
J. Fluid Mech. (2008), vol. 603, pp. 431–462. c© 2008 Cambridge University Press

doi:10.1017/S0022112008001225 Printed in the United Kingdom

431

Modelling film flows down a fibre
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Consider the gravity-driven flow of a thin liquid film down a vertical fibre. A model
of two coupled evolution equations for the local film thickness h and the local flow
rate q is formulated within the framework of the long-wave and boundary-layer
approximations. The model accounts for inertia and streamwise viscous diffusion.
Evolution equations obtained by previous authors are recovered in the appropriate
limit. Comparisons to experimental results show good agreement in both linear and
nonlinear regimes. Viscous diffusion effects are found to have a stabilizing dispersive
effect on the linear waves. Time-dependent computations of the spatial evolution of
the film reveal a strong influence of streamwise viscous diffusion on the dynamics of
the flow and the wave selection process.

1. Introduction
A liquid film flowing down a vertical fibre is an unstable open-flow hydrodynamic

system that exhibits a rich variety of wave phenomena and transitions, ranging
from the classical spatio-temporal disorder prompted by the Kapitza instability
mode of films falling down vertical planes – hereinafter referred to as ‘K mode’–
and characterized by the presence of continuously interacting solitary waves, to the
emergence of very regular drop-like wave patterns resulting from the Rayleigh–
Plateau instability mode of a liquid layer coating a cylinder – hereinafter referred to
as ‘RP mode’ (Kliakhandler, Davis & Bankoff 2001; Duprat et al. 2007).

The experimental investigation of flows down fibres was initiated by the studies of
Quéré in the context of drawing of wires from liquid baths (Quéré 1990, 1999). Quéré
observed the formation of axisymmetric drops, and showed that this break-up process
may be arrested by mean flow. Kliakhandler et al. (2001) examined experimentally the
dynamics of a film flowing down a fibre and reported several wavy regimes, consisting
of isolated large-amplitude drops moving at constant speed and shape on a nearly
flat substrate, regular periodic wavetrains or interaction events between large drops
with smaller ones on the residual film separating the large drops.

The arrest by the mean flow of the drop formation process observed by Quéré was
analysed in detail by Kalliadasis & Chang (1994). They computed the solutions to a
lubrication-type evolution equation for the film thickness h derived by Frenkel (1992)
assuming it to be much smaller than the radius R of the fibre and neglecting inertia.
They observed a catastrophic growth of the speed and amplitude of the solitary-wave
solutions that closely corresponds to the onset of drops in Quéré’s experiments.

Roy, Roberts & Simpson (2002) extended Frenkel’s equation by including higher-
order terms in the small aspect ratio h/R (e.g. in Frenkel’s equation only the
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leading contribution of the azimuthal curvature to the capillary pressure is retained).
Kliakhandler et al. (2001) examined the case of film thicknesses of the order of
the fibre radii corresponding to their experiments. Their derivation is based on the
lubrication approximation but contains an ad-hoc step within the framework of this
approximation, namely the retention of the full curvature term. Craster & Matar
(2006) derived a film-thickness evolution equation very similar to that obtained by
Kliakhandler et al. (2001) based on the assumption that the total radius of the
fluid ring R + h is small compared to the capillary length. However, unlike the
Kliakhandler et al. (2001) equation, the Craster–Matar equation retains the lower-
order approximation of the curvature and is consistent at its level of truncation.
Moreover, the time-dependent computations of the Craster–Matar equation show
reasonable agreement to the experiments performed by these authors as well as to
the study by Kliakhandler et al.

All modelling attempts described above assumed negligible inertia effects. Therefore
they cannot account for the K hydrodynamic instability mechanism. A decisive
first step towards accounting for inertia effects for moderate Reynolds numbers
was undertaken by Trifonov (1992) who applied the Kàrmàn–Polhausen averaging
technique for a film falling down a planar substrate, introduced first by Shkadov
(1967), to formulate a system of two evolution equations for the film thickness h

and the flow rate q . Trifonov demonstrated the presence of at least two families of
travelling-wave solutions leading to ‘negative’ or ‘positive’ solitary waves in the limit
of small wavenumbers. Sisoev et al. (2006) carried out transient numerical simulations
of Trifonov’s model with periodic forcing at the inlet. The spatial evolution of the
waves is then characterized by the selection of the fastest travelling wave having the
same frequency with the forcing at the inlet. However, the Kármán–Pohlhausen aver-
aging technique is known to lead to an erroneous estimate of the instability threshold
for a film falling down a planar inclined substrate, a direct consequence of neglecting
the contribution of the streamwise viscous dissipation (Ruyer-Quil & Manneville
2000). More recently, Roberts & Li (2006) obtained a two-equation model based on a
centre-manifold approach by taking into account both inertia and streamwise viscous
diffusion, but assumed a small aspect ratio h/R, whereas the reported experimental
conditions correspond to h/R ∼ 1 (Kliakhandler et al. 2001; Duprat et al. 2007).

In this study we develop a generic modelling approach based on first principles
to formulate a two-equation model for the film thickness h and flow rate q . The
model overcomes the limitations of the Trifonov and the Roberts & Li models, i.e. it
accounts for inertia, streamwise viscous diffusion, both small and O(1) aspect ratios
h/R as well as small and large surface tension fluids and is consistent with the above
cited lubrication equations in the appropriate limit. In addition, we investigate the role
of viscous streamwise effects in the experimental conditions of the Kliakhandler et al.
and Duprat et al. studies and we demonstrate good agreement with these experiments.
We also clearly demarcate regions in the parameter space where previous models are
valid.

The different tests used for the validation of our model are as follows. (i) The
linear stability characteristics of the base flow and their comparison with an Orr–
Sommerfeld analysis of the full Navier–Stokes equations and wall and free-surface
boundary conditions. A related test here is the analysis of the response of the
base flow to a localized perturbation and the ability of the model to capture the
absolute/convective instability transition as predicted by Orr–Sommerfeld. (ii) Direct
comparisons with experiments of different features of the flow such as travelling-wave
characteristics (speed, maximum amplitude).
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Figure 1. Sketch of the profile geometry for a thin liquid film falling down a vertical fibre.
A cylindrical coordinate system (r, θ ) is chosen at the fibre centreline r = 0. R is the fibre
radius and h is the local film thickness. (x, y) is a Cartesian coordinate system with x the
axial/streamwise coordinate along the fibre centreline and y = r − R an outward pointing
coordinate normal to the fibre surface and such that y = 0 corresponds to the fibre surface
and y = h to the film surface.

The paper is organized as follows. The governing equations for a film flowing down
a vertical fibre and their non-dimensionalization are given in § 2. The boundary-layer
approximation is outlined in § 3. A two-equation model is next formulated using a
weighted residuals procedure in § 4 which is validated and compared to available
experimental data in the linear and nonlinear regimes in § 5 and § 6, respectively.
Time-dependent simulations of the spatial evolution of the flow along the fibre are
presented in § 7 followed by concluding remarks in § 8.

2. Governing equations
Consider a film falling down a vertical fibre as illustrated in figure 1. The fluid

properties, namely viscosity µ, density ρ and surface tension σ , are all assumed to
remain constant. Our non-dimensionalization is based on the viscous–gravity time and
space scales, tν = ν1/3g−2/3, lν = ν2/3g−1/3, built from the kinematic viscosity ν = µ/ρ

and the acceleration due to gravity g. Assuming axisymmetric flows without any
variation in the azimuthal θ-direction, the equations of motion are:

∂tux + ux∂xux + ur∂rux = −∂xp + 1 +

[
∂rr +

1

r
∂r + ∂xx

]
ux, (2.1a)

∂tur + ux∂xur + ur∂rur = −∂rp +

[
∂rr +

1

r
∂r + ∂xx

]
ur − 1

r2
ur, (2.1b)

∂rur +
ur

r
+ ∂xux = 0 . (2.1c)

They are subject to the no-slip/no-penetration boundary condition at the wall

ur = ux = 0 at r = R, (2.1d)

the normal and tangential stress balances at the free surface, r = R + h(x, t)

p =
2

1 + (∂xh)2
[
−∂xh(∂rux + ∂xur ) + ∂xux(∂xh)2 + ∂rur

]
(2.1e)

− Γ

[1 + (∂xh)2]3/2

[
∂xxh − 1

R + h
(1 + (∂xh)2)

]
,

0 = (1 − (∂xh)2)(∂rux + ∂xur ) + 2∂xh(∂rur − ∂xux), (2.1f)
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where without loss of generality the pressure of the ambient gas phase has been set
equal to zero and the kinematic boundary condition:

∂th + ux∂xh − ur = 0 . (2.1g)

The Kapitza number Γ = σ/(ρν4/3g1/3) = (lc/ lν)
2 compares the surface stress σ/lν

to the viscous stress µ/tν , or equivalently the capillary length lc =
√

σ/(ρg) to lν .
By integrating the continuity equation (2.1c) across the film and using the no-slip
condition (2.1d), the kinematic condition (2.1g) can be written as a mass conservation
equation,

(1 + αh)∂th + ∂xq = 0, (2.2)

where q ≡ R−1
∫ R+h

R
uxr dr is the flow rate per unit circumference length and α ≡ 1/R

is the dimensionless curvature of the cylinder.
Therefore the flow is characterized by the dimensionless Nusselt uniform film

thickness hN, the dimensionless radius R and the Kapitza number Γ , or equivalently
the Reynolds number Re = qN which appears implicitly through hN with qN the
dimensionless flow rate of the Nusselt uniform film solution (qN and Re will
be defined in § 4), the dimensionless fibre curvature α and the Weber number
We = Γ/h2

N = σ/(ρgh̄2
N) = (lc/h̄N)2 where h̄N is the dimensional Nusselt uniform

film thickness (hereinafter bars are introduced to distinguish dimensional from
dimensionless quantities when necessary).

Note that the classical planar case can be recovered when α = 0. This can easily be
seen by performing the change of variables (x, r) → (x, y) and thus measuring the
cross-stream variation from the wall, and by defining (u, v) ≡ (ux, ur ), corresponding
to the usual notations for the streamwise/cross-stream velocity components in the
planar case. The dimensionless fibre curvature α then appears in the equations of
motion (2.1a–c) and the normal stress balance (2.1e). The transformed equations
simplify the comparison between the annular geometry and the planar one: the effect
of the annular geometry appears through the terms containing the fibre curvature α

and it is easy to verify that setting α = 0 gives the governing equations for the planar
case.

3. Boundary-layer equations for thin-film flow down a fibre
3.1. Orders of magnitude assignments

Assuming slow space and time modulations of the flow allows us to define a formal
parameter ε ∼ ∂x,t � 1 and to perform a ‘gradient expansion’ of the governing
equations (2.1a–2.1g) in ε. The smallness of ε implies a separation of scales between
x and r which in turn dictates a different treatment of the streamwise and cross-
stream momentum equations as in boundary-layer theory in aerodynamics. Further
we assume that αh ∼ αhN is at most O(1) or hN is at most O(R) (in the experiments
by Kliakhandler et al. (2001) and Duprat et al. (2007), αhN = O(1)). We thus exclude
the possibility of large αhN, in which case the film does not really ‘see’ the fibre and
resembles more a vertical falling free jet (and it is quite likely that the flow will be
non-axisymmetric in this case).

The formulation of the boundary-layer equations starts by determining the order
of magnitude of the inertia terms in the left-hand side of the cross-stream momentum
equation (2.1b). Since h̄ ∼ h̄N, ux ∼ ūN/(lν/tν) with ūN the dimensional Nusselt
uniform film velocity whose scaling can be easily obtained by balancing viscous
diffusion in the r-direction with gravity, ūN ∼ gh̄2

N/ν. We then have ux ∼ h2
N. The
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continuity equation (2.1c) now indicates that the radial component of the velocity
is formally of O(εh2

N). Since x, y ∼ hN, from ux ∼ h2
N ∼ hN/t , t ∼ 1/hN and the

inertia terms in the left-hand side of the cross-stream momentum equation (2.1b) are
of O(ε2h3

N). Neglecting these terms, using the relation obtained by differentiating the
continuity equation (2.1c) once with respect to r , and dropping the streamwise viscous
term ∂xxur =O(ε2εh2

N/h2
N) ≡ O(ε3), yields the simplified cross-stream momentum

equation, ∂rp = − ∂xrux, which can be integrated once with respect to r to give

p = p|h − ∂xux + ∂xux |h, (3.1)

where terms of O(ε3hN, ε2h4
N) have been neglected. This is indeed the case provided

that ε3/2 � hN � ε−1/4 and α � ε9/4, from a detailed examination of the orders of
magnitude of the retained over the neglected terms.

The first term p|h in the approximation for the pressure in (3.1) must be evaluated
from the normal stress balance in (2.1e) that gives the pressure drop across the free
surface. The contribution of the streamwise curvature Γ ∂xxh due to surface tension
must be kept in our formulation as it is well known from the planar case that this is
the principal physical effect that prevents the waves from breaking. However, this term
is formally of O(Γ hNε2/h2

N) ≡ Γ ε2/hN and should be neglected, if for example Γ is
at most of O(1) and hN = O(1), as in this case terms of O(ε2) and higher are neglected
in our approximation for the pressure in (3.1). Unless the streamwise curvature is
sufficiently large in certain regions/boundary layers of a free-surface deformation
such as the steep front edge of a solitary hump: it contains the highest derivative of h

multiplied by ε2 and in these boundary layers this derivative is sufficiently large and
cannot be neglected. However, proceeding via inner/outer asymptotic expansions is
cumbersome if not impossible. It is more convenient to avoid any boundary layers
and to stipulate that the streamwise curvature is important throughout a solitary
hump and not just in certain regions.

The contribution of the streamwise curvature in (2.1a) is Γ ∂xxxh with formal order:

Γ ∂xxxh ∼ Γ
hN

h3
N

ε3 ≡ Γ

h2
N

ε3. (3.2)

To proceed further we need to assign a relative order between Γ and ε. Two
cases of particular interest here are large Γ and Γ = O(1). The case of large Γ is
representative of liquids with high surface tension and small kinematic viscosity such
as water (Γ ∼ 3000 at 25◦C) while the second case corresponds to liquids with surface
tension smaller than that of water and kinematic viscosity much larger than that of
water such as silicone oils.

(i) Γ large, ‘the strong surface tension limit’. This is quite frequently the case in
inertia-driven films on planar substrates where water is used as the working fluid. A
convenient order-of-magnitude assignment is Γ = O(ε−2). For simplicity let us also
assume that hN = O(1) (a sufficiently large Γ /surface tension is required for ‘thick’
films in order to prevent the waves from breaking). From (3.2), Γ ∂xxxh is formally of
O(ε) and must be retained since terms of O(ε3) and higher are neglected. However,
at the steep front edge of a solitary pulse and by analogy with the planar case, the
pressure gradient Γ ∂xxxh due to surface tension and the gravitational acceleration
equal to unity in (2.1a) balance. Hence, Γ ∂xxxh has its formal order, O(ε), throughout
except at the front where it increases to O(1). Let us introduce in this region the
transformation x = κhNxS due to Shkadov (1977) – we shall return to it in § 4. We
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then have:

Γ ∂xxxh = Γ ∂xSxSxS
h

1

κ3h3
N

∼ Γ hN

κ3h3
N

≡ Γ

κ3h2
N

∼ 1 ⇒ κ =

(
Γ

h2
N

)1/3

≡ We1/3. (3.3)

In terms of dimensional variables, (3.3) corresponds to the balance ρg ∼ σ∂x̄x̄x̄ h̄ or
ρg ∼ σ h̄N/l3S where lS is the length scale over which the pressure gradient due to
streamwise surface tension and gravitational acceleration balance – it corresponds
effectively to the characteristic length of the steep front of a solitary wave. We then
have h̄N/lS ∼ We−1/3 = 1/κ ∼ ε2/3 so that lS is much larger than the film thickness h̄N

and the long-wave assumption is not violated. Equivalently, the long-wave assumption
is sustained at the front of a solitary wave if ∂xh � 1 there. Indeed,

∂xh = ∂xS
h

1

κhN

∼ hN

κhN

≡ 1

κ
∼ ε2/3. (3.4)

This estimate also shows that ∂xh at the front of a solitary wave is much larger than
its formal order, O(hNε/hN) ≡ O(ε). However, ∂xh is never larger than unity at the
front consistent with our stipulation that we do not have a singular perturbation
problem since Γ ∂xxxh is important throughout a solitary wave.

(ii) Γ = O(1). It is now clear that the order of magnitude of hN with respect to
ε is crucial for the validity of the boundary-layer approximation. For example, if
hN =O(1), from, (3.2), Γ ∂xxxh ∼ ε3 and must be neglected. On the other hand if hN ∼
ε−1/5, which satisfies the requirement hN � ε−1/4 given earlier, then Γ ∂xxxh ∼ ε17/5 �
ε3h4

N ∼ ε11/5 and the contribution of the streamwise curvature must be neglected.
Hence hN must be small (‘thin’ films do not require large Γ /surface tension to prevent
the waves from breaking): in order to maintain Γ ∂xxxh in our perturbation expansion,
it must be much larger than the neglected terms, i.e. (Γ/h2

N)ε3 � ε4hN, ε3h4
N or

hN � ε−1/3, 1 which are satisfied simultaneously if hN � 1.
Again, Γ ∂xxxh has its formal order throughout except at the front of a solitary

pulse where it must be increased to Γ ∂xxxh ∼ 1. As in case (i), in order to sustain
the long-wave approximation we require κ � 1 which is indeed the case since
κ = (Γ/h2

N)1/3 � 1 for hN � 1 but now κ can be much smaller than that in
equation (3.4) for case (i) if a tighter lower bound is imposed on hN, e.g. hN � ε

instead of hN � ε3/2 we obtained earlier: with Γ =O(1) and hN � ε, κ � ε−2/3

which then implies that in case (ii) the front of a solitary pulse must have a larger
slope than in case (i) (and Γ ∂xxxh is formally � ε, the formal order of this term in
case (i)). On the other hand this is always the case when the condition hN ∼ 1 in case
(i) is relaxed: κ−1

i ∼ ε2/3h
2/3
N and κ−1

ii ∼ h
2/3
N . Physically, in case (ii) surface tension is

not strong enough to prevent the slope from increasing but again the slope ∂xh is
never larger than unity, which is consistent with our stipulation that we do not have
a singular perturbation problem. Equivalently, for a given hN, increasing Γ decreases
the slope at the front.

3.2. Boundary-layer approximation for large Γ

We now return to the evaluation of the term p|h in the approximation for the
pressure in (3.1) in case (i) with Γ = O(ε−2) and hN =O(1). In the first instance let
us neglect terms of O(ε3) and higher associated with the viscous part of the pressure
in the normal stress balance (2.1e). Note that independently of the order of hN,
1/(R + h) ≡ α/(1 + αh) = O(α): α/(1 + αh) ∼ α for αh � 1 and ∼ α for αh= O(1).
Hence by neglecting terms O(ε2, ε2α) = O(ε2), since in the particular case we are
considering hN = O(1) which with αhN at most of O(1) implies that α is at most of
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O(1), the pressure on the free surface is given by:

p|h = −2∂xh∂rux |h + 2∂rur |h − Γ

[
∂xxh − 1

R + h

(
1 − 1

2
(∂xh)2

)]
. (3.5)

This expression can be further simplified by considering the tangential stress
boundary condition (2.1f) where terms of O(ε3) and higher are neglected:

∂rux |h = 2∂xh
(
∂xux |h − ∂rur |h

)
− ∂xur |h + (∂xh)2∂rux |h. (3.6)

All terms in the right-hand side of this equation are of O(ε2) and hence the
contribution of the term ∂xh∂rux |h in (3.5) is of O(ε3) and can be neglected so
that the pressure field is

p = −∂xux + ∂xux |h + 2∂rur |h − Γ [∂xxh + Kaz] , (3.7)

where terms of O(ε2, ε2α) = O(ε2) are neglected, which is indeed the case provided
that ε2 � α and α at most of O(1) (again from a detailed examination of the orders
of magnitude of the retained over the neglected terms), and where

Kaz = − 1

R + h

(
1 − 1

2
(∂xh)2

)
≡ − α

1 + αh

(
1 − 1

2
(∂xh)2

)
(3.8)

is the approximation of the azimuthal curvature of the free surface obtained by
neglecting terms of O(ε4α) = O(ε4) and higher. Note that with α → 0, α/(1+αh) → 0
and Kaz → 0 corresponding to the planar limit. Also, since hN = O(1), α → 0 is
equivalent to αh → 0. In the general case, however, when αh → 0, α/(1 + αh) → α

corresponding to a very thin film compared to the fibre radius but we still have the
azimuthal curvature effect: αh → 0 does not necessarily imply the planar limit when
the condition hN =O(1) is relaxed – see also our discussion at the end of § 2.

Substituting (3.7) into the streamwise momentum equation (2.1a) then leads to the
following consistent equation up to O(ε2),

∂tux + ux∂xux + ur∂rux −
[
∂rr +

1

r
∂r + 2∂xx

]
ux

= 1 − ∂x

[
∂xux |h + 2∂rur |h

]
+ Γ {∂xxxh + ∂xKaz} , (3.9)

where terms of O(ε3) and higher have been neglected.
Case (ii) is treated in Appendix A. By analogy now with the planar case where

quite frequently Γ = O(ε−2) as noted earlier, equation (3.9) where terms of O(ε3) and
higher are neglected will be referred to as the ‘second-order boundary-layer equation’
for the problem of film flow down a fibre and for simplicity our analysis in § 4 is based
on case (i). The set of equations to be solved at O(ε2) (this refers to the truncation
of the ε-expansion if for example case (ii) is considered), the ‘second-order boundary-
layer equations’, consists of the streamwise momentum equation in the boundary-
layer approximation (3.9), the continuity equation (2.1c), the no-slip/no-penetration
condition at the wall (2.1d), the tangential stress balance at the free surface (3.6)
and the mass conservation (2.2) or equivalently (2.1g). Notice that, when truncated
at O(ε) as in the approach followed by Trifonov (1992) and Sisoev et al. (2006), the
boundary-layer equations do not account for the streamwise viscous diffusion terms
−∂x[∂xux |h + 2∂rur |h] in (3.9) and 2∂xh(∂xux |h − ∂rur |h) − ∂xur |h + (∂xh)2∂rux |h at the
right-hand side of the tangential stress boundary condition in (3.6).
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4. Formulation of a low-dimensional model
We now develop a low-dimensional model with a systematic reduction procedure

based on a combination of the long-wave approximation and a projection of the
velocity field on an appropriately chosen set of test functions. Our approach is not
limited to a small ratio of the film thickness to the fibre radius and does not require
precise and overly restrictive stipulations on the order of magnitude for this ratio –
recall for example from our analysis in § 2 that in case (i) with hN =O(1), ε2 � α

and α at most of O(1) so that αhN could be small or O(1). As pointed out earlier, for
simplicity we present in this section the formulation of the model for case (i). Case
(ii) can be treated similarly; the final equations are the same for both cases.

4.1. First-order model

Let us first consider the case of the Nusselt uniform layer: assuming no modulations
of the free surface, ∂x = ∂t =0, the basic/Nusselt flow satisfies

L(ux) = −1 with ux |R = 0, ∂rux |h = 0, (4.1)

where L denotes the (friction) linear differential operator, L ≡ ∂rr + r−1∂r . The
solution of (4.1) is simply

ux =
1

2
(R + h)2 ln

( r

R

)
− 1

4
(r2 − R2) ≡ ux,0, (4.2)

which can also be written as

ux = h2fαh(ŷ), fαh(ŷ) ≡ −1

4
ŷ2 − 1

2αh
ŷ +

1

αh

[
1 +

1

2
αh +

1

2αh

]
ln(1 + αh ŷ), (4.3)

where ŷ = y/h ≡ (r − R)/h is a reduced cross-stream coordinate. Therefore, the effect
of the curvature of the cylinder on the velocity profile of the uniform film solution
is measured by the local aspect ratio αh= h/R. Notice that in the limit αh → 0,
which without specifying the order of hN corresponds either to the planar limit or to
a very thin film compared to the fibre radius (recall, however, from § 3 that due to
the condition hN = O(1) in case (i), the limits α → 0 and αh → 0 are equivalent), the
velocity profile is parabolic,

f0 ≡ lim
αh→0

fαh = ŷ − 1

2
ŷ2,

as expected.
Let us now use for the x-velocity a projection of the form,

ux = a0,0(x, t)g0,0(r; h(x, t)) +

mmax∑
m=1

nmax∑
n=0

am,n(x, t)gm,n(r) (4.4)

while the radial component is obtained by integrating the continuity equation (2.1c):

ur = −1

r

∫ r

R

∂xux(x, ζ, t)ζdζ. (4.5)

g0,0 ≡ ux,0 is precisely the Nusselt velocity profile so that (4.4) simply reduces
to ux,0(r; h(x, t)) and a0,0 = 1 if the film remains uniform. Consequently, the test
functions gm,n account for the deviations of the velocity field from the Nusselt profile
and their amplitudes are at most O(ε) quantities. Concerning the particular choice
of test functions, we notice that monomials/powers of r and ln(r) constitute a
closed set of functions with respect to differentiations and products involved in the
momentum balance (3.9) and the linear operator L. A plausible choice therefore
is gm,n ≡ [(r − R)m] [ln(r/R)]n which satisfy the no-slip/no-penetration condition on
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the wall, (2.1d). Note that it can easily be shown that the above expressions for ux, ur

are consistent with their order-of-magnitude assignments in § 3 obtained from simple
scaling arguments.

After multiplication now of the momentum balance (3.9) by r2, truncation at O(ε)
and substitution of the projection (4.4) for the streamwise component of the velocity
ux , we are led to a polynomial in r and ln(r), say P(r, ln(r)), that is uniformly equal to
zero. Cancelling all its monomials in r and ln(r) thus yields a number of independent
relations equal to the number of unknowns am,n if mmax and nmax are chosen
sufficiently large. Further, since am,n, m + n � 1 are O(ε) corrections to the Nusselt
velocity profile, their derivatives can be neglected at that order, and a linear system
is obtained. Inversion of this linear system gives the amplitudes am,n, m + n � 1, as
functions of a0,0 and h, and an evolution equation for a0,0 coupled to the evolution
of the film thickness h through the mass conservation equation (2.2). The number of
non-zero coefficients am,n, i.e. of amplitudes that are of O(ε), can be estimated from the
degrees in r and ln(r) of the advection terms and by parity arguments. Finally, the
corrections to the Nusselt velocity profile induced by the deformations of the film
surface can be accounted for at O(ε) with seven test functions gm,n.

The actual determination of the amplitudes am,n requires some cumbersome
algebraic manipulations that can be substantially simplified with the use of a weighted
residuals approach such as the Galerkin or collocation method. With these methods,
appropriate weights wm,n(r) are chosen and residuals Rm,n = 〈wm,n|P〉 are evaluated
where 〈·|·〉 is an inner product defined over the depth of the film R � r � R + h(x, t).
Setting the residuals Rm,n equal to zero, or equivalently projecting the polynomial
P(r, ln(r)) onto zero, thus yields a system to be solved for the amplitudes am,n. If
the number of test functions is chosen sufficiently large, the number of residuals
is equal to the number of independent relationships obtained by setting P(r, ln(r))
uniformly to zero, so that equivalent systems of equations are found leading to the
same system of evolution equations for h and a0,0. We look for the best choice for
the scalar product and the weighting functions wm,n that leads to the final result with
a minimum of algebra.

The mass conservation equation (2.2) is exact and can be kept in a straightforward
manner if the flow rate q is substituted with the amplitude of the Nusselt profile a0,0

which can easily be done through the definition q = R−1
∫ R+h

R
uxr dr given in § 2,

a0,0 =
q

R−1

∫ R+h

R

g0,0(r; h)r dr

−
∑

m>1,n>1

am,n

∫ R+h

R

gm,n(r)r dr∫ R+h

R

g0,0(r; h)r dr

≡ 3q

h3φ(αh)
+ O(ε),

(4.6)

where φ is a measure of the departure of the flow-rate dependence on the film

thickness from the planar case q ≡ 1
3
h3, φ(α) ≡

∫ 1

0
fαh(ξ )(1 + αξ ) dξ/

∫ 1

0
f 0(ξ ) dξ (the

explicit functional dependence on α can be obtained from (B 1) in Appendix B with
b → 1 + α). The derivation of (2.2) through integration of the continuity equation

(2.1c), suggests the use of the inner product 〈·|·〉 =
∫ R+h

R
· · r dr .

Considering next the streamwise momentum balance truncated at first order, the
residual corresponding to a given weight function w(r) is∫ R+h

R

(
∂tux + ux∂xux + ur∂rux − L(ux) − 1 − Γ {∂xxxh + ∂xKaz}

)
rw (r) dr = 0 .

(4.7)
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Substituting for ux the projection (4.4) and truncating (4.7) at order ε, the fields am,n,
m, n � 1, corresponding to the corrections to the uniform-film profile fαh, may enter
into the calculation only through the evaluation of the zeroth order terms:∫ R+h

R

[L(ux) + 1] rw (r) dr = [r(w∂rux −uxw
′)]R+h

R +

∫ R+h

R

[ux L(w) + w] r dr. (4.8)

The evaluation of these terms can be drastically simplified by demanding that the
weight function satisfies

L(w) = A with w(R) = 0, w′(R + h) = 0, (4.9)

where A is a constant, so that the integral
∫ R+h

R
ux L(w) rdr is proportional to the

flow rate q . The system (4.9) is similar to (4.1) when A= − 1, which reflects the
fact that the operator L is self-adjoint with respect to the chosen inner product.
Consequently, the choice w ≡ ux,0 is the most appropriate, which corresponds
precisely to the Galerkin method.

After truncation at O(ε) and use of the mass balance (2.2), which enables the
substitution of −∂xq/(1 + αh) for ∂th, equation (4.7) becomes:

∂tq = −F (αh)
q

h
∂xq + G(αh)

q2

h2
∂xh + I (αh)

×
[
h − 3

φ(αh)

q

h2
+ Γ h {∂xxxh + ∂xKaz(αh, α)}

]
. (4.10)

Coefficients F , G and I are positive functions of αh defined in Appendix B,
equation (B 1). The Nusselt solution is recovered in the uniform thickness limit,
∂t → 0, ∂x → 0, where

q =
h3

3
φ(αh) . (4.11)

Notice the dependence of the azimuthal curvature Kaz on both the aspect ratio αh

and α. Nevertheless, the product h∂xKaz depends on αh only, a consequence of the
averaging procedure across the film and the elimination of the pressure from the
cross-stream component of the momentum equation. Hence, the planar geometry
now corresponds to both limits α → 0 and αh → 0, when the condition hN = O(1) is
relaxed (in both cases the azimuthal curvature vanishes), unlike the full Navier–Stokes
equations in (2.1).

The integral momentum balance (4.10) is similar to that obtained by Trifonov
(1992) by averaging the first-order boundary-layer equation with a uniform weight
and assuming a self-similar velocity distribution, ux = a0,0ux,0. The coefficients F , G

and I obtained by Trifonov are given in Appendix B, equation (B 2). However, the
Trifonov model is not consistent at O(ε) since it does not account for the deviations
of the velocity profile from the Nusselt profile ux,0.

4.2. Second-order model

Although the first-order model (2.2), (4.10) is consistent at O(ε), it does not take into
account important physical features such as the dispersion induced by the streamwise
second-order viscous dissipative terms. These effects can be taken into account by
extending the derivation process to O(ε2). Starting from the second-order momentum
balance (3.9), averaging with the weight ux,0 and replacing −∂xq/(1 + αh) with ∂th,
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we obtain

∂tq = −F (αh)
q

h
∂xq + G(αh)

q2

h2
∂xh

+ I (αh)

[
h − 3

φ(αh)

q

h2
+ Γ h {∂xxxh + ∂xKaz(αh, α)}

]

+ J (αh)
q

h2
(∂xh)2 − K(αh)

∂xq∂xh

h
− L(αh)

q

h
∂xxh

+ M(αh)∂xxq + K(h, q, α) . (4.12)

Comparing (4.12) to (4.10) shows that the additional terms taking into account the
second-order effects have been collected in the last line row of (4.12). The first four
terms in this line arise from the streamwise viscous dissipation, whereas K contains
second-order inertial terms corresponding to the first-order corrections to the Nusselt
velocity profile and is a rather complex function of q , h and their derivatives.
Although the inclusion of these inertial terms ensures that the system (2.2), (4.12)
is consistent at O(ε2), the nonlinearities involved in K may drastically restrict the
range of parameters for which solutions to (2.2), (4.12) exist and can be favourably
compared to experimental data. Indeed, in the planar case, a ‘regularization’ procedure
was necessary to avoid the presence of non-physical blow-ups of the time-dependent
solutions due to second-order inertial terms even at moderate Reynolds numbers
(Scheid, Ruyer-Quil & Manneville 2006). In fact, in the planar case, dropping the
second-order inertial corrections leads to a simplified formulation which satisfactorily
captures all physical mechanisms (Ruyer-Quil & Manneville 2000). For these reasons
and to reduce the complexity of our second-order model, we neglect hereinafter the
second-order inertial effects and set K = 0.

The expressions of the (positive) functions J , K , L and M accounting for the
second-order streamwise viscous effects are given in Appendix B, equation (B 3).
For α � 1 (which as pointed out earlier in our average model is equivalent to
αh � 1), (B 1) and (B 3) give at O(α2):

F (αh) ≈ 17

7
− 1873

1344
αh +

425623

564480
α2h2 ≈ 2.43 − 1.39 αh + 0.75 α2h2, (4.13a)

G(αh) ≈ 9

7
− 9

448
αh − 27423

62720
α2h2 ≈ 1.29 − 0.02 αh − 0.44 α2h2, (4.13b)

3I (αh)

φ(αh)
≈ 5

2
− 25

24
αh +

1391

2016
α2h2 ≈ 2.5 − 1.04 αh + 0.69 α2h2 (4.13c)

I (αh) ≈ 5

6
+

35

72
αh +

47

6048
α2h2 ≈ 0.83 + 0.49 αh + 0.0078 α2h2, (4.13d)

J (αh) ≈ 4 +
7

12
αh − 1679

1008
α2h2 ≈ 4 + 0.58 αh − 1.67 α2h2, (4.13e)

K(αh) ≈ =
9

2
+

21

8
αh − 5641

1120
α2h2 ≈ 4.5 + 2.62 αh − 5.04 α2h2, (4.13f)

L(αh) ≈ 6 − 1

4
αh +

259

240
α2h2 ≈ 6 − 0.25 αh + 1.08 α2h2, (4.13g)

M(αh) ≈ 9

2
− 15

8
αh +

559

224
α2h2 ≈ 4.5 − 1.87 αh + 2.50 α2h2, (4.13h)
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which can be contrasted with the result obtained by Roberts & Li (2006). These
authors also eliminated the cross-stream variable dependence through a ‘centre
manifold’ approach that led to a system of two evolution equations for the film
thickness h and an averaged axial velocity 〈u〉 = q/h. However, the procedure is
cumbersome and was limited to αhN = O(ε) (unlike the experiments by Kliakhandler
et al. (2001) and Duprat et al. (2007) where αhN =O(1)). Recasting this model
(referred to hereinafter as the ‘RL model’) in terms of the film thickness h and flow
rate q leads to a set of equations similar to (4.12) with

F = 2.504, G = 1.356, 3I/φ = π2/4 − αh + 0.647 α2h2

I = π2/12 + 0.4891 αh, J = 3.459, K = 3.353,

L = 4.676, M = 4.093.

⎫⎪⎬
⎪⎭ (4.14)

The coefficients of the expansion (4.13) are close to those of the RL model (4.14) in
spite of the differences between the two approaches.

Finally, in the planar limit, α = 0, the second-order simplified model derived by
Ruyer-Quil & Manneville (2000) is recovered from (4.12) with coefficients given by:

F = 17
7
, G = 9

7
, I = 5

6
, 3I/φ = 5

2
, J = 4, K = 9

2
, L = 6, M = 9

2
. (4.15)

4.3. Shkadov scaling

Comparisons of the waves appearing on the surface of the film can be greatly
simplified by introducing a scaling based on the uniform film thickness hN and the
average velocity of the uniform flow uN = qN/hN = h2

Nφ(αhN)/3. However, to avoid
the introduction of a numerical coefficient 3, we shall use 3uN = h2

Nφ(αhN) instead.
Our analysis is further simplified with the scaling first introduced by Shkadov for a
film falling down a vertical plane (Shkadov 1977) which was used in § 3.1 (with this
scaling, the number of parameters reduces to only one in the case of our first-order
model as for the Trifonov model (Sisoev et al. 2006)): we introduce different length
scales for the streamwise and cross-stream direction, κhN (or in terms of dimensional
variables lS ∼ κh̄N introduced in § 3.1) and hN, respectively. The parameter κ was
defined in § 3.1.

Using the transformation T : [x �→ κhNx, (y, h) �→ (hNy, hNh), t �→ tκ/[hNφ(αhN)],
(u, v) �→ (h2

Nφ(αhN)u, h2
Nφ(αhN)v/κ), q �→ (h3

Nφ(αhN)q], the mass conservation
equation (2.2) and the averaged momentum balance (4.12) are

∂th = − 1

1 + α̃h
∂xq, (4.16a)

δ∂tq = δ

[
−F (α̃h)

q

h
∂xq + G(α̃h)

q2

h2
∂xh

]
+

I (α̃h)

φ(α̃)

[
−3φ(α̃)

φ(α̃h)

q

h2

+h

{
1 + ∂xxxh +

β

(1 + α̃h)2
∂xh − 1

2
∂x

(
α̃

1 + α̃h
(∂xh)2

)}]

+η

[
J (α̃h)

q

h2
(∂xh)2 − K(α̃h)

∂xq∂xh

h
− L(α̃h)

q

h
∂xxh + M(α̃h)∂xxq

]
, (4.16b)

where the parameter set (hN, Γ , α) has been replaced by (δ, η, α̃) corresponding to a
reduced Reynolds number,

δ ≡ h3
Nφ(αhN)

κ
=

3Re

κ
, (4.17)
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a viscous dispersion parameter (this term will be clarified in § 5.3),

η ≡ 1/κ2 = We−2/3 = (h̄N/lc)
4/3, (4.18)

and the aspect ratio,

α̃ ≡ αhN = hN/R . (4.19)

The parameter η appears along with streamwise dissipative terms which contribute
to the dispersion of the waves as discussed later on.

Besides the introduction of the parameters δ, α̃ and η in equation (4.16b), the
transformation T modifies the coefficient I to I/φ(α̃), which results from our choice
of the time scale h2

Nφ(αhN). Similarly, the expression (4.11) of the flow rate at O(1)
becomes

q =
h3

3

φ(α̃h)

φ(α̃)
, (4.20)

so that h = 1 corresponds to q = 1/3 with this scaling. Finally, we have isolated the
main contribution from the azimuthal curvature gradient, where the parameter

β = α̃2/η = (h̄N/R̄)2/3(lc/R̄)4/3 (4.21)

defined by Kalliadasis & Chang (1994) appears. This parameter expresses the relative
importance of axial and azimuthal curvature effects. Note that the planar geometry is
recovered from the rescaled boundary-layer equations (4.16) in the limit α̃ → 0 which
also makes β → 0 (the azimuthal curvature term vanishes in this limit).

4.4. Inertialess limit

For highly viscous fluids or very thin films and since α̃ is at most O(1) (for very thin
films α̃ = O(1) implies that the fibre is very thin also) so that φ(α̃) is at most of O(1),
Re → 0 or equivalently δ → 0. Further, by neglecting the viscous second-order terms,
η =0, (4.16b) gives an expression for q in terms of h which when substituted into
(4.16a) leads to a single evolution equation for h written in conservative form:

∂t

(
h +

α̃

2
h2

)
+ ∂x

[
h3

3

φ(α̃h)

φ(α̃)

(
1 +

β

(1 + α̃h)2
∂xh + ∂xxxh

)]
= 0 . (4.22)

h + (α̃/2)h2 corresponds to the volume of fluid contained in a sector of angle dθ

and axial length dx, that is the ratio of the surface of a planar section to the
perimeter of the fibre. Equation (4.22) is very close to the evolution equation derived
by Kliakhandler et al. (2001) and was studied numerically by Craster & Matar (2006).
However, the derivation of Kliakhandler et al. (2001) contains an ad-hoc step, i.e. the
retention of the full curvature term, [1+(∂xh)2]−3/2[∂xxh−{α̃/[η(1+α̃h)]}(1+η(∂xh)2)],
instead of its lower-order expression, ∂xxh − α̃/[η(1 + α̃h)] . Hereinafter we refer to
equation (4.22) as the ‘CM equation’ ((4.22) differs from the Craster–Matar equation
only in the choice of scalings) and to (4.22) with the full curvature term as the ‘KDB
equation’.

For thick enough fibres, that is α̃ → 0, equation (4.22) reduces to

∂th + ∂x

[
h3

3
(1 + β∂xh + ∂xxxh)

]
= 0, (4.23)

which is the equation derived initially by Frenkel (1992) and used by Kalliadasis &
Chang (1994).
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5. Linear stability analysis
5.1. Dispersion relations

We now examine the linear stability of the Nusselt flow. We first present the simplest
dispersion relations obtained in the inertialess limit and studied by Kliakhandler et al.
(2001) and Duprat et al. (2007).

The normal mode decomposition h = 1 + εh1 exp[i(kx−ωt)], ε � 1, of both the
KDB equation and CM equation (4.22) where k and ω the wavenumber and wave
frequency, respectively, leads to the dispersion relation,

ω = k ck(α̃) +
i k2

3(1 + α̃)

(
β

(1 + α̃)2
− k2

)
, (5.1)

where ck is the speed of the linear kinematic wave solutions of (4.22) for small
wavenumbers, i.e. in the limit k → 0,

ck =
1

1 + α̃

[
1 +

α̃φ′(α̃)

3φ(α̃)

]
=

8(b − 1)
(
2 log(b)b2 − b2 + 1

)
3

(
4 log(b)b4 − 3b4 + 4b2 − 1

) , (5.2)

with b = 1 + α̃.
For α̃ � 1, in which case the Frenkel evolution equation (4.23) applies, we obtain

ω = k +
i k2

3

(
β − k2

)
. (5.3)

Notice that the dispersion relation (5.3) can be recovered from (5.1) through the
transformation (Duprat et al. 2007)

k → k [ck(1 + α̃)]1/3 , ω → ωc
4/3
k (1 + α̃)1/3, β → β c

2/3
k (1 + α̃)8/3, (5.4)

which leads to the definition of the composite parameter β� = β c
−2/3
k (1 + α̃)−8/3.

The parameters β and β� can be related to the ratio of the characteristic time of
advection of a structure over its length and the characteristic time of growth of this
structure. Considering the dispersion relation (5.3), the RP instability selects structures
whose length closely corresponds to the wavenumber with the maximum temporal
growth rate, i.e. k =

√
β/2. The ratio of the characteristic time of advection of these

structures τa to their characteristic time of growth τg is

τa/τg = ωi/ωr |k=
√

β/2 =
β2

12

√
2

β
∝ β3/2 . (5.5)

Similarly, in the case of dispersion relation (5.1), the maximum of the temporal growth
rate corresponds to k =

√
β/[

√
2(1 + α̃)] and we have

τa/τg = ωi/ωr |k=
√

β/[
√

2(1+α̃)] =
β2

12(1 + α̃)5

√
2(1 + α̃)

ck

√
β

∝ (β�)3/2, (5.6)

and therefore β and β� compare the advection process at the speed of the kinematic
waves to the growth of the RP instability.

The dispersion relations (5.1) and (5.3) cannot account for the K-instability
mechanism prompted by inertia. Turning back to the two-equation model (4.16),
close to the Nusselt solution we set h = 1+ h̃ and q =1/3+ q̃ where h̃ � 1 and q̃ � 1
and we obtain a single equation for h̃ after elimination of q̃ that we purposely split
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into two parts by separating odd and even derivatives,

3(1 + α̃)
I

φ
[∂t + ck∂x] h̃ − η

[
L

3
∂xxx + (1 + α̃)M∂txx

]
h̃ = λ, (5.7a){

δ(1 + α̃)

[
∂tt +

F

3
∂tx

]
+

[
δ
G

9
+

β

(1 + α̃)2
I

φ

]
∂xx

}
h̃ +

I

φ
∂xxxxh̃ = −λ, (5.7b)

where the coefficients F , G, I , L, M and φ are evaluated at α̃. The symbol ck again
denotes the speed (5.2) of the kinematic waves in the limit k → 0. The normal mode
decomposition h̃ = h1 exp[i[k x − ω t] in (5.7), leads to the dispersion relation:

D(k, ω) ≡ i

{
3(1 + α̃)

I

φ
[ckk − ω] + ηk2

[
k
L

3
− ω(1 + α̃)M

]}

+δ(1 + α̃)

[
−ω2 +

F

3
ωk

]
− k2

[
δ
G

9
+

β

(1 + α̃)2
I

φ

]
+ k4 I

φ
= 0 . (5.8)

The reason now for splitting (5.7) into two parts becomes clear: the split corresponds
to a phase shift of π/2 in (5.8) between two parts of this equation. The marginal
stability of the film is then achieved when the two parts are set to zero independently.

5.2. Influence of viscous dissipation on the RP-instability

The instability mechanism of a liquid layer coating a cylinder is similar to the
instability of a liquid jet as explained by Rayleigh (1878) in his seminal work.
Considering the inertialess limit δ → 0, (5.8) reduces to the dispersion relation (5.1) of
both the KDB and CM evolution equations augmented with the second-order viscous
effects ∝ ηk2. Since in the absence of these effects, linear wave solutions to (5.1) travel
at the speed ck of the kinematic waves, the effect of second-order viscous terms can
be estimated by substituting kck for ω except for the ‘critical term’ ckk − ω (Whitham
1974). We obtain

ω = k ck(α̃) − ηΥη(α̃)k3 +
i k2

3(1 + α̃)

(
β

(1 + α̃)2
− k2

)
, (5.9)

where Υη = φ[(1 + α̃)Mck − L/3]/[3(1 + α̃)I ] is a positive function of α̃.
The marginal stability of the film is therefore still given by kRP =

√
β/(1 + α̃) which

corresponds to the classical result for the RP instability that the neutral dimensional
wavelength 2π(R + h̄N ) is proportional to the maximum diameter of the liquid
layer. However, second-order viscous terms have a dispersive effect on the waves by
decreasing the speed of the linear waves from ck to ck − ηΥη(α̃)k2.

5.3. Mechanism of the K instability mode

We now consider the limit of non-dominant RP instability mode (β/δ and α̃ sufficiently
small). In this case the instability results from the K hydrodynamic mechanism.

First, let us extend to our problem the arguments given by Ooshida (1999) in
the framework of Whitham wave-hierarchy theory (Whitham 1974) for the planar
geometry, and let us consider small wavenumbers, k → 0, for which both surface
tension and second-order viscous effects can be neglected. The linear operator of
(5.7b) can be thus factorized corresponding to waves propagating at speeds cd±:

cd± =
F

6
±

√
� with � =

F 2

36
− 1

9

G

1 + α̃
− β

δ(1 + α̃)3
I

φ
. (5.10)
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Figure 2. (a) Speeds ck of kinematic and cd± of dynamic waves as functions of the aspect
ratio α̃ = hN/R in the limit of negligible viscous dispersion and large Reynolds number (η → 0
and β/δ → 0). The interfacial velocity Uh = fα̃(1)/φ(α̃) of the uniform thickness base flow is
also displayed. (b) Comparison of the speeds of the kinematic waves in the limit η → 0 and
η → ∞.

In this limit, system (5.7) has a two-wave structure that can be recast into a second-
order wave equation,

3
I

φ
[∂t + ck∂x] h̃ + δ [∂t + cd−∂x] [∂t + cd+∂x] h̃ = 0, (5.11)

a situation that corresponds precisely to the wave hierarchy considered by Whitham.
The lower-order waves propagating at speed ck are kinematic waves whose origin is
the response to a deformation of the interface to satisfy the kinematic condition (2.1g),
or equivalently the mass balance (2.2), when the velocity distribution is governed by
the balance of the acceleration due to gravity and the wall friction, which in turn
leads to the explicit dependence (4.20) of the flow rate q on the film thickness h.
Propagating at speed cd±, the higher-order waves are dynamic waves corresponding
to the response of the film to the variation of momentum induced by a deformation
of the free surface. Alekseenko, Nakoryakov & Pokusaev (1985) and Ooshida (1999)
have similarly derived equations presenting a ‘two-wave’ structure for the vertical-
planar wall geometry. However, these authors did not consider the influence of the
streamwise viscous diffusion that is taken into account in (5.7).

Whitham has shown that when a multi-speed equation such as (5.11) holds, an
instability occurs whenever the constraint,

cd− � ck � cd+, (5.12)

is violated, in other words, whenever the speed of the kinematic waves is outside
the speed interval allowed to dynamic waves. Figure 2(a) compares the speed of the
kinematic and dynamics waves given by (5.2) and (5.10) as a function of the aspect
ratio α̃ in the limit of dominating inertia (β/δ → 0). Kinematic waves always travel
faster than dynamic waves and the stability criterion (5.12) is never satisfied in that
case. Small but finite values of β/δ lower the speed of the faster dynamic waves,
cd+. Therefore, azimuthal surface-tension effects are destabilizing and the Nusselt
constant-thickness solution is always unstable in the limit k → 0. The speeds of
kinematic and dynamic waves are compared to the interfacial velocity of the base
flow Uh = fα̃(1)/φ(α̃) in figure 2(a). The fastest dynamic waves travel at a speed which
is close to the maximum velocity of the base flow, which indicates that perturbations
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of the momentum are basically advected by the flow. Consequently, as in the planar
case, the K mode of instability results from the ability of the kinematic waves to
move much faster than any fluid particle (Smith 1990).

For finite wavenumbers, second-order viscous terms must be accounted for and the
speed of kinematic waves is modified into:

ck,η =

ck + ηk2 φ

9(1 + α̃)

L

I

1 + ηk2 φ

3

M

I

. (5.13)

The dispersive effect of second-order viscous effects on kinematic waves is evident
as ck,η is a function of ηk2 (contained in two terms, one in the numerator due to
transport of momentum and one in the denominator due to transport of mass). This
justifies the term ‘viscous dispersion parameter’ introduced for η in § 4.3 and we shall
also refer to second-order viscous effects as ‘viscous dispersion effects’. Considering
real wavenumbers, the limit η → ∞ gives

ck,∞ ≡ lim
η→∞

ck,η =
L

3(1 + α̃)M
, (5.14)

which is compared to the small-wavenumber limit ck in figure 2(b). Since ck,∞ < ck,η <

ck , viscous dispersion lowers the speed of the kinematic waves, as observed when the
RP mode is dominant (cf. § 5.2), and is therefore stabilizing.

Similarly, axial surface tension modifies the speed of dynamic waves into

cd±ST =
F

6
±

√
�ST with �ST =

F 2

36
− 1

9

G

1 + α̃
+

1

δ(1 + α̃)

I

φ

[
k2 − β

(1 + α̃)2

]
.

(5.15)
Hence, axial surface tension effects accelerate the fastest dynamic waves and tend to
stabilise the constant-thickness Nusselt flow.

5.4. Marginal stability

Having considered the two limiting cases of dominant RP and K instability modes,
let us turn to the marginal stability of the Nusselt flow (ω and k real) as a test
of the validity of our modelling approach in comparison with the solutions to the
linearized primitive equations. Linearization of the Navier–Stokes equations (2.1)
leads to the Orr–Sommerfeld (OS) equation, i.e. a fourth-order ordinary differential
equation for the complex streamfunction ψ(r) completed with the linearized stress
balances and the no-slip/no-penetration condition at the fibre. The OS equation was
solved numerically by using the continuation software Auto97 (Doedel et al. 1997).
The starting points for the continuation are the analytical expressions of the solutions
in the limit k → 0.

In figure 3, the marginal stability curves corresponding to model (4.16) (upper
dashed lines) are compared to those obtained from the Trifonov model (upper
thin solid lines) and the OS equation (upper thick solid lines) in the (kr, δ)-
plane. The fluids are Rhodorsil silicon oil v50 (ρ = 963 kg m−3, ν = 50 × 10−6 m2 s−1

and σ = 20.8 × 10−3 Nm−1; water: ρ = 998 kg m−3, ν = 10−6 m2 s−1 and σ = 72.5 ×
10−3 Nm−1), corresponding to Kapitza numbers Γ =5.48 and 3376, respectively. Two
radii R have been chosen so that they correspond to the same ratio R/lc =0.24 (for
water, lc = 2.7 mm, and for silicon oil v50, lc = 1.5 mm).

As surface tension damps short waves, the regions of stability (labelled ‘S’) are
located above the marginal stability curves. At small values of δ, the RP instability
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Figure 3. Neutral stability curves (upper lines) and loci of the spatially most amplified
harmonic perturbations (for convectively unstable flows, C) and of the absolute wavenumber
(in the absolutely unstable case, A). The real part of the wavenumber kr is shown as a function
of the reduced Reynolds number δ. Linear stable regions are labelled S. Fluid parameters
correspond to (a) Rhodorsil silicon oil v50 (Γ = 5.48) and R = 0.35 mm, (b) water (Γ = 3376)
and R = 0.64 mm. Thick solid and dashed lines refer to OS analysis and to dispersion relation
(5.8), respectively (nearly superimposed except for the largest values of δ). Thin solid lines refer
to the linear stability analysis of the Trifonov model. The neutral wavenumber kRP and the

temporally most amplified wavenumber kRP/
√

2 of the RP instability (see text) are indicated
by dashed-dotted lines.

dominates and all marginal stability curves collapse with kr = kRP (dashed-dotted
lines). Noticeable differences are observed only at δ above 0.1 for which the
hydrodynamic K mode starts to take over. At large values of δ, the marginal
curve corresponding to (4.16) remains remarkably close to the OS results, whereas
the Trifonov model overestimates the range of unstable wavenumbers. This large
discrepancy is mainly a consequence of neglecting the streamwise dissipation terms.
As the Kapitza number increases, hence the viscous dispersion parameter η decreases,
the marginal stability curve predicted by the Trifonov model is closer to the OS
results (compare figures 3a and 3b). The same trend can be observed with the speed
of neutral infinitesimal waves displayed in figure 4(a). Neutral wave solutions to the
Trifonov model and to (4.16) are kinematic waves travelling at speeds ck and ck,η

defined in (5.2) and (5.13), respectively. The agreement of ck,η with the speeds of
neutral waves solutions of the OS equations is again remarkable.

5.5. Spatial stability analysis

Another test of the accuracy of model (4.16) consists of the analysis of the response
of the base flow to a localized perturbation. If the resulting wavepacket is advected
by the flow, the instability is said to be convective and the flow behaves much like
a signal amplifier: at a fixed point in the laboratory frame of reference, the signal
eventually dies out if it is not sustained continuously. When the wavepacket is able to
move upstream, a self-sustained intrinsic dynamics or ‘global mode’ can be observed
and the flow behaves like an ‘oscillator’ (Huerre & Rossi 1998). At a given location,
the long-time evolution of the wavepacket is dominated by the part of the signal
whose energy remains stationary, hence by the wave corresponding to a zero group
velocity, vg = ∂ω/∂k = 0, which defines the absolute wavenumber k0 and frequency
ω0. In the complex k-plane, the condition vg = 0 occurs at a saddle point that must
result from the collision of two spatial branches coming from opposite sides of the
real axis in order to fulfil the causality condition (Huerre & Rossi 1998).
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Figure 4. (a) Wave speed c of linear neutral waves normalized with the speed of the kinematic
waves ck and (b) spatial growth rate of the most amplified perturbations (convective case, C)
and of the absolute wavenumber (absolutely unstable region, A) as function of δ. Thick solid
and dashed lines refer to the OS analysis and to dispersion relation (5.8) whereas thin solid
lines are obtained from the Trifonov model. Labels 1 and 2 correspond to Rhodorsil silicon
oil v50 (Γ = 5.48 and R = 0.35 mm) and to water (Γ = 3376 and R = 0.64 mm), respectively.
See also the caption of figure 3. The increased deviation of the wave speed in (a) from unity
is a dispersive effect.

The wavenumber kr of the most spatially amplified perturbation in the convective
case and the absolute wavenumber k0r are shown in figure 3(a) and are compared
to kRP/

√
2 which corresponds to the most temporally amplified perturbation for

dispersion relation (5.1). The corresponding growth rates −ki and −k0i are shown in
figure 4(b). In the limit δ → 0, all curves converge to kr = kRP/

√
2, which is unexpected

since the latter corresponds to a temporal stability analysis instead of a spatial one.
This limit corresponds to a vanishingly small film thickness, for which both the
group velocity vg and the phase velocity ck are nearly equal to one and dispersion

effects from inertia and viscosity are negligible since η ∝ Γ h
4/3
N . As hN � R, the

growth rate is also small and the Gaster transformation, vg ≈ −ωi/ki , between
temporally and spatially increasing disturbances applies (Gaster 1962). Surprisingly,
the wavenumbers kr of the most amplified spatial perturbations stay close to kRP/

√
2

even at large values of δ. A remarkable agreement is again observed between results
from the model (4.16) and the OS analysis, whereas the Trifonov model, which
neglects the stabilizing second-order viscous effects, overestimates the spatial growth
rate at large δ for silicon oil.

The RP instability mechanism results from the competition of axial and azimuthal
surface-tension effects, irrespective of the presence of a flow. Instead, the K mode
results from the competition of dynamic and kinematic waves whose existence is
strongly linked to the flow. This explains the fact that the RP mode may trigger an
absolute instability (Duprat et al. 2007), whereas a film falling down an inclined planar
wall can only be convectively unstable (Brevdo et al. 1999). The C/A transition from
a convective to an absolute instability corresponds to a real absolute frequency. In
the inertialess limit, the C/A transition occurs at β = βca ≈ 1.507 for the dispersion
relation (5.3) to the Frenkel equation (4.23). Based on the transformation (5.4) from
dispersion relation (5.1) to (5.3), we can infer that the C/A transition predicted by the
CM equation (4.22) occurs at β� =βca . At a given value of R/lc, β� which compares
axial and azimuthal curvatures to the advection by the kinematic waves, reaches a
maximum at α̃ ≈ 0.44 and tends to zero as α̃ → ∞. Figure 5(a) shows the contour line
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Figure 5. (a) Absolute A and convective C instability regions in the (α̃, R̄/ lc) parameter plane
for silicon oil v50 (Γ = 5.48, labelled 1), water (Γ =3376, labelled 2) and castor oil (Γ = 0.45,
labelled 3). The dashed-dotted line corresponds to the C/A boundary β� = βca ≈ 1.507 for
the CM equation (4.22). It is not affected by changing the fluid properties and hence it is
the same for the three fluids. The inset is an enlargement of the upper end of the curves.
(b) Spatial branches in the complex k-plane for silicon oil v50, qN = 0.01 g s−1, R̄ = 0.2 mm
and ω0i =0.126 (indicated by a + in (a): δ = 0.1874, α̃ = 1.72, η =0.143). Thick solid, thick
dashed and thin solid lines refer to the OS analysis, to the dispersion relation (5.8) and to the
dispersion relation of the Trifonov model respectively. Values of α̃ and R̄/ lc corresponding to
the experiments by Kliakhandler et al. (2001) are indicated by crosses. All three experiments
and the example shown in (b) and indicated by a + in (a) are absolutely unstable flows.

β� = βca in the (R/lc, α̃)-plane along with the C/A transition loci obtained from OS
and the dispersion relation (5.8). For R > 0.28lc, the instability is always convective,
whereas for R < 0.28lc, there is an intermediate range of aspect ratios α̃, or film
thicknesses, for which an absolute instability can be observed. As we pointed out
in § 4, for our low-dimensional models the limit of very small thicknesses hN � R

corresponds to the planar case (the same is not true for full Navier–Stokes, however,
the linear stability characteristics for hN � R obtained from OS are the same to those
of the planar limit) for which it is well known that the instability is always convective,
and the RP instability is weakened at large thicknesses hN � R by the decrease of the
total curvature (R + hN)−1. C/A boundaries predicted by the dispersion relation (5.8)
nearly coincide with the OS results, discrepancies being noticeable only for water and
for large thicknesses (α̃ � 1).

For less viscous fluids and higher Kapitza numbers, for example water (Γ = 3376),
the C/A boundaries are shifted significantly downwards, a direct consequence of the
higher influence of the hydrodynamic K mode since large values of the aspect ratio
α̃ correspond also to large values of the reduced Reynolds number δ. However, the
C/A boundary β� = βca given by the CM equation remains unchanged as this equation
does not account for the hydrodynamic K mode and hence it is the same when the
working fluid changes, for example from a highly viscous liquid, such as silicone oil, to
a relatively inviscid liquid, such as water. The influence of the K mode on the absolute
instability can also be noted in figure 3(b) where the wavenumber kr corresponding
to the maximum growth rate −ki of spatially amplified perturbations (real ω) in the
convective case and to k0r in the absolute case are depicted. The Nusselt flow is
absolutely unstable for relatively high values of δ for which a significant discrepancy
between the OS marginal curve and the inertialess limit k = kRP is observed, thus
indicating the influence of the K mode.
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Figure 6. Spatial branches in the complex k-plane for castor oil qN = 0.021 g s−1, R̄ = 0.25 mm
and ωi = 0.006 (δ = 0.052, α̃ = 2.91 and η = 0.30). (a) Model (2.2), (4.12); (b) CM equation (4.22).
Solid lines refer to the OS analysis. Dashed lines in (a) and (b) refer to the dispersion relations
(5.8) and (5.1), respectively.

Let us now focus on the details of the branches of solutions in the complex k-plane.
Figure 5(b) shows an example of pinching of branches of solutions for the model
dispersion relation (5.8) compared to the OS result for a moderately viscous fluid.
Chosen parameters correspond to a flow of silicon oil v50 (Γ = 5.48) on a fibre of
radius R = 0.2 mm. At small values of |k| the curves are practically indistinguishable.
Solutions to (5.8) start to deviate from OS as |k| increases. This remarkable agreement
can be understood by considering the derivation of the momentum balance (4.12).
Since the neglected second-order inertial corrections K(h, q, α) are all nonlinear
terms, the corresponding dispersion relation (5.8) is exact up to O(|k|2). For highly
viscous fluids and small Kapitza numbers, such as the castor oil used by Kliakhandler
et al. (2001) (ν = 440 × 10−6 m2 s−1, ρ = 961 kg m−3 and σ = 31 × 10−3 Nm−1 hence
Γ = 0.45), an excellent agreement between the results of the OS analysis and the
dispersion relation (5.8) is again achieved (see figure 6(a) where an example of
pinching of k-branches is given). This could have been expected since in that case
the inertialess limit δ → 0 is perfectly admissible. However, the spatial branches of
solutions to the dispersion relation (5.1) corresponding to the CM evolution equation
(4.22) show large discrepancies with the results to the OS analysis (compare figure 6b
to figure 6a). These topological differences must be attributed to the second-order
viscous dispersion terms that are also neglected in the derivation of the CM equation
(η → 0).

6. Travelling waves
The experimental response of the flow to a periodic inlet perturbation remains

periodic in time at each location in space. Consequently, the integration in time of
the mass balance (2.2) gives ∂x〈q〉 = 0 where the brackets denote averaging over a
temporal period. 〈q〉 is thus conserved all along the fibre and is equal to its value
at the inlet which gives the condition 〈q〉 = 1/3. Travelling waves (TW) of (4.16)
are computed with the continuation software Auto97 (Doedel et al. 1997) enforcing
the above integral condition on the flow rate at each step of the continuation.
The bifurcation diagrams of TW solutions to the two-equation model (4.16) and to
the CM equation (4.22) are compared in figure 7(a). The parameters in the figure
correspond to ‘regime b’ reported by Kliakhandler et al. (see table 1). Figure 7(b)
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Figure 7. (a) Speed c of TW solutions as function of their wavenumber k. Parameters
correspond to the experimental conditions of Kliakhandler et al. (2001) (regime ‘b’ in table 1,
δ = 0.024, η = 0.24, α̃ =2.47). Solid and dashed lines refer to (4.16) and to the CM equation
(4.22), respectively. (b) Wave profiles and streamlines in the moving frame for solutions
indicated by crosses in (a); left: solutions to (4.16); right: solutions to (4.22).

qN hN λ cexpt c hexpt
max hmax h

expt
min hmin

Model Regime (mg s−1) (mm) (mm) (mm s−1) (mm s−1) (mm) (mm) (mm) (mm)

(4.16) a 21 0.73 30 25 22.4 1.47 1.34 0.50 0.44
(4.22) 24.7 1.26 0.45
(4.16) b 11 0.62 6.2 5.4 7.22 1.02 0.92 0.20 0.17
(4.22) 6.98 0.97 0.14
(4.16) c 5.3 0.51 36 12.0 12.1 1.20 1.09 0.25 0.26
(4.22) 12.6 1.10 0.25

Table 1. Comparisons of the characteristics of TW solutions at a given wavelength λ with
the experimental values reported by Kliakhandler et al. (2001).

shows corresponding wave profiles with regularly spaced streamlines in the moving
frame. Only one branch of TW solutions has been found emerging from the marginal
linear stability conditions (it does so through a Hopf bifurcation). Since inertia is
small here (δ = 0.024) and the RP mode is dominant (β = 25.7), the TW branch of
solutions of (4.16) bifurcates at k ≈ kRP. However, weakly nonlinear TW solutions
of (4.16) travel at a lower speed than the TW solutions of the CM equation (4.22)
since the speed of linear kinematic waves is significantly affected by the streamwise
viscous terms (ck,η < ck). At small wavenumbers, TW accelerate, become more and
more localized and terminate in single-humped solitary waves. The speed, amplitude
and shape of the solutions (4.16) and (4.22) are comparable in this limit, though our
model predicts solitary waves of larger amplitude and speed than the CM equation.

The characteristics of the TW solutions of model (4.16) are compared to the
solutions to the CM equation in table 1 for the three regimes reported by Kliakhandler
et al. (2001). At high flow rate, corresponding to ‘regime a’ reported by these authors,
they observed long and isolated waves moving rapidly and irregularly on a relatively
thick substrate. At lower flow rate (termed ‘regime b’ by these authors), the wave
pattern is highly organised with drops of smaller size moving at constant speed
and periodicity. At even lower flow rate (‘regime c’), the regularity of the wave
pattern is again lost with larger waves separated by long and irregular substrates.
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Figure 8. Profiles and streamlines in the moving frame of the TW solutions of model (4.16)
(a, c, e) and of the CM equation (4.22) (b, d , f ). (a, b), (c,d) and (e, f ) correspond to the
regimes a, b and c reported by Kliakhandler et al. (2001). Distances are given in dimensional
units (mm).

The wavelength λ has been adjusted to its experimental value. Model (4.16) and
CM equation (4.22) give comparable results, in good agreement with the experimental
observations. Wave profiles and streamlines in the moving frame of reference are
shown in figure 8. Dimensions have been chosen to enable a direct comparison
with the experimental snapshots (Kliakhandler et al. 2001, figure 1). The agreement
between both models is again very good. The sole noticeable difference is the presence
of capillary ripples in front of the beads observed with the CM equation. Capillary
ripples are almost absent from the solutions of model (4.16), in agreement with
experimental observations. We note that the streamlines in the moving frame reveal
large recirculation zones inside the beads in regime b and c. As in the moving frame
the fluid moves upwards underneath the waves, the presence of recirculation zones
proves that the beads carry mass. In fact, in regime b, the beads carry nearly all the
fluid and the waves resemble drops sliding on a liquid substrate.

7. Time-dependent computations and wave selection
We now examine the spatio-temporal dynamics of a flow down a fibre. For

this purpose we employed a second-order finite-differencing quasi-linearized Crank–
Nicolson scheme. We impose simple soft boundary conditions at the outlet: the
integral momentum balance (4.16b) is replaced at the last two nodes of the discretized
domain with a simple linear hyperbolic (wave) equation ∂tq + vf∂xq = 0 where vf is
set to unity in most simulations. A similar methodology is followed for the Trifonov
and RL models. In the case of the CM equation, the high-order spatial derivatives
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were set equal to zero at the last two nodes while the parameter β was artificially set
to zero in a ‘damping layer’ of typically 100 nodes. This simple procedure turns out to
be sufficient and without any spurious backwards reflections of the waves. Following
Chang, Demekhin & Kalaidin (1996), we have chosen a random-phase formulation
of the noise applied at the inlet. The Fourier spectrum of the zero-mean perturbation
F (t) of the inlet flow rate contain frequencies of equal Fourier coefficients but with
different phases obtained through a random-number generator. The coefficients of
frequencies higher than a few times the linear critical frequency are set to zero to
avoid instabilities of our numerical scheme.

We first present time-dependent simulations for the three regimes reported by
Kliakhandler et al. (see table 1). All of them correspond to linearly absolutely unstable
flows (indicated by crosses in figure 5a). The initial condition – a small hydraulic
jump connecting two regions of different uniform thicknesses – therefore gives way to
a regular wavetrain invading the whole computational domain. Snapshots of the film
thickness at the end of the simulations for regimes a and b are displayed in figures 9
and 10. In regime a, model (4.16) shows that the regular global mode is disorganized
downstream by a secondary instability. Intermittent coalescence events (one such event
can be seen occurring at x ≈ 210 mm) widen the spacing between the waves: the waves
become more and more localized. At the final stage, we observe a train of solitary-like
coherent structures (that resemble the infinite-domain solitary pulses computed in the
previous section). These pulses are separated by portions of flat films of small but
irregular thicknesses. The amplitudes and distances between the solitary pulses are in
reasonable agreement with the experimental observations (hexpt

max = 1.47 mm and ap-
proximately 30 mm between pulses). In regime b, a stable regular global mode invades
the entire computational domain. The wave characteristics compare well to the exper-
imental observations (wavelength λ = 5.84 mm, speed c = 7.2 mms−1, maximum and
minimum heights 0.90 mm and 0.17 mm) and correspond to a frequency, 1.23 Hz, close
to the linear absolute frequency, 1.34 Hz. However, we have been unable to reproduce
the irregular regime c reported in the experiments by Kliakhandler et al. (2001). In our
simulations, a stable global mode (not shown) is again observed in the entire domain.

Time-dependent computations of the CM equation (4.22) show a radically different
dynamics. In regime a, a slowly modulated wavetrain rapidly invades the entire
computational domain whereas intermittent coalescence events are not observed. The
average separation between neighbouring pulses, around 10 mm, is three times smaller
than reported in experiments. The waves tend to group themselves in ‘bound states’
of two or three pulses as observed by Craster & Matar (2006).

In regime b, the global mode that sets in has a frequency 0.9 Hz which is
approximately half the linear absolute frequency, 1.81 Hz. The wave length, ≈14 mm,
is therefore approximately twice the experimental one, 6.2 mm. This selection of wave
patterns different to that observed in the experiments might explain why Craster
& Matar were unable to find TW solutions corresponding to the experimental
wavelength for regime b. A growing modulation of the wave amplitude can be
observed in figure 9(b) leading eventually to a disorganization of the wave pattern.
As noted by Craster & Matar, it turns out that the periodic wavetrain solutions to
the CM equation are unstable in regime b. In regime c (not shown) the resulting wave
patterns are similar to those in regime b but more irregular.

Let us now present some time-dependent computations for the experimental
conditions reported in the recent study by Duprat et al. (2007). Figure 11 shows
the corresponding spatio-temporal diagrams. Duprat et al. used a fluid less viscous
than Kliakhandler et al. (2001) and Craster & Matar (2006) so that inertia plays
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Figure 9. Computed film thickness as a function of the distance from the inlet. Parameters
correspond to regime a in table 1. (a) Solution of model (4.16). (b) Solution of
CM equation (4.22).
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Figure 10. Computed film thickness as function of the distance from the inlet. Parameters
correspond to regime b in table 1. (a) Solution of model (4.16). (b) Solution of
CM equation (4.22).

a non-negligible role. We therefore compare simulations of model (4.16) and the
Trifonov model.

The spatio-temporal diagrams depicted in figure 11 correspond to the ‘permanent’
wave regimes obtained at the end of the simulations to be contrasted with the
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Figure 11. Spatio-temporal diagrams showing the response of the film to a coloured noise
(see text). (a, b) Solutions of the second-order model (4.16). (c, d) Solutions to the Trifonov
model. Parameters correspond to the experimental conditions (Duprat et al. 2007, figure 2,
silicon oil v50 and R =0.32 mm): (a–c) qN = 24 mgs−1 (δ = 0.3, α̃ = 1.32, η = 0.19), (b–d)
qN = 77 mgs−1 (δ = 1.3, α̃ = 1.80, η = 0.28). Dark (light) regions correspond to small (large)
elevations. Vertical and horizontal ranges are 4 s and 10 cm, respectively.

spatio-temporal diagrams reported in Duprat et al. An absolutely unstable flow
(figures 11a and 11c) and a convectively unstable one (figures 11b and 11d) are
shown. A small-amplitude coloured noise been has again been applied at the inlet,
therefore sustaining the structures observed in the convectively unstable regime.

For the absolutely unstable flow, model (4.16) gives results in reasonable agreement
with experimental observations (cf. figure 11a). A very regular wavetrain develops
from the inlet but it is quickly destroyed. As in the experiment, this disorganization
process looks irregular and is probably promoted by a secondary sideband instability.
Waves of larger amplitudes and travelling at greater speeds emerge through
intermittent coalescence events in a fashion that is comparable to the noise-
driven transitions observed in the case of film falling down a planar vertical wall
(Chang, Demekhin & Saprikin 2002). The simulation of the Trifonov model shows a
different scenario. The wavetrain that emerges from the primary instability undergoes
a subharmonic instability that doubles its frequency (cf. figure 11c). No further
bifurcations are observable downstream.

The differences between the two spatio-temporal evolutions illustrated in
figures 11(a) and 11(c) may be better understood by looking at the snapshots of
the film thickness at the end of the simulations (cf. figure 12). In the case of
model (4.16), solitary-like coherent structures emerging from the secondary instability
of the primary regular wavetrain are again separated by portions of nearly flat films.
The capillary oscillations/ripples preceding the solitary humps are small. In contrast,
the snapshot of the film at the end of the simulation for the Trifonov model is
quite different. The waves are not localized and the main humps are separated by
secondary ones resembling the capillary oscillations/ripples preceding the γ2 solitary
waves. This observation suggests that the selection of either a subharmonic or a
sideband secondary instability is responsible for the localisation of the waves, which
in turn is strongly dependent on the streamwise viscous terms.
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Figure 12. Film thickness as function of the distance from the inlet at the end of the
simulations presented in figures 11(a) and 11(c); (a) Solution of model (4.16). (b) Solution of
Trifonov model.

For the convectively unstable flow, the irregular motion of the ‘healing length’,
i.e. the distance from the inlet at which the waves are first noticeable, resembles the
experimental observations. The time-dependent computations of model (4.16) show
some coalescence events as observed in the experimental spatio-temporal diagram
(cf. figure 11b). It is, however, difficult to conclude that this is always the case since
the number of coalescence events strongly depends on the amplitude and spectrum of
the inlet experimental perturbation which is unknown. Simulations with the Trifonov
model show again a tendency to period doubling not observed in the experiments but
also a series of coalescence events are observed as in the experiment (cf. figure 11d).
We note that in general the Trifonov model gives a larger number of coalescence
events compared to (4.16) owing to the larger band of unstable wavenumbers, a
consequence of neglecting streamwise viscous dissipation, which in turn leads to a
larger susceptibility to noise.

Finally, we note that we have attempted to simplify our second-order model (4.16)
by using polynomial expansions of the coefficients in the form of (4.13). Non-physical
blow-ups in time-dependent computations were generally observed even at quite low
values of the aspect ratio α̃. This drawback is probably a manifestation of the poor
convergence properties of the coefficients of our model due to the presence of the
logarithmic function log(α̃) in these coefficients. This poor convergence is illustrated
in figure 13(a) where we display the speed of linear kinematic and dynamic waves
in the limit of negligible viscous dispersion (η → 0) and large Reynolds numbers
(β/δ → 0) corresponding to the O(α̃2) expansion (4.13). For aspect ratios α̃ above 1.2,
the speed ck of the kinematic waves lies in the interval [cd−, cd+] which implies linear
stability, in contradiction with the results from model (4.16) (compare figure 13(a) to
figure 2(a)).

A similar drawback is observed with the RL model (see figure 13b). The spatial
dynamics of the film predicted by this model is shown in figure 14 for the flow
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Figure 13. Speeds ck (5.2) of kinematic waves and cd± (5.10) of dynamic waves as functions
of the aspect ratio α̃ = hN/R in the limit of negligible viscous dispersion (η → 0) and large
Reynolds numbers (β/δ → 0). (a) Expansion (4.13); (b) RL model (4.14).
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Figure 14. Spatio-temporal diagrams showing the response of the film to a coloured noise
simulated with RL model (4.14). Parameters are δ = 0.3, α̃ = 1.32 and η = 0.19 (a), and δ = 1.3,
α̃ = 1.80 and η = 0.28 (b). Vertical and horizontal ranges are 4 s and 10 cm, respectively. See
also the caption of figure 11.

conditions corresponding to the experiments by Duprat et al. (2007). For the two
simulations shown in the figure, the aspect ratio α̃ is O(1) as in the experiments
and the RL model unphysically stabilises the hydrodynamic K mode (the RL model
always suppresses the K mode for α̃ � 0.6). As a consequence, the base flow is less
unstable, and for similar inlet noise, the spatial development of the waves is delayed
in the convective case (compare figures 14b and 11b). In the absolute case, a very
regular wavetrain is observed in disagreement with the experimental observations.

8. Summary and conclusions
We have formulated, within the framework of the boundary-layer approximation, a

low-dimensional model that consists of two coupled evolution equations for the film
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thickness h and the flow rate q . The model is rather general: it accounts for both
inertial and streamwise viscous effects, it is not limited to small aspect ratios h/R

and is applicable even if Γ = O(1). Previous one-equation models are recovered in the
appropriate limit. The key steps of our approach are: (i) elimination of the pressure
by integrating the cross-stream momentum balance; (ii) projection of the velocity
field onto an appropriately chosen set of test functions assuming small departures
from the Nusselt uniform film velocity distribution. As in the planar case (Ruyer-Quil
& Manneville 2002), we have shown that the use of the Galerkin weighted residual
method is the optimum one leading to the desired formulation with a minimum of
algebra.

In the linear regime, an excellent agreement with the Orr–Sommerfeld analysis of
the primitive equations is attained. Streamwise viscous diffusion was shown to have
a dispersive effect. The role of the K instability has been understood within the
Whitham wave hierarchy framework (Whitham 1974). Streamwise viscous diffusion
was shown to play a stabilising role by decreasing the speed of the kinematic waves.

In the nonlinear regime, TW branches of solutions have been obtained by
continuation and have been favourably compared to the experiments by Kliakhandler
et al. (2001). Time-dependent computations show that our second-order model
recovers the regimes observed experimentally by Kliakhandler et al., except for the
irregular motion of large waves at very small flow rate (‘regime c’). Good agreement
has also been obtained with the recent experiments by Duprat et al. (2007) for
which the wave dynamics in the absolute and convective regimes are recovered. In
contrast, by neglecting streamwise viscous diffusion, the CM evolution equation (4.22)
overestimates the speed of linear waves. Our simulations of the spatial evolution of
the flow then reveal that the wave selection observed with the CM equation does not
correspond to the experimental observations. Therefore, the CM equation should be
used with caution and certainly not to describe the spatio-temporal dynamics. The
Trifonov model suffers from similar limitations. In the linear regime, it overestimates
the range of unstable wavenumbers. Time-dependent computations in the nonlinear
regime reveal a subharmonic secondary instability that was not observed in the
experiments by Duprat et al.

In conclusion, despite its apparent ‘complexity’, the model in equation (4.16)
performs well in both linear and nonlinear regimes and captures the dynamics for the
largest possible range of parameters.

C.R.-Q. would like to thank S. Ndoumbe and F. Lusseyran with whom a preliminary
study was undertaken, and Y. Bardoux for a careful reading of the manuscript. We
acknowledge financial support through a travel grant supported by the Franco-
British Alliance Research Partnership Programme. S.K. thanks Laboratoire FAST for
hospitality.

Appendix A. Boundary-layer approximation for Γ =O(1)

Here we consider the more involved case (ii) with Γ = O(1) and ε3/2 � hN � 1.
In the first instance we neglect terms O(ε3hN) and higher associated with the viscous
part of the pressure in the normal stress balance (2.1e) and approximate the pressure
as,

p|h = {right-hand-side of (3.5)} + O

(
(∂xh)2∂xxh,

ε4

R + h

)
, (A 1)
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where the neglected terms are of O(ε4/hN, ε4α). As a result p|h is identical to that
in (3.5). The tangential-stress boundary condition (2.1f) up to of O(ε2hN) yields
equation (3.6). Hence the contribution of the term ∂xh∂rux in (A 1) is of O(ε3hN)
and must be neglected. As a result p is identical to that in (3.7) but now terms
of O(ε4/hN, ε4α, ε3hN, ε2h4

N) are neglected which is indeed the case provided that

max{ε3/hN, εhN, h4
N, ε5/h3

N, ε9/4} � α � min{1/(ε2hN), hN/ε3, h
3/2
N /ε2, 1/ε3/2, hN/ε5}

and ε4/5 � hN � 1 (once again through a detailed examination of the orders of
magnitude of the retained over the neglected terms). As an example, with hN ∼ ε1/2,
ε3/2 � α � ε−5/4 and α is allowed to take both small and large values, for example
α ∼ ε±1/2 which also satisfies the requirement αhN at most of O(1). Kaz is also
identical to (3.8) but now terms of O(ε4α) and higher are neglected (moreover,
αh → 0 now does not imply the planar limit as in case (i)). Hence the final streamwise
momentum equation for case (ii) is identical to (3.9) for case (i).

Finally, we note that the order-of-magnitude assignment hN ∼ 1 in case (i) can be
relaxed, allowing α and hN to be both small and large (and so that the requirement
αhN at most of O(1) is still satisfied). For this purpose we would have to repeat
the analysis for case (ii) to obtain lower/upper bounds on hN and α but now with
Γ =O(ε−2) instead of Γ = O(1).

Appendix B. Coefficients of models (4.10) and (4.12)
The coefficients of the first-order momentum balance (4.10) consist of ratios of

polynomials in b and log(b) where b = 1 + αh:

φ = {3[(4 log(b) − 3)b4 + 4b2 − 1]}/[16(b − 1)3], (B 1a)

F = 3Fa/[16(b − 1)2φFb], (B 1b)

Fa = −301b8 + 622b6 − 441b4 + 4 log(b){197b6 − 234b4 + 6 log(b)

×[16 log(b)b4 − 36b4 + 22b2 + 3]b2 + 78b2 + 4}b2 + 130b2 − 10, (B 1c)

Fb = 17b6 + 12 log(b)[2 log(b)b2 − 3b2 + 2]b4 − 30b4 + 15b2 − 2, (B 1d)

G = Ga/[64(b − 1)4φ2Fb], (B 1e)

Ga = 9b{4 log(b)[−220b8 + 456b6 − 303b4 + 6 log(b)(61b6 − 69b4

+4 log(b)(4 log(b)b4 − 12b4 + 7b2 + 2)b2 + 9b2 + 9)b2 + 58b2 + 9]b2

+(b2 − 1)2(153b6 − 145b4 + 53b2 − 1)}, (B 1f)

I = 64(b − 1)5φ2/[3Fb] . (B 1g)

Expressions (B 1) can be contrasted to the corresponding ones for the first-order
averaged momentum balance obtained by Trifonov (1992) with a uniform weight:

F =
6 − 45b2 + 90b4 − 51b6 − 36b4 log(b)[2 − 3b2 + 2b2 log(b)]

32(b − 1)5φ
, (B 2a)

G = Ga/{512(b − 1)7φ3}, (B 2b)

Ga = 9b{(b2 − 1)2(1 − 26b2 + 37b4) − 8b2 log(b)[2 + 12b2 − 36b4 + 22b6

+3b2 log(b)(3 + 4b2 − 9b4 + 4b4 log(b))]}, (B 2c)

I = (b + 1)/2 . (B 2d)

The coefficients of the second-order corrections in (4.12) are:

J = Ja/[128(b − 1)4φ2Fb], (B 3a)
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Ja = 9{(490b8 − 205b6 − 235b4 + 73b2 − 3)(b2 − 1)3

+4b2 log(b)[2b4 log(b)(72 log(b)(2 log(b)b4 − 6b4 + b2 + 6)b4

+(b − 1)(b + 1)(533b6 − 109b4 − 451b2 + 15))

−3(b2 − 1)2(187b8 − 43b6 − 134b4 + 17b2 + 1)]}, (B 3b)

K = 3Ka/[16b3(b − 1)2φFb], (B 3c)

Ka = 4b4 log(b)(233b8 − 360b6 + 12 log(b)(12 log(b)b4 − 25b4 + 12b2 + 9)b4

+54b4 + 88b2 − 15) − (b2 − 1)2(211b8 − 134b6 − 56b4 + 30b2 − 3), (B 3d)

L = La/[8b(b − 1)2φFb], (B 3e)

La = 4b2 log(b){6 log(b)(12 log(b)b4 − 23b4 + 18b2 + 3)b4 + (b − 1)(b + 1)

×(95b6 − 79b4 − 7b2 + 3)} − (b2 − 1)2(82b6 − 77b4 + 4b2 + 3), (B 3f)

M = 3 + [24 log(b)b8 − 25b8 + 48b6 − 36b4 + 16b2 − 3]/[2b2Fb]. (B 3g)
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Quéré, D. 1990 Thin films flowing on vertical fibers. Europhys. Lett. 13, 721–726.

Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347–384.

Rayleigh, Lord 1878 On the stability of liquid jets. Proc. Lond. Math. Soc. 10, 4.

Roberts, A. J. & Li, Z. 2006 An accurate and comprehensive model of thin fluid flows with inertia
on curved substrates. J. Fluid Mech. 553, 33–73.

Roy, R. V., Roberts, A. J. & Simpson, A. J. 2002 A lubrication model of coating flows over a
curved substrate in space. J. Fluid Mech. 454, 235–261.



462 C. Ruyer-Quil and others

Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur.
Phys. J. B 15, 357–369.

Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling
of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170–
183.

Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and
three-dimensional waves. J. Fluid Mech. 562, 183–222.

Shkadov, V. Ya. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv.
Akad. Nauk SSSR, Mekh. Zhidk Gaza 1, 43–51 (English translation in Fluid Dyn. 2, 29–34,
1970, Faraday Press, NY).

Shkadov, V. Ya. 1977 Solitary waves in a layer of viscous liquid. Izv. Ak. Nauk SSSR, Mekh. Zhid
Gaza 1, 63–66.

Sisoev, G. M., Craster, R. V., Matar, O. K. & Gerasimov, S. V. 2006 Film flow down a fibre at
moderate flow rates. Chem. Eng. Sci. 61, 7279–7298.

Smith, M. K. 1990 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech.
217, 469–485.

Trifonov, Yu. Ya 1992 Steady-state travelling waves on the surface of a viscous liquid film falling
down vertucal wires and tubes. AIChE J. 38, 821–834.

Whitham, G. B. 1974 Linear and Nonlinear Waves . Wiley-Interscience.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /Description <<
    /DEU <>
    /FRA <>
    /JPN <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




