

are numerical coefficients. We assumed/41 possibly non-zero because +Yi and - Y i  are presumably not equiva- 

lent. In addition, we introduced a damping term q3 Z 2 Yi, because some of our observations revealed a systematic 

disappearance of  the transient drops when they approach one of  the two neighboring columns. 

The last equation that governs the drop asymmetry is certainly the most difficult to build. Following a rule of  

maximum simplicity we have postulated the following equation: 

dZi FdXi dXi - ,  1 
(l/c~) dt - - q l Z i  - q 2 Y i  k-d t -  + - - ~ - J  " (5) 

In this equation, the origin of  the drop asymmetry is attributed to the mean motion of  the columns, the drop being 

supposed to appear with a zero horizontal velocity: we admit that the amount of liquid shift from the center of  the 

two columns is presumably proportional to the whole mass of liquid available (that is to Yi ) and to the mean velocity 

of  the columns. The strength of this effect is measured by another constant q2. We have also introduced a restoring 

c~mstant ql, because intuitively, the uniformity of the flow supply should tend to favor Zi = O. 

3.5. Reduced equations - Choice of  the parameters 

After defining an eigen pulsation as o92 = K / m ,  a reduced friction coefficient fr  = f / m ,  and two reduced drop 

column interaction coefficients or1 = A l /m  and or2 = A z / m ,  the whole set of equations defining our model can be 

put under the form: 

dzXi dXi 
d t  ~ + . f r ~ -  = ° ) 0 ( X i + l  - 2Xi q- Xi - l )  -{- ( . o 2 ~ [ ( X i + l  - Xi) 3 if- (Xi 1 - X i )  3] 

- ell [Yi+J -- Yi] + otz[Zi + Zi+l ], (6a) 

dYi (1/rr)~-/- = [ Xi  - X i _ j  - ec - q3Z~  ]Yg +/4~ Yff - / 4 2 Y  3, (6b) 

dZi F dXi  d X i - I  ] (6c) 
( l / a )  d'--t- = - q l Z i  - q 2 Y i  L--- ~ -  -I- ~ f - - - _ ] .  

Its structure is somewhat arbitrary but, as we shall see, leads to interesting behaviors very similar to those observed 

experimentally. Strictly speaking it must not be taken as a rigorous model of the liquid column array, but rather as 
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a first and rough attempt of  such a model. One can also consider this model as a simple dynamical system that is 

expected to share a lot of  properties with the liquid column array and possibly with other cellular structures. Our 

physical expectation is that the essential features are in fact contained in the first equation (competition between 

inertia and dissipation), and in the general idea of a two-variable description of  the transient drop dynamics. The 

choices made in the modeling of these drop dynamics are supposed to be of  comparatively less influence on the 
general properties of  the dynamics of  this system. 

The behavior of our model has been explored by means of  numerical simulations described in Section 4. The 

choice of  the numerical values of the parameters is not obvious: some of them are constrained by the available 

experimental data, while others would require specific measurements not yet available. In the numerical simulations, 

we have reduced the number of  free parameters as follows. We first retain the eigen pulsation w0 as a "natural" 

time unit, i.e. we assumed for simplicity wo = 1. Two other time constants must be specified now: the friction 

coefficient fr and the time constant a entering the drop dynamics equations. The first one is in fact specified by our 

previous measurements [9,10] of  the optical pulsation and of  the phase diffusion coefficient D that describes the 

diffusive, low frequency limit of  the pattern dynamics governed by a diffusion equation [20]. The correspondence 

between this equation written at a continuous level and the linear part of  our discrete model implies the relationship 

fr/wO = a2wo/D.  On the other hand, the phonon analogy discussed by Rabaud and Michalland [ 12] implies that 

the optical pulsation is given by O)op t : 2090, and thus the ratio fr/wO retained in our model must be equal to 

fr/wO = aZogopt/2D. Our previous measurements [8] lead to values of order tOop t ~" 6 Hz and D _~ 20 cm 2 s-I  and 

so to fr/wO ~-- 0.3. We therefore retained the value fr = 0.3 (together with o~0 = 1 ) in the numerical simulations 
of  the model. 

Concerning the other time constant a ,  repeated simulations convinced us that self-sustained dynamics (i.e. without 

damping) required large values of  this parameter compared to the natural pulsation o9o of the columns. This means 

that, qualitatively, the compensationoof the mean dissipation requires a fast enough growth of  the transient drops. 

In practice, a moderate value (~r = 10) was found to be sufficient while avoiding problems with the time resolution 
of  the numerical code. 

4. Numerical simulations 

Using a fourth-order Runge-Kutta algorithm, 20 columns (i = 1 to N = 20) submitted to a uniform wave 

length dilation ~ = 3~./)~ were then simulated. Periodic boundary conditions were achieved by shifting of a constant 

amount the position of two fictive boundary columns (i = 0 and i : -  N + 1) from the "true" value expected at 

the other boundary. At t = 0, the initial distributions of  Xi, Yi and Zi were slightly perturbed by a random noise 

of  typical amplitude 10 -2. A typical evolution of the column positions Xi and of the drop variables Yi and Zi 

is depicted in Figs. 8(a)-(c). One observes a progressive growth of  the optical mode with an irregular amplitude 

distribution. Later, a "focusing" of  the perturbation occurs leading to a propagating "kink" traveling at a constant 
speed along the column array. 

We tried different values of  the remaining free parameters, while remaining as close as possible to values of 
order unity. Among diverse possibilities, the values oq : 1.5, or2 = 1.0, fll = -0 .5 ,  ~2 : 0 . 5 ,  qj = 1.0, q2 = 

0.5 were found to give interesting behaviors. We used various values of  the last parameters: 3 (anharmonicity), 

applied wavelength dilation E = (XN+I -- X l ) / N  (N = 20 column number), and ec (drop formation threshold 
for the inter-column distance with respect to a reference state). The kink "stability" was not always satisfied 

(damping effects) and required a large enough value of  the "anharnlonicity" factor S combined with a large enough 
effective wavelength dilation e - ec. On the other hand, shock formation was observed for low and moderate 
values of  the damping constant q3 of  the drop amplitude associated to the asymmetry parameter. Finally, the 
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Fig. 8. (a) Evolut ion o f  the posit ions Xi(t) of  N = 20 co lumns  s imulated under periodic boundary conditions.  The parameter o f  the 
s imulat ions  are ~1 = 1.5, u2 = 1.0, f / m  = 0.3, o902 = 1.0, ~ = 0.3,cr = 5.0,/31 = - 0 . 5 , / 3 2  = 0.5,  ql =- 1.0, q2 = 0.5. q3 = 10, 
Ec = 0.015.  The applied strain is constant and equal to (X N -- Xo)  / (NX)  = 0.15. (b) Drop amplitude evolution Yi (t). (c) Drop asymmetry  
evolut ion - Z i  (t). All  the curves are shifted for clarity. 
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simulations of Fig. 8 were obtained with the values q3 = 10, 6 = 0.6, Ec = 0.015, and E = 0.15. Other choices 
were of course possible, but the range of stability (no damping and no shock formation) seemed to be rather 
narrow. 

In a second step, we have tried to vary the eigen pulsation o9o while keeping constant the other parameters. We 
have then measured the observed optical frequency COopt, and the group velocity Vg of the dilation waves in order to 
test again Michalland and Rabaud relationship. The stability of  the kink was not always satisfied, and in addition, 
slight modulations of its properties over long time scales were observed which have limited the accuracy and the 
number of our measurements. The optical pulsation was also difficult to measure with accuracy because of the 
irregularity of  the optical mode that can be noticed in Fig. 8. In all the stable cases the velocity of  the kink Vg 
was found to be slightly larger (of a factor of order 5%) than the phonon group velocity Vo = ,~o9o built upon the 
eigen pulsation o9o and upon the lattice spacing ~. (arbitrary shift between the Xi curves in Fig. 2(a)). This fact 
is reminiscent of  Michalland and Rabaud [ 10] analysis of  the phonon model, except that in our case, the dilation 
waves are non-dispersive and seem to propagate with nearly a constant shape. In addition, they propagate freely 
although the system is dissipative, presumably because of the external energy supply associated with the transient 
drop formation. Concerning the optical pulsation, we found values of  order ogopt ~ 2. lo9o, while Vg ~ 1.05,~.o9o, 
which implies a relationship between both quantities given by 

Vg ~--- 0.5).o9opt, (7) 

that coincides with the phonon analogy. This result is suggested in Fig. 9 in which we have plotted our numerical 
determinations of Vg as functions of the natural velocity ~.O)op t. Therefore, it seems that the relationship Vg ---- p~.O)op t 

is still valid in the case of  our non-linear, dissipative model, with p = 0.5 just as for the initial phonon model. 
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Fig. 9. Comparison between the numerical estimates of the group velocity Vg and the natural velocity )~tOop t built on the pulsation of the 
optical mode. All the parameters are identical to those of Fig. 8 except the eigen pulsation ~o 0 that was variable. The slope of the solid 
line is equal to 0.5. 

5. Conclusion 

In summary we have built a phenomenological, discrete, model of  the liquid column array. In contrast with 

the usual description based on continuous equations of  Ginzburg-Landau type combined with a phase diffusion 

equation [ l 1 ], our model is a discrete one. In addition, it contains both the possibility of an "optical" mode and that of 

the "dilation" waves, together with the diffusive properties (not simulated here) usually observed at low frequency. 

This is in fact its main interest, because the Ginzburg-Landau type approach usually looses the coexistence of the 

three phenomena. We have presented numerical simulations of this model and compared the results with "real" 

experiments, both studies being carried out in the case of periodic boundary conditions. The model allowed us to 

recover the existence of a self-sustained optical mode and predicts the focusing of  this mode into a "solitary kink" of 

structure similar to that of  the "dilation waves" encountered in other one-dimensional cellular structures. We were 

able to observe this "kink" in an experiment that reproduces these periodic boundary conditions. Just as for the the 

printer's instability, its velocity is proportional to the "natural" velocity built upon the pulsation of the "optical mode" 

and upon the wavelength of the pattern left outside of  the dilation wave. In the numerical simulations of  our model, 
the prefactor of  this law is equal to the value deduced from the phonon approximation developed by Michalland and 

Rabaud [ 12]. In our experimental case, the prefactor is smaller and its value is close to that obtained for the printer's 

instability (V --~ 0.4~.O9op t instead of  0.5~.O)opt). More accurate measurements of the proportionality factor, combined 
with more extensive simulations of  our model are under way. Other behaviors than those discussed in the present 
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paper can be observed numerica l ly  and will be developed in a future publicat ion:  chaotic oscillations, localization 

tendencies of  the optical mode,  dilation waves generated by a moving  boundary,  diffusion at low frequency, etc. 

We suggest that s imilar  models  could be built  for other patterns and could allow one to recover specific behaviors 

not  reducible to large scale cont inuous  ampli tude equat ions [2,1 1]. In addition, as our  model  mixes inertia and dis- 

sipation it could perhaps provide a possible "bridge" between conservative and unconservat ive non- l inear  dynamics  

in discrete systems. 
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