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a b s t r a c t

We analyze interaction of nonlinear pulses in active–dispersive–dissipative nonlinear media. A particular
example of such media is a viscous thin film coating a vertical fibre. Experiments for this system reveal
that the interface evolves into a train of droplike solitary pulses in which numerous inelastic coalescence
events take place. In such events, larger pulses catch up with smaller ones and annihilate them. However,
for certain flow conditions and after a certain distance from the inlet, no more coalescence is observed
and the flow is described by quasi-equilibrium solitary pulses interacting continuously with each other
through attractions and repulsions, and, eventually they form bound states of groups of pulses in which
the pulses travelwith the same velocities as awhole. This experimental study represents the first evidence
of formation of bound states in low-Reynolds-number interfacial hydrodynamics. To gain theoretical
insight into the interaction of the pulses and formation of bound states, we derive a weakly nonlinear
model for the flow, the generalized Kuramoto–Sivashinsky (gKS) equation, that retains the fundamental
mechanisms of the wave evolution, namely, dominant nonlinearity, instability, stability and dispersion.
Much like in the experiments, the spatio-temporal evolution of the gKS equation is dominated by quasi-
stationary solitary pulses which continuously interact with each other through coalescence events or
attractions/repulsions. To understand the latter case, we utilize a weak-interaction theory for the solitary
pulses of the gKS equation. The theory is based on representing the solution of the equation as a
superposition of the pulses and an overlap function and leads to a coupled system of ordinary differential
equations describing the evolution of the locations of the pulses, or, alternatively, the evolution of the
separation distances. By analyzing the fixed points of this system, we obtain bound states of interacting
pulses. For two pulses, we provide a criterion for the existence of a countable infinite or finite number
of bound states, depending on the strength of the dispersive term in the equation. The interaction theory
and resulting bound states are corroborated by computations of the full equation.We also find qualitative
agreement between the theory and the experiments.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

A thin liquid film flowing down a vertical fibre is always un-
stable and spontaneously breaks up into a droplike wavetrain. The
studies by Frenkel [1] and Kalliadasis and Chang [2] have shown
that this instability is mainly triggered by the capillary pressure
induced by the azimuthal curvature (‘‘Rayleigh–Plateau instabil-
ity’’); on the other hand, the pressure induced by the axial curva-
ture is stabilizing. Streamwise viscous diffusion plays a dispersive
role and affects significantly thewave selection, speeds and shapes
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[3,4], while for sufficiently large flow rates inertia is present and its
role is destabilizing.
This system is an example of a nonlinear active–dispersive–dis-

sipative medium with instability/energy supply, stability/energy
dissipation and dispersion. Due to its simplicity it offers an exce-
llent opportunity for the experimental study of several generic fea-
tures of the nonlinear dynamics of open-flow hydrodynamic and
other nonlinear systems. For example, as was demonstrated by
Duprat et al. [3], the instability can be either absolute or convective,
depending on the undisturbed film thickness/flow rate. In the ab-
solute case (for intermediate ranges of film thicknesses), a regular
wave regime is observed all along the fibre: the interface typically
develops a nonlinear wavetrain in which waves propagate with
the same amplitude and speed (a ‘‘nonlinear global mode’’). In the
convective case (for large/small film thicknesses), the wave evolu-
tion is irregular and the above regular regime is never observed.
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The interface is now dominated by droplike solitary pulses which
continuously interact with each other and numerous inelastic co-
alescence events between the pulses take place. In such events,
larger pulses catchupwith smaller ones and annihilate them.How-
ever, under certain conditions and when the Rayleigh–Plateau in-
stability competes with the viscous dispersive effects (the map
of the different flow regimes in the parameter space has been
delineated in [5]) no more coalescence events occur after a cer-
tain distance down the fibre, and the interface is characterized by
quasi-equilibrium solitary pulses which interact with each other
through attractions/repulsions. For sufficiently large dispersion
these quasi-equilibrium pulses form bound states. In this arti-
cle, we provide a qualitative theoretical explanation of these ex-
perimentally observed phenomena by using a simple model for
the flow, the so-called ‘‘generalized Kuramoto–Sivashinsky’’ (gKS)
equation, obtained asymptotically with a long-wave expansion of
the full governing equations and associated boundary conditions.
The gKS equation is one of the simplest prototypes modeling a

nonlinear active medium with energy supply, energy dissipation
and dispersion and whose dynamics is dominated by localized
nonlinear pulses. In addition to flows down vertical fibres, this
equation has been derived asymptotically from the full governing
equations and associated boundary conditions in many other
physical contexts, including plasma waves with dispersion due to
finite ion banana width [6] and liquid films in different settings,
i.e. from a film falling down a planar substrate or an inclined
substrate [7–10] to films in the presence of various additional
effects and complexities, e.g. films sheared by a turbulent gas [11],
falling liquid films in the presence of a viscous stress at the free
surface [12], liquid films flowing down a uniformly heated wall
[13] and reactive falling films [14]. We note, that unlike all these
studies where specific orders-of-magnitude assignments for the
length/time scales were assumed a priori, the study by Frenkel
and Indireshkumar [7] did not assume any specific scalings a
priori. Finally, we note that to rigorously justify formal asymptotic
reductions toweakly nonlinearmodels, one needs to show that the
solution of theweakly nonlinearmodels approaches that of the full
equations in the region of validity of the models. In this direction,
a noteworthy study is that of Uecker [15] who provided a partial
justification of the usual (dispersionless) Kuramoto–Sivashinsky
(KS) equation for film flow down an inclined plane by proving that
the solutions of the KS equation approximate the solutions of the
so-called ‘‘integral-boundary-layer’’ model (e.g. [9,10]) for the flow
over sufficiently long time scales.
The paper is organized as follows. In Section 2 we describe

the experiments on viscous liquid films coating vertical fibres. In
Section 3wegive a detailed derivation of the gKS equation for flows
down vertical fibres starting from the full Navier–Stokes equations
and the corresponding wall and free-surface boundary conditions.
In Section 4 we discuss a weak-interaction theory for the gKS
equation and analyze bound-state formation of solitary pulses for
this equation. In Section 5 we compare the theoretical results with
computations. Section 6 is devoted to discussion of theoretical
results, their relevance to experiments and conclusions.

2. Experimental motivation: a thin film coating a vertical fibre

A sketch of the experimental set-up is shown in Fig. 1(a). A
Rhodorsil silicon oil v50 of density ρ = 963 kg/m3, dynamic
viscosity µ = 48 × 10−3 Pa s and surface tension γ = 20.8 ×
10−3 N/mat 25 °C flows down vertical Nylon fibres of 1.5m length
and of various radii R. To ensure strong curvature effects, required
for the formation of axisymmetric droplike pulses, fibre radii are
chosen to be sufficiently small, i.e. 0.2 mm < R < 0.475 mm.
For sufficiently large radii, axisymmetry can break down resulting
in a more complicated free surface as now non-axisymmetric
a b

Fig. 1. (a) Experimental set-up for flow down a vertical fibre; (b) notations.

disturbances could be more unstable compared to axisymmetric
ones [16]. At the same time, small radii ensure that dispersion is not
very strong, i.e. the waves are characterized by small-amplitude
oscillations which are crucial for the formation of bound states
(for large radii only repulsions were observed experimentally).
The inlet thickness H0 (‘‘Nusselt film thickness’’) of the liquid film
is controlled by the entrance valve that ensures a uniform and
axisymmetric coating.We introduce a Cartesian coordinate system
(X, Z) with the X-axis pointing down along the center of the fibre
with X = 0 corresponding to the end of the entrance valve
and Z being the outward-pointing coordinate normal to the fibre.
The local film thickness is denoted by H(X, T ), where T denotes
time. The flow characteristic speed is given by a balance between
viscous drag and gravity, U0 = ρgH20/2µ, with g denoting the
gravitational acceleration. The Reynolds number and the Weber
number measuring the relative importance of inertia to viscosity
and inertia to surface tension, respectively, are defined by:

Re =
ρU0H0
µ

, We =
γ

ρU20H0
. (1)

The inlet film thickness is chosen to be 0.6 mm < H0 < 0.95 mm,
which gives a U0 of a few cm/s, 30 > We > 3 and 0.4 < Re <
1.7, i.e. both surface tension and viscosity effects are important. A
typical profile of the resulting solitary waves is shown in Fig. 2 for
R = 0.35mm, Re = 0.59 and We = 16.6. It is characterized by
a sharp front preceded by a few damped oscillations and a smooth
tail at the back. Surface tension and inertia lead to the development
of these capillary ripples whilst viscous friction tends to suppress
them. The steepening of the front is related to nonlinearities, while
inertia, gravity and viscous drag are responsible for the back tail.
This characteristic shape is then the signature of the main relevant
features in the system, namely surface tension dissipation, viscous
dispersion, inertia instability and nonlinearities.
Spatio-temporal diagrams are obtained with a linear camera

following a vertical pixel line with time. A typical example of the
natural (noise-driven) dynamics is depicted in Fig. 3(a) for R =
0.35 mm and H0 = 0.85 mm, giving We = 5 and Re = 1.2.
The behavior is qualitatively similar for larger We and smaller R. A
primary quasi-regular wavetrain is destabilized by numerous co-
alescence and capillary drainage enhanced repulsions, leading to
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Fig. 2. Typical experimental profile of a solitary pulse.

the formation of quasi-equilibrium pulses, as shown in Fig. 3(a).
After a certain distance from the inlet, typically 80 cm, nomore co-
alescence occurs and the quasi-equilibrium pulses only rearrange
themselves through interactions without exchanging mass. Such
interactions are illustrated in Fig. 3(a), where A shows repulsion
and B shows attraction. Neighboring pulses attract or repel each
other until they are at a specific distance at which they form bound
states. These bound states are also captured by imposing a weak
forcing at the inlet so that the flow synchronizes faster to its long-
time asymptotic state. A vibrating device is used to produce peri-
odic pressure perturbations just above the entrance valve in the
tank. The frequency and the amplitude of the perturbations are
adjusted in order to produce a signal containing many harmonics.
This leads to waves that rearrange through attractions and repul-
sions into packets of mostly two or three pulses. The rearrange-
ment into packets of two pulses is shown in Fig. 3(b). By changing
the forcing frequency and the amplitude, the pulses lock on at dif-
ferent distances. Detailed visualizations of attractions and repul-
sions are obtained with a fast digital camera; see Fig. 4 where
repulsions (A and C) and attraction (B) are shown for flow of a
0.9 mm thick film down a fibre of radius 0.35 mm.
Fig. 4. Consecutive images (height: 10 cm) and the corresponding spatio-temporal
diagram for natural evolution showing interactions on a fibre of radius R =
0.35 mm for H0 = 0.9 mm (We = 3.8, Re = 1.4 and δ = 0.4). A and C: repulsions
and B: attraction. Time between two consecutive images is 0.025 s.

One might expect that for the natural dynamics the waves
would rearrange in a regular fashion below a sufficient distance
down the fibre. Although no obvious regular pattern is observed,
statistics on the separation distances between the pulses per-
formed at the bottom of the fibre at around X = 1.4 m revealed
a clear reorganization of the pulses. Indeed, in the histogram pre-
sented in Fig. 5, we can observe that, although the distribution of
the distances appears broad, there are four distances selected by
the system which clearly stand out. We note that the interaction
process is slower than the advection of thewaves by the flow and a
more regular rearrangement cannot be observed for the given fibre
length. For the forced case, when the pulses rearrange into groups
of two or three, the corresponding histograms have two peaks. In-
terestingly, these peaks occur at approximately the same distances
Fig. 3. (a) Natural evolution and (b) forced evolution and formation of two-pulse bound states for R = 0.35 mm and H0 = 0.85 mm, giving We = 5, Re = 1.2 and δ = 0.4.
A and B in panel (a) show attractions and repulsions of the pulses, respectively.
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Fig. 5. Histograms of the distances at the bottom of the fibre at around X = 1.4 m
in the natural case when R = 0.45 mm,H0 = 0.66 mm,We = 18, Re = 0.56 and
δ = 0.4.

at which two of the four peaks in the histogram for the natural dy-
namics occur (for the same flow parameters). By changing the forc-
ing amplitude, hence themodulation of the inlet signal,we can lock
on two different distances.

3. A simple model for the flow: the gKS equation

To gain theoretical insight into the interaction of the pulses and
associated formation of bound states, we assume that the free-
surface profile is axisymmetric and derive a simple model for the
flow through a long-wave expansion of the governing equations
and wall and free-surface boundary conditions.
The governing equations are the Navier–Stokes equations writ-

ten in cylindrical coordinates:

ρ(UT + UUX + VUZ ) = −PX + µ(UXX + UZZ + UZ/Z)+ ρg, (2)

ρ(VT + UVX + VVZ ) = −PZ + µ(VXX + VZZ + VZ/Z − V/Z2), (3)
UX + VZ + V/Z = 0, (4)

where U and V denote the X- and the Z-component of the velocity,
respectively, and P denotes the deviation of the pressure from the
atmospheric level.
At the fibre, Z = R, no-slip and no-penetration conditions are

satisfied:

U = V = 0. (5)

At the free surface, Z = R+ H(X, T ), we have the kinematic com-
patibility and the tangential and normal stress balance conditions:

HT + UHX − V = 0, (6)

(1− H2X )(UZ + VX )+ 2HX (VZ − UX ) = 0, (7)

P =
2µ
1+ H2X

[−HX (UZ + VX )+ UXH2X + VZ ]

−
γ

(1+ H2X )3/2

[
HXX −

1+ H2X
R+ H

]
. (8)

To non-dimensionalize the equations, we choose H0 as the
length scale,U0 ≡ ρgh20/2µ as the velocity scale,H0/U0 as the time
scale, and ρU20 as the pressure scale. The equations and the bound-
ary conditions take the following form (note that for simplicity we
use the same symbols for the dimensionless variables as for the di-
mensional ones assuming that from now on all the variables are
dimensionless):
UT + UUX + VUZ = −PX +
1
Re
(UXX + UZZ + UZ/Z)+

2
Re
, (9)

VT + UVX + VVZ = −PZ +
1
Re
(VXX + VZZ + VZ/Z − V/Z2), (10)

UX + VZ + V/Z = 0. (11)
Also, U = V = 0 at Z = R∗ ≡ R/H0, and
HT + UHX − V = 0, (12)

(1− H2X )(UZ + VX )+ 2HX (VZ − UX ) = 0, (13)

P =
2

Re(1+ H2X )
[−HX (UZ + VX )+ UXH2X + VZ ]

−
We

(1+ H2X )3/2

[
HXX −

1+ H2X
R∗ + H

]
, (14)

at Z = R∗ + H(X, T ), where Re and We are the Reynolds and the
Weber number, respectively, defined above by (1).
The non-dimensionalized base solution for H(X, T ) ≡ 1 is the

following:

U = (R∗ + 1)2 log
Z
R∗
−
1
2
(Z2 − R∗2), V ≡ 0, (15)

P ≡
We
R∗ + 1

. (16)

Next, we expand around the base solution, i.e. we write U =
U + Ũ and P = P + P̃ . Also, we assume long waves, i.e. we write
X = ξ/ε, T = τ/ε and V = εW , where ε � 1 is the so-called
long-wave or thin-film parameter, usually defined as the ratio of
the typical film thickness to the length scale over which variations
in the streamwise direction occur; see e.g. [9,10]. For simplicity, we
also introduce a new radial coordinate, ζ = Z − R∗ and we write
R∗ = R/ε and We = We/ε2. We obtain,

εŨτ + ε(U + Ũ)Ũξ + εW (U
′
+ Ũζ )

= −εP̃ξ +
1
Re

(
ε2Ũξξ + Ũζ ζ +

Ũζ
R/ε + ζ

)
, (17)

ε2Wτ + ε
2(U + Ũ)Wξ + ε

2WWζ

= −P̃ζ +
1
Re

(
ε3Wξξ + εWζ ζ +

εWζ

εR+ ζ
−

εW

(R/ε + ζ )2

)
, (18)

Ũξ +Wζ +
W

R/ε + ζ
= 0. (19)

Also, Ũ = W = 0 at ζ = 0, and

Hτ + (U + Ũ)Hξ −W = 0, (20)

(1− ε2H2ξ )(U
′
+ Ũζ + ε2Wξ )+ 2ε2Hξ (Wζ − Ũξ ) = 0, (21)

P̃ =
2

Re(1+ ε2H2ξ )
[−εHξ (U

′
+ Ũζ + ε2Wξ )

+ ε3UξH2ξ + εWζ ] −
We

ε2(1+ ε2H2ξ )3/2

×

[
ε2Hξξ +

(1+ ε2H2ξ )
3/2

R/ε + 1
−
1+ ε2H2ξ
R/ε + H

]
, (22)

at ζ = H(ξ , τ ).
Our first aim is to derive an evolution equation for the free

surface. To do this, we expand

Ũ = u0 + εu1 + ε2u2 + · · · , (23)

W = w0 + εw1 + ε2w2 + · · · , (24)

P̃ = p0 + εp1 + ε2p2 + · · · . (25)
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We assume that Re,We and R are all O(1). At leading order, we
obtain the system

u0ζ ζ = 0, p0ζ = 0, w0ζ = 0, (26)

with u0 = w0 = 0 at ζ = 0 and

u0ζ = −U
′
, p0 = −We

[
Hξξ +

H − 1

R
2

]
(27)

at ζ = H . The solution is:

u0 = 2(H − 1)ζ , w0 = −Hζ 2,

p0 = −We
[
Hξξ +

H − 1

R
2

]
.

(28)

In a similarway,we find u1, w1 and p1 by solving the systemat first
order and thenu2, w2 and p2 by solving the systemat secondorder.
This has been done in Maple and for brevity we do not include the
resulting expressions which turn out to be rather lengthy.
Now we can obtain an evolution equation for H up to and in-

cluding terms O(ε2) from the kinematic compatibility condition at
the free surface written as

Hτ +
1

R/ε + h
Qξ = 0, (29)

where

Q =
∫ H

0
(R/ε + ζ )(U + Ũ)dζ

=

∫ H

0
(R/ε + ζ )(U + u0 + εu1 + ε2u2)dζ + · · · . (30)

Thus, we obtain the following equation up to O(ε2):

Hτ +
1

R/ε + h

(∫ H

0
(R/ε + ζ )(U + u0 + εu1 + ε2u2)dζ

)
ξ

= 0. (31)

The latter integral can be easily found in Maple, and for brevity we
do not show the resulting expression which also turns out to be
rather lengthy. It can be verified that the higher-order terms are at
most O(ε3)multiplied by ξ -derivatives of H .
A simplermodel can now be obtained through aweakly nonlin-

ear expansion. Our analysis revealed that a self-consistent deriva-
tion of a weakly nonlinear model that retains surface tension
dissipation, viscous dispersion and inertia instability terms is only
possible when Re = O(ε). We then write Re = εRe, where
Re = O(1). A balance of terms in the weakly nonlinear limit is pos-
sible if the amplitudes are O(ε2). Therefore, we write H = 1+ ε2η
where η = O(1). Substituting this expression into the long-wave
equation (31) yields

ε2ητ +

(
2ε2 +

2

3R
ε3 −

1

6R
2 ε
4
)
ηξ + 4ε4ηηξ

+ ε4

(
8Re
15
+
WeRe

3R
2

)
ηξξ + 2ε4ηξξξ + ε4

WeRe
3

ηξξξξ =0,(32)

where terms of O(ε5) have been neglected. As noted earlier, the
terms that we neglected in the long-wave equation are at most
O(ε3)multiplied by ξ -derivatives of H . Therefore, these terms be-
comeO(ε5) in theweakly nonlinear limit and cannot enter thenon-
linear equation given above. Dividing the above equation by ε2 and
writing it in the moving frame

ξ = χ +

(
2+

2

3R
ε −

1

6R
2 ε
2
)
τ , (33)

we find:
ητ + 4ε2ηηχ + ε2
(
8Re
15
+
WeRe

3R
2

)
ηχχ

+ 2ε2ηχχχ + ε2
WeRe
3

ηχχχχ = 0. (34)

To simplify this equation, we introduce new variables

x = χ/A, t = τ/B, h = η/C, (35)

where

A =
(
8

5We
+
1

R
2

)−1/2
, B =

4A4

ε2WeRe
,

C =
WeRe
12A3

,

(36)

and we obtain the following equation:

ht + hhx + hxx + δhxxx + hxxxx = 0, (37)

where

δ =
6A

WeRe
=

6
WeRe

(
8
5We

+
H20
R2

)−1/2
. (38)

Eq. (37) is the gKS equation. It is the simplest possible non-
linear evolution prototype that retains the fundamental elements
of any nonlinear active–dispersive–dissipativemedium: the domi-
nant nonlinear term hhx, instability and energy production hxx, sta-
bility and energy dissipation hxxxx and dispersion δhxxx. As far as
the nonlinearity is concerned, its functional form can be easily ob-
tained from symmetry considerations: indeed, the only other dom-
inant quadratic nonlinearity is h2, which is obviously ruled out for
systems whose spatial average does not drift, i.e. d〈h〉x/dt = 0.
In the limit δ → 0, the equation reduces to the usual KS

equation, first derived by Homsy [17], Lin [18] and Nepomnya-
shchy [19] independently with a weakly nonlinear expansion for
small-amplitude falling-filmwaves in the limiting case of large sur-
face tension and away from criticality (when the Reynolds num-
ber is sufficiently larger than its critical value). The same equation
was also obtained later in a wide variety of applications such as
chemical physics/reaction–diffusion systems, e.g. propagation of
concentration waves [20,21] and combustion, e.g. flame-front in-
stabilities [22]. On the other hand, in the limit δ → ∞, the gKS
equation reduces to the Korteweg–de Vries (KdV) one. This can be
easily seen by introducing the change of variables in Eq. (37)

τ = δt, h̃ =
1
δ
h, (39)

to write it as

h̃τ + h̃h̃x + h̃xxx + ε(h̃xx + h̃xxxx) = 0, (40)

where ε = 1/δ. In the limit ε → 0 (or, equivalently, δ → ∞),
Eq. (40) reduces to the KdV equation. The properties of the solution
of Eq. (40) for small but finite ε have been scrutinized by Christov
and Velarde [23].
It is well known that for small δ the gKS equation exhibits com-

plicated chaotic dynamics in both space and time. However, a suf-
ficiently large δ arrests the spatio-temporal chaos such that the
solution evolves into a regular array of pulses that interact indef-
initely with each other through their tails. This was first shown
by Kawahara [24] and is illustrated in Fig. 6. More specifically, in
Fig. 6(a), the temporal evolution of h is shown for δ = 0. It is evi-
dent that there is no regularity and no formation of organized be-
havior, i.e. we get the usual KS chaos. Fig. 6(b) depicts the temporal
evolution of h for δ = 2. The large-time dynamics is now charac-
terized by a row of quasi-equilibrium pulses of roughly the same
shape and speed, and, therefore, it is feasible to consider the so-
lution as a superposition of such pulses and to develop a weak-
interaction theory of such pulses, as will be discussed next.
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(a) δ = 0. (b) δ = 2.

Fig. 6. Spatio-temporal evolution for h and two different values of δ. (a) δ = 0: KS chaos. (b) δ = 2: evolution towards a regular row of pulses. By increasing δ further and
since the gKS equation starts approaching the KdV one, each pulse in the row of pulses characterizing the large-time dynamics starts approaching a KdV soliton.
4. Weak interaction and bound-state formation of the gKS
pulses

In a frame moving with the velocity cδ of a pulse, Eq. (37) be-
comes
ht − cδhx + hhx + hxx + δhxxx + hxxxx = 0. (41)
Let h0 = h0(x)be a stationary pulse, satisfying the steady version of
Eq. (41) and tending to zero at infinity. A detailed review of compu-
tational methodologies for localized nonlinear structures is given
by Champneys and Sandstede [25].
It can be shown that h0(x) tends to zero exponentially and

monotonically as x → −∞ and it tends to zero exponentially
either in an oscillatory manner or monotonically as x → ∞,
depending on whether δ is below or above a threshold value δ∗ ≈
3.71 (see [26]). More specifically, h0(x) ∼ C1eλ1x as x→ −∞ and
h0(x) ∼ Re(C2eλ2x) as x → ∞, where C1 is a real constant and C2
is, in general, a complex one. Here, λ1 and λ2 are non-zero roots of
the following characteristic equation:

λ3 + δλ2 + λ− cδ = 0. (42)
As was shown by Kawahara and Toh [26], for any value of δ there
is one root that is real and positive, which we denote by λ1. If δ is
below the threshold value δ∗, there is a pair of complex conjugate
roots, λ2 and λ̄2, with negative real parts. Otherwise, if δ is above
δ∗, there are two real roots with negative real parts. In this case, we
denote the root with larger real part by λ2.
As noted in the previous section, computational experiments

show that for sufficiently large δ the dynamics is dominated by
pulses that slowly repel and attract each other. Therefore, we
assume that at a particular time the solution, h, is described as
a superposition of n quasi-stationary pulses h1, . . . , hn located at
x1(t), . . . , xn(t), respectively, namely,
hi(x, t) = h0(x− xi(t)), i = 1, . . . , n, (43)

and a small overlap (or correction) function, ĥ = ĥ(x, t), i.e. we
take on the following ansatz:

h =
n∑
i=1

hi + ĥ, (44)

and derive a system of equations governing the locations of the
pulses by following weak-interaction approaches implemented
for other systems by Ei [27] and Sandstede [28], for example. As
far as the gKS equation is concerned, previous efforts to develop
weak-interaction approaches, include [29,30,8], that, however,
overlooked certain important details, as will be briefly discussed
below. We also note that rigorous justifications of weak-intera-
ction theories can be obtained by proving the existence of center
manifolds formed by pulse packets. This has been done for cer-
tain cases when the primary pulse is spectrally stable; see [27,31],
for instance. In the present study, however, the primary pulse
is inherently unstable, and a rigorous justification of the weak-
interaction results does not follow from previous studies and is left
as a topic for further investigation. Nevertheless, an extensive nu-
merical study presented in Section 5 provides a strong evidence of
the validity of the weak-interaction theory for the gKS equation.
We also note that some rigorous analytical results to explain the
persistence of gKS pulses and their interaction in the limit of large
δ were obtained by Pego et al. [32]. Finally, we note that renormal-
ization group techniques have been used to capture the leading-
order pulse motion for well-separated pulses, for example, for the
nonlinear Schrödinger equation, e.g. [33].
A detailed construction of the weak-interaction theory for the

gKS pulses will be reported in a separate study. Formal application
of this theory leads to the following system describing the leading-
order dynamics of the locations of the pulses:

x′1 =
∫
∞

−∞

(h1h2)xΨ 1 dx, (45)

x′i =
∫
∞

−∞

(hi−1hi)xΨ idx+
∫
∞

−∞

(hihi+1)xΨ idx, 1 < i < n, (46)

x′n =
∫
∞

−∞

(hn−1hn)xΨ ndx, (47)

where Ψ i(x, t) = Ψ 0(x− xi(t)) and Ψ 0 is a non-constant function
belonging to the null space of the operator adjoint to the one
obtained by linearizing (41) around the pulse h0. We normalize it
so that

∫
∞

−∞
h0xΨ 0dx = 1. Our analysis revealed thatΨ 0 exists and

has a jump at infinity. The existence of such a function, also noticed
by Elphick et al. [29], implies that the localized function in the null
space of the adjoint operator given by Chang andDemekhin [8] and
postulated by Ei and Ohta [30] is erroneous.
Using the notations

S1(l) ≡ −
∫
∞

−∞

h0(x+ l/2)h0(x− l/2)Ψ 0x (x+ l/2) dx, (48)

S2(l) ≡ −
∫
∞

−∞

h0(x+ l/2)h0(x− l/2)Ψ 0x (x− l/2) dx. (49)
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(a) δ = 0.5. (b) δ = 1.

Fig. 7. Dependence of S1 and S2 on the separation distance between two pulses (solid and dashed lines, respectively) for δ = 0.5 and 1 (panels (a) and (b), respectively).
The intersection points are shown as circles. Black circles correspond to stable two-pulse bound states. Empty circles correspond to unstable two-pulse bound states.
we can write

x′1 = S1(x2 − x1), (50)

x′i = S2(xi − xi−1)+ S1(xi+1 − xi), 1 < i < n, (51)

x′n = S2(xn − xn−1). (52)

This system can be extended to an infinite one for an infinite array
of pulses: x′i = S2(xi − xi−1)+ S1(xi+1 − xi), for i ∈ Z.
Noting that l′i = x

′

i+1 − x
′

i, i = 1, . . . , n − 1, (50)–(52) can
be transformed to the following coupled system of ordinary
differential equations for the separation distances li’s:

l′1 = S2(l1)+ S1(l2)− S1(l1), (53)

l′i = S2(li)+ S1(li+1)− S2(li−1)− S1(li), 1 < i < n− 1, (54)

l′n−1 = S2(ln−1)− S2(ln−2)− S1(ln−1). (55)

For a bound state of n pulses, the distances li, i = 1, . . . , n− 1, for
which the bound state can be formed, must be stationary, i.e. the
following nonlinear system must be satisfied:

S2(l1)+ S1(l2)− S1(l1) = 0, (56)
S2(li)+ S1(li+1)− S2(li−1)− S1(li) = 0, 1 < i < n− 1, (57)

S2(ln−1)− S2(ln−2)− S1(ln−1) = 0. (58)

For instance, for a bound state of two pulses wemust have S1(l1) =
S2(l1). The graphs of S1 and S2 are shown in Fig. 7 for δ = 0.5
and 1 (see panels (a) and (b), respectively). The abscissas of the in-
tersection points indicate distances for which bound states can be
formed, and the ordinates indicated the corresponding velocities of
the bound states relative to cδ . Black and empty circles correspond
to stable and unstable bound states, respectively. Consider, for ex-
ample, the first bound state at l ≈ 5. For l & 5, S1 > S2 or x′1 > x

′

2
so that the first pulsemoves faster than the second onewhich then
leads to l decreasing. On the other hand, for l . 5, x′1 < x

′

2, leading
to l increasing. It is also interesting to note that the ordinates of the
intersection points are always negative, i.e. the velocity of a two-
pulse bound state is always less than that of an individual pulse.
Another interesting observation is that for δ = 0.5 we, apparently,
get a countable infinite number of bound states, whilst for δ = 1
there are only four possible bound states—two stable and two un-
stable. This can be justified analytically by showing that S1(l) ∼
D1e−λ1 l, S2(l) ∼ Re(D2eλ2 l) as l→∞, where D1 is a real constant
and D2 is, in general, a complex number. Recall that λ1 is the real
positive root of (42) andλ2 is the root of (42)with amaximumneg-
ative real part. Since λ1 is always real, S1 tends to zero in a mono-
tonic manner as l→∞. Also, λ2 has a non-zero imaginary part iff
δ < δ∗ ≈ 3.71meaning that S2 tends to zero either in anoscillatory
or monotonic manner depending on whether δ < δ∗ or δ ≥ δ∗.
Thus, if λ1 + Reλ2 > 0, there exists a countable infinite number of
two-pulse bound states. Otherwise, if λ1+Reλ2 < 0, there exists a
finite number of two-pulse bound states (or no bound states at all).
It is interesting to note that the latter criterion for the existence

of a countable infinite or finite number of two-pulse bound states
coincides exactly with the Shilnikov criterion for the existence of
an infinite countable or finite number of subsidiary homoclinic
orbits (see [34] for example). However, the approach adopted in
the present work not only provides an existence result for bound
states, but also gives the description of the dynamics of the pulses.
Further, it can be extended to higher dimensions and could in
principle be applied to non-local PDEs where the Shilnikov-type
approach is not applicable.
The calculations for the gKS equation show that λ1 + Reλ2 <

0 iff δ < δ̃ ≈ 0.85. This explains why there is a countable
infinite number of two-pulse bound states for δ = 0.5 and a finite
number for δ = 1, as is illustrated in Fig. 7. For δ = 0.5, the
pulse separation distance will tend to the nearest stable bound-
state separation distance. The same is true for δ = 1, unless the
initial separation distance is above the threshold value of about 11,
beyond which the pulse dynamics will be repulsive. The repulsive
dynamics for large δ was noticed by Kawahara and Toh [26] and
Chang andDemekhin [8].We also note that Kawahara and Toh [26]
using their approach claimed that there were no bound states for
δ = 1. Our result, however, clearly indicates the possible existence
of two stable and two unstable bound states; see Fig. 7(b) (and
the existence of a stable bound state with the separation distance
of approximately 10 has been confirmed by our time-dependent
computations to be discussed in the next section).
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Fig. 8. Dependence of the pulse separation distance on time for δ = 0.5. Panels (a), (b) and (c) show the evolution of the two-pulse separation distance when the initial
separation distances are 12, 16 and 18, respectively. Solid lines are obtained by solving numerically the model in (59). Dashed lines are obtained by solving numerically the
gKS equation with a superposition of two pulses as an initial condition.
a b c

Fig. 9. Dependence of the pulse separation distance on time for δ = 1. Panels (a), (b) and (c) show the evolution of the two-pulse separation distance when the initial
separation distances are 8, 10.5 and 12, respectively. Solid lines are obtained by solving numerically the model in (59). Dashed lines are obtained by solving numerically the
gKS equation with a superposition of two pulses as an initial condition.
5. Comparison of theory with computations

To validate the pulse-interaction theory, we compared its pre-
dictions with numerical solutions of the full time-dependent
equation (41). To solve (41) numerically, we implemented a pseu-
dospectral numerical method with a linear propagator so that the
linear part of the spatial operator is done exactly in the Fourier
space and the stiffness is removed (see, for example, [35]. Also,
to eliminate instabilities due to numerical noise and, therefore, to
track the pulse evolution for sufficiently long times, we used ex-
ponentially weighted spaces, where the primary gKS pulses are
stable. The details of the numerical scheme will be reported else-
where. For the justification of the use of exponentially weighted
spaces see, for example, [36] for the KdV equation and [37] for a
more general class of equations.
In Figs. 8 and 9, we present the results of computational

experiments for δ = 0.5 and 1, respectively, where a superposition
of two pulses was taken as an initial condition. For Fig. 8(a), the
initial pulse separation distance was taken to be 12. The dynamics
in this case is repulsive. For Fig. 8(b), the initial pulse separation
distance was taken to be 16, and the dynamics was found to be
attractive. For both Fig. 8(a) and (b) the pulses tend to form a bound
state with the separation distance of approximately 14.3. The solid
lines in the figure were obtained by solving the model

l′1 = S2(l1)− S1(l1), (59)

and we found very good agreement with the results obtained by
solving (41) numerically in a weighted space with a superposition
of two pulses as an initial condition (dashed lines). As the
initial separation distance between the pulses is increased, the
agreement becomes better, as is evident from Fig. 8(c), where the
initial separation distance was taken to be 18 (the two lines are
graphically indistinguishable).
In Fig. 9 the value of δ is 1. In Fig. 9(a), the initial pulse separation

distancewas taken to be 8. The dynamics in this case is repulsive. In
Fig. 9(b), the initial pulse separation distance was taken to be 10.5.
The dynamics in this case is attractive. For both Fig. 9(a) and (b)
the pulses tend to form a bound state with the separation distance
of approximately 10. If the initial separation distance is larger than
approximately 11, the dynamics is only repulsive. An example is
given in Fig. 9(c), where the initial separation distance was taken
to be 12.
Having validated the interaction theory, we performed numeri-

cal experiments for various numbers of pulses. Fig. 10 shows a typ-
ical numerical solution of (50)–(52) with the world lines tracking
the locations of 24 pulses when δ = 0.4. We can observe repul-
sions, attractions and formation of bound states of two and three
pulses. Note that the world lines are shown in the frame moving
with the velocity of a stationary solitary pulse. Note also the qual-
itative similarity with the world lines obtained in experiments on
coating flows down vertical fibres shown in Fig. 3(a).
We also performed a series of numerical experiments for the

gKS equation (41) in a non-weighted space, where the initial
condition was a localized disturbance generated randomly. The
equation was solved on a periodic domain [−1000, 1000] which
was discretized into 214 intervals. We considered two values of δ,
namely, 0.5 and 1. The initial disturbance resulted in an expanding
wave packetwith the envelopes traveling at a speed smaller to that
of an individual solitary pulse. This in turn resulted in production
of pulses escaping the expanding wave packet. For δ = 0.5 and
1, it was possible to numerically propagate the solution up to
approximately t = 400 and 285, respectively. Beyond these values



2008 D. Tseluiko et al. / Physica D 239 (2010) 2000–2010
Fig. 10. Numerical solution of (50)–(52) for 24 pulses when δ = 0.4. Attractions
and repulsions can be observed as well as formation of bound states.

the front pulses started interacting through the period with the
rear side of the expanding wave packet.
Typical outcomes are shown in Fig. 11(a) and (b) for δ = 0.5

and 1, respectively. We performed 1500 numerical experiments
for each δ and computed the pulse separation distance data for
each case. For δ = 0.5 and 1 we took into account the first
11 and 9 pulses, respectively, from each numerical experiment.
In Fig. 12, we show the distributions of separation distances for
δ = 0.5 at two different times, t = 300 and 400, panels (a)
and (b), respectively, obtained by placing the distances into 60
equally spaced intervals. The distributions are multimodal for this
value of δ. The first three sharp pronounced peaks occur at around
l = 9.5, 14.5 and 18.5, which are in good agreement with the
pulse separation distances that correspond to the theoretically
predicted bound states; see Fig. 7(a). Note that the occurrence
of the peaks in the histogram of separation distances was also
observed in experiments on coating flows down vertical fibres; see
Fig. 5. We also note that as t increases, these peaks become more
pronounced. In Fig. 13, we show the distribution of separation
distances for δ = 1 at t = 213.75 and 285 (panels (a) and (b),
respectively). In this case, the distributions are rather unimodal
and slightly skewed with thicker left tails. Although the theory
predicts a possible existence of only one stable two-pulse bound
state, see Fig. 7(b) (for l ≈ 10—the other one for l ≈ 5 definitely
does not satisfy the assumption of a ‘‘small’’ overlap of two pulses
and does not correspond to a bound state), we do not observe a
clear peak formation in the histograms in Fig. 13. However, we
can still observe some thickening of the left tail of the histogram
and some accumulation near l ≈ 10, which is consistent with the
theory. Also, as t increases, the peak becomes less pronounced and
the left tail thickens.

6. Discussion and comparison with experiments

We have presented experimental results on the flow of a
liquid film down a vertical fibre. Such flow is unstable (due to
Rayleigh–Plateau instability) and the film breaks up into a droplike
wavetrain. The instability can be both absolute and convective.
We found that for the convective case, the primary wavetrain is
(a) δ = 0.5, t = 400.

(b) δ = 1, t = 285.

Fig. 11. Numerical solutions of the gKS equation on a periodic interval [−1000, 1000] for δ = 0.5 and 1 (panels (a) and (b), respectively) at t = 400 and 285, respectively.
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(a) δ = 0.5, t = 300. (b) δ = 0.5, t = 400.

Fig. 12. Histogram for pulse separation distances based on a series of computational experiments for δ = 0.5 at t = 300 and 400 (panels (a) and (b), respectively).
(a) δ = 1, t = 213.75. (b) δ = 1, t = 285.

Fig. 13. Histogram for pulse separation distances based on a series of computational experiments for δ = 1 at t = 213.75 and 285 (panels (a) and (b), respectively).
characterized by numerous coalescence events while for certain
flow parameters nomore coalescence events occur below a certain
distance down the fibre. The film free surface is then dominated by
interacting solitary pulses that either attract or repel each other.
Statistical analysis of the separation distances revealed a clear
reorganization of the pulses—certain distances stand out in the
histogram of the pulse separation distances measured at some
point at the bottom of the fibre as shown in Fig. 5.
To obtain theoretical insight into the experimentally observed

phenomena, we derived a simplemodel for the flow, the gKS equa-
tion. The derivation is based on a long-wave expansion of the gov-
erning equations and fibre and free-surface boundary conditions.
The gKS equation is one of the simplest prototypes that describes
many other nonlinear active media with energy supply, dissipa-
tion, dispersion and nonlinearity. The spatio-temporal evolution of
a solution to the gKS equation is dominated by interacting localized
nonlinear pulses (provided that the dispersion coefficient is suffi-
ciently strong), just as we find in the experiments on coating flows
down vertical fibres. We subsequently studied the weak interac-
tion of solitary pulses and bound-state formation phenomena for
this equation. Our theoretical approach was based on representing
the solution as a superposition of such pulses and an overlap func-
tion. Under the assumption that the pulses are sufficiently sepa-
rated, we obtained a dynamical system describing the evolution of
the locations of the pulses.
By analyzing the fixed points of this system, we obtained bound

states of pulses. In particular, we analyzed in detail bound states of
two pulses. We provided a criterion for the existence of a count-
able infinite or finite number of bound states, depending on the
strength of the dispersive term in the gKS equation. Interestingly,
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this criterion exactly coincides with the Shilnikov criterion on the
existence of subsidiary homoclinic orbits. However, in addition to
providing an existence result for the bound states, our approach
also gives the description of the dynamics of the pulses. Besides, it
can be extended to higher dimensions and could in principle be
applied to non-local PDEs where the Shilnikov-type approach is
not applicable. Our interaction theory and resulting bound states
were corroborated by computational experiments. In particular,
we found that the dynamic interaction of the pulses is well de-
scribed by a simplified time-dependent model obtained from the
dynamical system for the location of the pulses.We can obtain both
attraction and repulsion of the pulses which is in qualitative agree-
ment with our experimental results presented in Section 2.
We have also performed a series of numerical experiments for

the gKS equation on a large periodic domain with a random ini-
tial condition and collected statistics on the separation distances
of the pulses. The results showed that for the values of δ for which
the theory predicts bound states, the histograms of the separation
distances have well-pronounced peaks occurring at values corre-
sponding to separation distances of the stable bound states ob-
tained by the theory. This observation is in qualitative agreement
with our experiments where the histograms also manifested well-
pronounced peaks (compare the histograms in Figs. 5 and 12).
The value of δ which corresponds to Fig. 3 is δ ≈ 0.4. The the-
ory predicts that bound states exist for this value of δ and this is
consistent with our experimental observations. However, the
quantitative agreement of the experimental and theoretical sep-
aration distances is not quite achieved. When we convert the the-
oretical bound-state separation distances into dimensional ones,
we find that the experimental distances are larger than the theo-
retical ones by a factor of approximately 2–3. But this is to be ex-
pected since for the theory we assumed that the radius of the fibre
is much larger than the film thickness, which is not the case in the
experiments. Violation of this assumption affects significantly the
rescaling of the distances.We further note that there are certain ex-
perimental limitations on the thickness of the film which we can
use, i.e. below a critical distance no flat film can emerge close to the
entrance valve. On the other hand, for larger radii we obtain large
values of δ and no bound states are found both theoretically and
experimentally. Thus, the best compromise to obtain bound states
in the experiments and a qualitative agreement with the theory
is to use a film whose thickness is of the same order as the fibre
radius. Although we do not have quantitative agreement, we are
still able to obtain a qualitative description of the experimentally
observed phenomena as the gKS prototype contains all the impo-
rtant ingredients of the physical system.
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