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a b s t r a c t

Fibre coating has attracted considerable attention over the past years due to its engineering applications
as well as fundamental interest generated by the fascinating complexity of the resulting flow. A liquid film
coating axisymmetrically a vertical fibre and flowing under the action of gravity spontaneously breaks up
into a regular drop-like wave train. This instability results primarily from the capillary pressure induced by
the azimuthal curvature (Rayleigh–Plateau instability) while the pressure induced by the axial curvature
has a stabilising effect. Streamwise viscous diffusion plays a dispersive role that dramatically affects the
waves selection, speeds and shapes. When both surface tension and viscosity effects are strong, complex
wave interactions lead to the formation of bound states. In this study, we investigate experimentally the
7.54.−r
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details of those interactions and show that regular patterns of bound states can be obtained by external
forcing. A qualitative theoretical explanation of the experimental findings is provided with a simple
model for the flow.

© 2010 Elsevier B.V. All rights reserved.
hin liquid films

. Introduction

Fibre coating has attracted considerable attention over the past
ears due to its engineering applications as well as fundamental
nterest generated by the fascinating complexity of the result-
ng flow [1,2]. A liquid film coating axisymmetrically a vertical
tationary fibre and flowing under the action of gravity sponta-
eously breaks up into a regular drop-like wave train [3]. This

nstability results primarily from the capillary pressure induced by
he azimuthal curvature (Rayleigh-Plateau instability) while the
ressure induced by the axial curvature has a stabilising effect.
treamwise viscous diffusion plays a dispersive role that dramat-
cally affects the waves selection, speeds and shapes [4]. When
oth surface tension and viscosity effects are strong, complex wave

nteractions lead to the formation of bound states [5]. In this study,
e investigate experimentally the details of those interactions

nd show that regular patterns of bound states can be obtained
y external forcing. A qualitative theoretical explanation of the

xperimental findings is provided with a simple model for the
ow.

∗ Corresponding author.
E-mail address: fred@fast.u-psud.fr (F. Giorgiutti-Dauphiné).

255-2701/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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2. Experiments

The experimental set-up consists of a vertical nylon fibre on
which Rhodorsil silicon oil (density � = 963 kg/m3, dynamic viscos-
ity � = 48 × 10−3 Pa s, surface tension � = 20.8 × 10−3 N/m at 25 ◦C)
flows axisymmetrically [6] (Fig. 1(a)). Fibre radii R are small com-
pared to the capillary length (�−1 =

√
�/(�g) = 1.5 mm) to ensure

strong curvature effects, i.e. 0.23 < R� < 0.3. Notations are given in
Fig. 1(c). The vertical downward axis x denotes the position on the
fibre (with x = 0 at the inlet), r denotes the radial coordinate, and the
free surface is given by r = R + h(x, t). Just after the inlet, the film is of
uniform thickness h0 (Fig. 1(b)). The relevant dimensionless param-
eters are the Reynolds number Re = �U0h0/� and the Weber number
We = �/�U2

0 h0, where U0 = �gh2
0/2� is a characteristic speed cor-

responding to a simple balance between viscous drag and gravity.
Parameters are chosen in order to have both strong viscosity and
surface tension effects (Re�1, We ∼ 10), that is 0.55 mm < h0 < 0.95
mm. In [5], we have introduced an additional non-trivial dimen-
sionless parameter measuring the relative importance of dispersive
effects defined as ı = 6/We Re A1/2, where A = 8/5We + (h0/R)2. This
parameter compares the relative importance of surface tension and

viscosity. In our experiments, ı ∼ 0.5. Under these conditions, the
system behaves as a “noise amplifier”: the advection of the waves
by the flow dominates over the Rayleigh-Plateau instability, while
the curvature effects are still important [3,6].

dx.doi.org/10.1016/j.cep.2010.10.004
http://www.sciencedirect.com/science/journal/02552701
http://www.elsevier.com/locate/cep
mailto:fred@fast.u-psud.fr
dx.doi.org/10.1016/j.cep.2010.10.004
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Fig. 1. (a) Experimental setup, (b) snapshot of the flow just after the inlet
(R = 0.2 mm, h0 = 0.55 mm), and (c) notations.

Fig. 2. Experimentally obtained spatio-temporal diagrams tracking the wave peaks durin
for 10 cm < x < 100 cm with A coalescence and B repulsion with mass transfer, and (b) for
nd Processing 50 (2011) 519–524

The natural (noise driven) evolution is depicted in Fig. 2. Such
spatio-temporal diagrams are obtained with a linear camera fol-
lowing a vertical pixel line (parallel to the flow) with time, the
dark lines tracking the trajectories of the wave peaks. After a few
centimeters where the thickness remains constant, the film spon-
taneously breaks up into a regular wave train. This primary wave
train is then destabilized (after 20–40 cm) through numerous coa-
lescence events (Fig. 2(a)–A) where two droplets merge to form
a larger, faster wave. After a certain distance on the fibre (typi-
cally 60 cm), no more coalescence occurs. We can then observe
strong repulsions (Fig. 2(a)–B) where waves exchange fluid. This
behaviour can be easily deduced from the peak lines on the spatio-
temporal diagram. As the upstream faster wave (noted 1) approach
the downstream slower wave (noted 2), fluid is drained from 1 to
2, leading to a decrease in the volume (hence a deceleration) of 1
and an increase in the volume (hence an acceleration) of 2, so that
the waves repel one another.

The exchange of fluid between waves adjusts their size accord-
ingly, and saturated waves are formed after a certain distance on the
fibre (typically 80–100 cm). As noted from the quasi-parallel stripes
on the spatiotemporal diagram, these solitary pulses have a nearly
identical speed and an identical shape. Measurements at x = 1.4 m
reveal an average deviation of 1–2% on the speed. These pulses can
be referred to as “dissipative solitons” [7] that arise from a precise
balance between nonlinearity, energy input/instability and energy
output/dissipation. At the bottom of the fibre (Fig. 2(b)), the pulses
merely rearrange through weak interactions with their neighbors.
Pulses either attract (Fig. 2(b)–C) or repel (Fig. 2(b)–D) each other
until they are at a specific distance which then remains constant
while they travel at a constant speed. The two pulses then behave
as a single object, forming a so called “bound state”. Formation of
bound states occurs in a wide variety of physical settings, from
quantum mechanics to biological systems, complex fluids and pat-
tern formation [8]. We note that as pulses interact only with their

immediate neighbors, they can form 2-pulse (Fig. 2(b)–C) or 3-pulse
(Fig. 2(b)–D) bound states.

g noise-driven evolution for R = 0.35 mm, h0 = 0.85 mm (Re = 1.2, We = 5, ı = 0.4) (a)
65 cm < x< 140 cm with C attraction and D repulsion.
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ig. 3. Interaction mechanims: (a) attraction, (b) repulsion, (c) histogram of the sep
or R = 0.45 mm, h0 = 0.74 mm (Re = 0.8, We = 10, ı = 0.44).

The dominant interaction mechanism is the overlap of the tails
f neighboring pulses, as depicted in Fig. 3. Interactions are then
trongly dependent on the shape of the pulse. Pulses have a steep
ront due to the non-linear kinematic effect which is preceded by

few capillary ripples arising from surface tension and damped
y viscous friction. Viscous drag and gravity are responsible for
he smooth monotonic tail [5]. As two pulses approach each other,
he back slope of the front pulse experiences a positive (negative)
ifferential pressure in the liquid as it overlaps with a maximum
minimum) of one of the capillary waves. This elevates (depresses)
he back slope of the front pulse and decreases (increases) its cur-
ature. The generated differential capillary pressure then causes
he front pulse to move backwards (forwards) in a quasi-steady

anner. This mechanism suggests the existence of several possi-
le distances between pulses, depending on their initial separation
istance and on the period of the capillary ripples. These distances
hould also have a common factor related to the period of the
apillary ripples. Due to this slow interaction process, the system
hen heads towards reorganization, though no obvious regularity is
bserved. Nevertheless, statistics on the distances between pulses
erformed at the bottom of the fibre and with a large number of
ulses, reveals that the system appears to select a finite number
f distances at large times. The long-time distance distribution is
resented on the histogram in Fig. 3(c). We can then note that five
istances arise: L1 = 15.7 ± 1.3 mm, L2 = 20.7 ± 1.3 mm, L3 = 27 ± 2.5
m, L4 = 37 ± 2.5 mm and L5 = 43.4 ± 1.3 mm. These prominent

eparation distances also have a common factor (Li+1 − Li ≈ 6) as
uggested by the above physical mechanism.

To capture the specific pulse separation distances, we can reduce
he initial distance distribution by imposing a weak forcing at the
nlet. Forcing is achieved by creating pressure modulations in the

pper tank [6]. The forcing signal competes with the amplifica-
ion of the ambient (white) noise. Low-amplitude forcing then gives
ise to a modulated signal at inlet containing many harmonics. We
btain a periodic signal where the separation distances and the

Fig. 4. Normalized inlet signal and corresponding spectra when imposing a weak forc
n distances L between successive pulses at the bottom of the fibre (1.2 m < x < 1.4 m)

wave amplitudes show small deviations from a mean value. A typ-
ical signal measured at x = 5 cm is presented in Fig. 4: the liquid
film exhibits periodic undulations at a frequency f0 = 12 Hz mod-
ulated with a carrier frequency �f = 3 Hz. The thickness deviates
from its mean value h0 with fluctuations up to 20%. We can then
impose the initial distances between pulses while letting the sys-
tem relax to its equilibrium as the waves grow. The inlet signal
(hence the initial distance distribution) can be controlled by adjust-
ing both frequency and amplitude of the forcing device. Note that
low frequency and/or high amplitude forcing lead to the synchro-
nization of the flow with the forcing frequency [6]. By imposing a
weak forcing, we observe that the transient destabilization regime
is skipped, and bound states form rapidly. Such a phenomenon is
presented in Fig. 5 (for the same parameters as for Fig. 2). We indeed
obtain waves that quickly group into packets via both attractions
and repulsions. The packets are formed of mostly two (Fig. 5(a)
and (b)) or three (Fig. 5 (c) and (d)) pulses. The resulting pat-
tern depends on the forcing signal frequency and modulation, and
can be easily tuned on. Statistical analysis reveals that the sys-
tem then selects two distances, whose values correspond to the
ones obtained without forcing. For the example given in Fig. 5, the
2-pulse bound state is characterized by L1′ = 14.5 ± 0.7 mm = L1
and L3′ = 26 ± 1 mm = L3, while the 3-pulse bound state is charac-
terized by L1′ = 14.5 ± 0.6 mm = L1 and L2′ = 20.3 ± 0.6 mm =
L2. Depending on the inlet signal (i.e. the initial distances between
waves), pulses attract or repel, and the system selects two distances
or more between its intrinsic specific distances. When the system
selects three distances, more complicated patterns can arise (such
as 2 pulses – 1 pulse – 2 pulses arrangement). Hence, forcing allows
us to capture the specific distances already present in the system.

Furthermore, the selected pattern remains periodic and steady

all along the fibre. Regular arrangement can then be obtained very
easily and in a reproducible manner. This also allows for a precise
study of the interaction mechanism, as the interactions occur at a
constant location on the fibre. An example of the formation of a

ing, measured at x = 5 cm for R = 0.475 mm, h0 = 0.82 mm (Re = 1, We = 6, ı = 0.5).
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ig. 5. Experimentally obtained forced bound states for R = 0.45 mm, hN = 0.74 mm
istograms of the separation distances L between successive pulses at the bottom o

-pulse bound states is given in Fig. 6. Initially, the signal is peri-
dic and modulated, exhibiting uneven packets of three pulses as
resented in Fig. 6(a). This pattern is periodically reproduced. The
ulses have an amplitude 0.8 ± 0.03 mm (with small deviations,
= 0.77, 0.79 and 0.83 mm) and corresponding speed 6.2 ± 0.6 cm/s

5.6, 6.3 and 6.8 cm/s). The two downstream pulses then repel each
ther by exchanging a small amount of fluid through the substrate

s is evident from the change in the amplitude of the pulses and the
ubstrate thickness (Fig. 6(b)). Another repulsion occurs between
he upstream and the following pulse; again, a small exchange of
uid can be noticed. These interactions lead to the formation of a

ig. 6. Experimental profiles showing the formation of a 3-pulse bound state: (a)
nitial arrangement of the pulses, (b) intermediate positions of the pulses and (c)
nal pattern, for R = 0.475 mm, h0 = 0.82 mm (Re = 1, We = 6, ı = 0.5). Grey arrows
epresent the movement of fluid, while dotted lines indicate the amplitude of the
ulses.
.8, We = 10, ı = 0.44): snapshots taken at x ∼ 90 cm, spatio-temporal diagrams and
bre (1.2 m < x < 1.4 m) for (a, b) 2-pulse bound state and (c, d) 3-pulse bound state.

bound state (Fig. 6(c)) with speed 6.2 cm/s and amplitude 0.79 mm
separated by a constant distance L = 5 mm and riding on a flat sub-
strate of thickness 0.23 mm. This regular pattern is periodically
reproduced, with a constant distance between successive 3-pulse
packets. Similar observations can be made for 2-pulse bound state,
in agreement with our proposed interaction mechanism.

3. Coherent structure theory and regime map

In [5], we have derived a simple equation for the flow
through a weakly nonlinear expansion of the base equations
(Navier–Stokes in cylindrical coordinates together with the
wall and the free-surface boundary conditions). We assumed
R/h0 = O(ε−1), We = O(ε−2) and Re = O(ε), where ε � 1 is the long-
wave/film parameter, which in thin-film flows is typically defined
as the ratio of h0 to a lengthscale over which streamwise varia-
tions occur. The amplitude deviation from h0 is taken of O(ε2). We
obtained the following equation:

HT − cıHX + HHX + HXX + ıHXXX + HXXXX = 0 (1)

already in a frame moving with the velocity cı of a pulse. X, T, and
H are defined through

x = h0A−1/2(X + cıT) + 3B
[

2 + 2
3

˛ − 1
2

˛2
]

T (2)

t = 3U−1
0 BT, H = 12A1/2Bh−2

0 (h − h0) (3)

where A = 8/5We + ˛2, B = h0/We Re A2, and ˛ = h0/R. Eq. (1) is the so-
called “generalized Kuramoto–Shivashinsky” (gKS) equation. This
equation has been postulated in the literature as a prototype that
retains the fundamental elements of active-dissipative nonlinear
media: the dominant nonlinear term (HHX), instability (HXX) aris-
ing here from inertia surface tension through the curvature of the
fibre, stability (HXXXX) here due to surface tension through the cur-
vature of the interface, and dispersion (ıHXXX) promoted here by
viscous effects. We assume that H can be written as a superposition
of n quasi-stationary pulses H1, . . ., Hn located at X1(T), . . ., Xn(T),∑

respectively, and a small overlap function, Ĥ, i.e. H = n

i=1Hi + Ĥ.
We consider weak interaction assuming that the pulses are suffi-
ciently separated and, therefore, for each pulse it is sufficient to take
into account its interaction with only the immediate neighbors. We
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Fig. 7. Dependence of S1 (dashed line) and S2 (plain line) on the separation distance
b
h
(

t
d

w
t
m
n
t
t
a
s

a
s
S
d
(
d
a
r
s
b
o
i
t
t
a
q
w
e
t
c
d

s
i
t
b
d
f

Fig. 8. Map of the different regimes in the plane (˛ = h0/R, �R). The bottom-left
shaded region is defined by ı ≤ 0.1 and represents the dissipative regime where coa-
lescence occurs. The top-right dotted region is defined by ı ≥ 1 and represents the
dispersive regime where interactions are repulsive. The white region corresponds to
intermediate values of ı for which both attractions and repulsions occur and bound
states can be formed. The dashed grey line corresponds to the locus ı = 0.5. Dark

pulses are initially placed at distances closer to their equilibrium
values and as a result the pulses rearrange themselves rapidly.
etween pulses L for ı = 0.4; • – stable bound state, × – unstable bound state. Subplot:
istogram of the pulse separation distances obtained numerically by solving system
4).

hen arrive at the following system describing the leading-order
ynamics of the locations of the pulses (details are given in [5]):

X ′
1 = S1(X2 − X1),

X ′
i
= S2(Xi − Xi−1) + S1(Xi+1 − Xi); 1 ≤ i ≤ n,

X ′
n = S2(Xn − Xn−1),

(4)

here S2 and S1 represent the interaction of the ith pulse with
he oscillatory front of the upstream pulse (i − 1) and with the

onotonic tail of the downstream pulse (i + 1), respectively. We
ow consider the interaction of two pulses separated by a dis-
ance X2 − X1 = L. From Eq. (4), S1,2 now represent the speeds c1,2 of
he pulses in the moving frame at speed cı, that is X ′

1 = c1 = S1(L)
nd X ′

2 = c2 = S2(L). The variation of S1,2 as a function of the pulse
eparation distance L is shown in Fig. 7 for ı = 0.4.

Depending on their initial separation distance L, pulses can
ttract or repel each other corresponding to stable or unstable
eparation distances. For example, let us take L1 ≈ 11. In this case,
1 > S2, hence c1 > c2, the upstream pulse 1 travels faster than the
ownstream pulse 2, hence they two pulses approach each other
L decreasing) so that the velocity difference between the two
ecreases until both pulses travel at the same velocity, forming
bound state (with L = 9.5 < L1). For L = 8, S2 > S1 and the pulses

epel each other (c1 < c2): L increases until pulses form a bound
tate with L = 9.5 ( > 8). The distances at which bound states can
e formed are then given by the abscissas of the intersections
f S1 and S2. For ı�0.85, there is a countable infinite number of
ntersections of S1 and S2 (but in time-dependent computations,
o be described below, the system selects a finite number of dis-
ances corresponding to the smaller intersections). S2 is oscillatory
pproaching a sinusoidal function for L�6 while S1 levels off
uickly with L, so that their intersections are located at distances
hich have a common factor, a feature that was evidenced in the

xperiments. On the other hand, the distance L ≈ 7 is unstable
o small displacements: L�7 (resp. L�7) leads to c2 > c1 (resp.
1 > c2), hence repulsion (resp. attraction) that is L increases (resp.
ecreases) away from the value 7.

We have solved numerically (4) for two pulses and ı = 0.4 and
tudied the evolution of a large average number of pulses with the
nitial distance distribution taken normal. We observed both attrac-

ion and repulsion, as well as formation of 2-pulse and 3-pulse
ound states. The resulting histogram of the large-time separation
istances is given in the insert of Fig. 7. We observe three peaks
ormed at 	9.5, 14 and 18.5, which are in very good agreement with
vertical segment show the range of values of (˛, �R) at which bound states were
observed experimentally.

the stable two-pulses bound state distances given by the intersec-
tions of S1 and S2. However, converting the dimensionless distances
9.5, 14 and 18.5 to dimensional ones, gives 0.42 cm, 0.62 cm and
0.82 cm. When compared with the preferred distances obtained
experimentally for ı = 0.4 (L1 ≈ 1.2 cm, L2 ≈ 1.8 cm and L3 ≈ 2.6 cm),
we find that the experimental distances are larger than the theo-
retical ones by a factor of 	3. Hence, we do not have a quantitative
agreement on the distances but this should be expected as for the
theory R was assumed to be large compared to h0, which is not the
case in the experiments (where ˛ = O(1)). Nevertheless, we have a
good qualitative agreement on many features present in the exper-
iments, i.e. that pulses can form bound states via both attraction
and repulsion, and that the system appears to select a certain num-
ber of distances which have a common factor. The formation of
bound states is precisely due to the overlap of the front/back tails
of successive pulses. Our theory also emphasizes the significance of
the dispersion parameter ı. When ı�11 (or ı�0.1), the system is
purely dispersive (resp. dissipative), waves do not have any frontal
ripples (they have large amplitude frontal oscillations, resp.) and
no bound states can be observed, interactions being only repulsive
(resp. attractive with deep inelastic coalescence events leading to
spatio-temporal chaos). As noted earlier, the theory also suggests
that depending on their initial separation distance, the pulses will
lock on at the nearest distance corresponding to a stable bound
state, in agreement with the experiments. In the experiments for
the natural (unforced) case the initial distance distribution is broad,
as it arises from the random destabilization of the primary wave
train. On the other hand, in the experiments for the forced case,
1 The <fn0005>coherent structures theory predicts a finite number of intersec-
tions for 0.85� ı�1.3 and no intersections for ı�1.3. But numerical experiments
with the gKS equation show no bound states for ı�1.
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We are now in a position to construct a regime map that sum-
arizes our results and which is presented in Fig. 8. The bottom-left

haded region is defined by ı ≤ 0.1 and represents the dissipative
egime, the top right dotted region is defined by ı ≥ 1 and repre-
ents the dispersive regime while the white region corresponds
o intermediate values of ı for which both attractions and repul-
ions occur and bound states can be formed. Experimentally, bound
tates were observed for all experimentally reachable thickness on
our fibre radii R = 0.2,0. 35, 0.45, 0.475 mm, that is for 0.13 < ı < 0.52.
ound states were never observed on a larger fibre radius (R = 1.5
m) for which reachable thicknesses give ı > 1. Smaller values of ı

annot be obtained in our experiment as we cannot reach a thick-
ess below the critical film thickness of 	0.5 mm for which no flat
lm can emerge from the meniscus at the entrance valve: the insta-
ility grows faster that the time necessary to form the meniscus
hich breaks instantaneously into droplets, leading to dripping of

he liquid from the faucet (referred to as “regime c” by Kliakhandler
t al. [2]). It is interesting to note that no bound states were noticed
n experiments performed on a planar substrate (�R > 1) and for less
iscous fluids (water or alcohol) for which ı < 0.1 [9]. These obser-
ations indicate that ı is indeed the right parameter to describe
ave interactions on a liquid film coating a vertical fibre and allow
s to determine whether surface tension (leading to large capillary
ipples, hence attractions) or viscosity (damping the ripples leading
o repulsions) dominates.
. Conclusion

In this study, we have provided evidence for bound-state
ormation phenomena in low-Reynolds number interfacial hydro- [
nd Processing 50 (2011) 519–524

dynamics. More specifically, we have investigated experimentally
pulse interactions on a viscous film coating a vertical fibre
and demonstrated that in a certain regime of the parameter
space, the flow organizes into a series of bound states. A rigor-
ous coherent structures theory for a simple model of the flow,
the gKS equation, explains the observed phenomena qualita-
tively.
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