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Phase diffusion in the vicinity of an oscillatory secondary bifurcation

F. Giorgiutti,* L. Limat, and J. E. Wesfreid
Laboratoire de Physique et Me´canique des Millieux He´térogènes, CNRS URA No. 857, ESPCI, 10 rue Vauquelin,

75231 Paris Cedex 05, France
~Received 17 March 1997; revised manuscript received 29 October 1997!

The phase dynamics of a one-dimensional cellular pattern is studied on a regular array of liquid columns
formed below an overflowing horizontal cylinder. When a uniform wavelength dilation is imposed by static
boundaries, an oscillatory secondary bifurcation is observed~‘‘optical mode’’!. The case of a moving boundary
~sinusoidal motion! allows us to observe three dynamical states: phase diffusion, phase diffusion coupled
with the oscillatory state, and propagation of dilation waves. The dependence of the phase diffusion coefficient
D upon the pattern wavelength is investigated for different flow rates:D is nearly constant until the appear-
ance of the oscillations and jumps to a larger value when the optical mode is excited. This unusual behavior is
recovered by an analytical treatment of Coullet-Ioss equations.@S1063-651X~98!12002-0#

PACS number~s!: 47.20.Ma, 47.20.Ky, 47.54.1r
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I. INTRODUCTION

The dynamics of one-dimensional cellular patterns gen
ated by instabilities have motivated various studies@1#. We
can mention as examples the following systems: Rayle
Bénard convection@2#, ‘‘printer’s experiment’’ ~directional
viscous fingering! @3#, and directional solidification@4#. A
concept of central importance in the description of this d
namics is the spatial phase of the pattern@5#. In its simplest
sense this quantityf(x,t) can be defined as the local di
placement of the cellsdu with respect to a base state no
malized by a reference wavelengthl as

f52pdu/l. ~1!

It implies that wavelength variationsdl/l can be de-
scribed as phase gradientsdf/dx. Pomeau and Manneville
@5# established that usually the phase is governed by a d
sion equation. Experimental confirmations of this equat
have been given by various groups and among others
Wesfreid and Croquette@6# in a Rayleigh-Be´nard experi-
ment. Then, Cross and Brand on a theoretical point of vi
and Wu and Andereck on a Taylor-Couette system@7# stud-
ied the phase-diffusion mechanism of wavy vortex flo
Then Roth and Lu¨cke investigated the effect of boundari
on the phase dynamics of patterns@7#. All of these mecha-
nisms have been reviewed by Brand@8#.

Recently, on the printer’s instability, Fourtune, Rapp
and Rabaud@9# have observed a divergence of the pha
diffusion coefficientD in the vicinity of a secondary bifur-
cation of the pattern called parity-breaking bifurcation. Th
have interpreted this behavior by a generalization of
phase-diffusion equation proposed by Coullet, Goldste
and Gunaratne@10#, in which the phase-diffusion equation
coupled with a Ginzburg-Landau equation governing
parity-breaking amplitude. What does this behavior beco
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if we consider other secondary bifurcations encountered
one-dimensional systems? We discuss here the case o
oscillatory bifurcation with wavelength doubling sometim
improperly called an ‘‘optical mode.’’ This kind of bifurca
tion appears in different one-dimensional systems, such
the ‘‘printer’s instability’’ or directional solidification. More
recently, we have reported a similar behavior in a new s
tem that we called the liquid-column array. This structure
formed in the process of pouring a liquid from a horizon
overhang, such as the lowest edge of an inclined plate or
bottom of a horizontal cylinder in which a liquid film is
flowing. We have also pointed out other dynamical behavi
including the phase-diffusion processes by forcing the m
tion of a boundary column anchored on a moving nee
~capillary contact!. Here we investigate quantitatively thi
dynamics and especially the coupling between phase d
sion and the optical mode.

II. EXPERIMENT

Our experiment consisted of a horizontal, hollow cylind
~external radiusR52.5 cm, lengthL528 cm as in Ref.@11#!
supplied at both ends with liquid~silicon oil, 20 cP!, at a
constant rateq. Owing to a thin slot placed in the upper sid
of the cylinder, the liquid overflows, runs over the extern
sides, and accumulates below the cylinder where a Rayle
Taylor instability occurs. Depending on the flow rate, diffe
ent flowing regimes can be observed. Increasing the fl
rate, we have identified in succession@12# an array of pen-
dant drops, an array of liquid columns, and a liquid shee
triangular shape that is hanging below the cylinder. Fo
large range of flow rate~typically 5–25 g/s!, the array of
liquid columns is obtained with a well-defined periodicityl.
An example of this pattern is reproduced in Fig. 1. It tur
out thatl is usually of order ten times the capillary lengthl c
with l c5(g/rg)1/2 ~g denotes surface tension,r mass den-
sity, andg gravity, andl c'1 mm for liquid-gas interfaces!.
Its mean value can be continuously modified by imposing
position of two extreme columns by means of two horizon
needles in capillary contact with the column meniscus@11#
2843 © 1998 The American Physical Society
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~we recall that each extreme column follows the needle m
tion!.

Different dynamical behaviors of the liquid-column arra
are obtained by varying the wavelengthl or the flow rateq,
both playing the role of control parameters. The phase
gram is reproduced in Fig. 2. A wavelength compress
leads to coalescence phenomena between columns wh
strong dilation leads to nucleation of cells. For moder
wavelength dilations, an oscillatory state is observed
which each column oscillates as a whole, its motion out
phase with that of its nearest neighbors. To follow the c
umns’ motions, we have recorded a line of the digitized p
ture taken by a video camera and stored at constant
intervals. The line is horizontal and close to the bottom
the cylinder. Thus, we obtain spatiotemporal diagrams s
as the one presented in Fig. 1, which gives the (x2t) trajec-
tories of the columns. This regime, called the optical mo
appears for an imposed value of the wavelength higher t
a critical value~Fig. 1!.

We have plotted in Figs. 3~a! and 3~b! the amplitude and
frequency of the oscillations versus the distance to thresh
«5(l2lc)/lc for different values of the flow rateq. The
obtained variations reveal a supercritical Hopf bifurcati

FIG. 1. Array of liquid columns observed below a horizon
cylinder along which a liquid is flowing from top to bottom at
constant rate. Inset: space-time diagram of the array of liquid
umns for fixed boundary conditions~optical mode!.

FIG. 2. Phase diagram (q,l) that shows the stability range o
the different dynamic state of the array~q is the global flow rate for
the array of 24 liquid columns obtained for the overflowing of
28-cm horizontal cylinder!.
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that confirms previous investigations on lower numbers
oscillating columns@11#. We note that in the range of flow
rate @7–10 g/s# the frequency does not depend on«, which
suggests that the motion of the columns is isochronic~i.e.,
harmonic oscillations!.

Time-dependant perturbations can also be achieved
imposing moving boundary conditions on an extreme c
umn, where the needle in contact with this column is slav
to a frequency generator. More precisely, the position of o
of the boundary columns is fixed, while the other one osc
lates following a law of the kindx5x0 cos(2pft), wherex is
the horizontal direction. A phase-diffusion behavior is o
served for low forcing amplitude and at low frequency@Fig.
4~a!#. Indeed, the perturbation diffuses in the structure and
progressively damped. When the forcing amplitude
creases, the diffusive regime is replaced@11,12# by a propa-
gative regime with dilation wave emissions@Fig. 4~c!#.
These waves are characterized by a motion of a group
cells in a direction opposite to the propagation of its boun
aries. We have plotted in Fig. 5, the domain of existence
each regime in the plane (f ,Ve), Ve52p f x0 being the
maximal excitation velocity. In this figure we see that V
should be higher than a critical velocity to launch the dilati
waves. Finally, for velocities larger than a second thresho

l-

FIG. 3. ~a! Amplitude of the oscillations of the columns vs th
distance to threshold«5(l2lc)/lc for q56.44 g/s. ~b! Fre-
quency of the oscillations of the columns vs the distance to thre
old «5(l2lc)/lc for different values of the flow rateq.
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57 2845PHASE DIFFUSION IN THE VICINITY OF AN . . .
we observe only nucleations and coalescences of cells
no propagation anymore.

We now focus the study on the phase dynamics. If
come back to the space-time diagram presented in Fig.~a!
~low values ofx0 and f !, we can see a damping of the osc
lations, with a progressive temporal phase shift whenx in-
creases. The local amplitude of the forced oscillationA(x)
and the local value of the temporal phase shiftc(x) are
plotted as a function of the distancex to the moving bound-
ary @Figs. 6~a! and 6~b!#. In both cases, the linear behavi
attests to a phase-diffusion mechanism governed by the
lowing diffusion equation~2! in which D is the phase-
diffusion coefficient:

]w

]t
5D

]2w

]x2 . ~2!

FIG. 4. Space-time diagram of the array of liquid columns w
a moving boundary condition following a sinusoidal lawx
5x0 cos(2pft) with 0.1 cm,x0,0.5 cm; f 50,1 Hz at
q57.3 g/s. X is the position andT is the time that runs toward th
bottom. ~a! Before the appearance of the optical mode.~b! In
the presence of the optical mode.~c! Propagative regime with
dilation waves emissions (x0.0.5 cm).
ith

e

l-

The solution for Eq.~2! is

w~x,t !5w0 exp~2ax!exp@ i ~vt2bx!#, ~3!

with

a5b5A v

2D
. ~4!

The experimental results fora and b are presented in Fig
6~c!. These are in agreement with Eq.~3!, which confirms
the phase-diffusion analysis. These expressions allowed u
perform measurements of the diffusion constantD @12#. Usu-

FIG. 5. Different behaviors observed with a moving bounda
condition ~sinusoidal! at a given flow rate (q57 g/s).

FIG. 6. ~a! Spatial dependence of the force amplitude.~b! Spa-
tial dependence of the temporal shift.~c! a and b evolution for
q56.88 g/s; x050.5 cm.
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FIG. 7. Phase-diffusion coefficientD evolution at different flow rates (q) with «5l2lc /lc . lc is the critical wavelength at the
optical-mode appearance.
ur
f

u-
a

pt
-

t
lt
re

t
an
an

a
op
e
s

st
ne
or
c

th

d
u
te
te

se-
m-

ical

the
of
cil-
a

ally, the obtained values are of the order 10– 20 cm2/s, which
compared to the viscosity of the oil (0.2 cm2/s) are one hun-
dred times higher. We have improved these first meas
ments by focusing our attention on the dependence oD
upon the mean wavelengthl. Indeed, the position of one
boundary column is fixed while the other follows a sin
soidal law. In that way, we are able to impose the me
uniform wavelength between the two boundary columnsl.
For wavelength values higher than a critical value, the o
cal mode ~high frequency! is coupled with the phase
diffusion mechanism~low frequency! @Fig. 4~b!#. In this
case, we determinedD by using the central position~half
sum of the two extreme positions! of each column to extrac
the local amplitude of the forced oscillations. The resu
obtained in four experiments at different flow rates are p
sented in Fig. 7. It turns out that for a given flow rate,D is
constant before the optical-mode appearance and jumps
new value when the coupling between the optical mode
the phase-diffusion mechanism appears. On the other h
as is shown in Fig. 8, the constant value ofD before the
optical-mode appearance increases with the flow rate
reaches a saturation value. After the appearance of the
cal mode,D is a constant whatever the flow rate. This b
havior differs from that observed with other cellular system
We can mention, for example, the case of the printer’s in
bility, where D(l) exhibits an Eckhaus scenario when o
increasesl for low capillary numbers. On the other hand, f
capillary numbers higher than a critical value, a divergen
of the coefficientD is observed for increasing waveleng
@9#. The same behavior was observed by Misbah@13# in
numerical simulations of directional solidification in liqui
crystals. Indeed, concerning our system, the array of liq
columns exhibits neither Eckhaus scenario at low flow ra
nor divergence at high flow rates, in the range of parame
that we can explore.
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III. MODELIZATION OF THE PHASE-DIFFUSION
COEFFICIENT JUMP

To explain the previous behavior obtained for the pha
diffusion coefficient, we consider two coupled phase and a
plitude equations of the Coullet-Ioss type@14#. This analyti-
cal treatment confirms this jump ofD when the coupling
between the phase-diffusion mechanism and the opt
mode appears.

The one-dimensional periodic pattern is described by
even functionU0(x1w) that should describe the shape
the interface. In our case, this pattern bifurcates to an os
latory state through a Hopf bifurcation characterized by
temporal pulsationv52p f . In the vicinity of this bifurca-

FIG. 8. Phase-diffusion coefficient average^D& evolution vs
flow rate (q) ~below! and after the optical threshold.
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57 2847PHASE DIFFUSION IN THE VICINITY OF AN . . .
tion, the pattern can be described byU as

U~x,t,w,A!5U0~x1w!1exp~ ivt !A~x,t !j~x1w!1c.c.,
~5!

wherej(x1w) is periodic inx and corresponds to the mo
unstable mode at the threshold andA is the complex ampli-
tude of the bifurcated solution~optical mode! @14#. So, U
depends on the two quantitiesA andw, which are supposed
to vary slowly in space and time. The dynamics ofU is then
governed by these quantities,A and w, which obey two
coupled equations obtained by symmetry arguments@15#.
These two coupled equations that describe the dynamic
the phasew and ofA are

] tA5mA1DA~11 ia!
]2A

]x22~11 ib!uAu2A

2~g1 id!
]w

]x
A, ~6a!

] tw5D
]2w

]x2 1 ihS ]A

]x
Ā2

]Ā

]x
AD 1j

]uAu2

]x
. ~6b!

All the parametersa, b, g, d, h, j, and m are real.m is a
control parameter that has the same destabilization effec
the phase gradient.D is the phase-diffusion coefficient, an
DA is another diffusion coefficient associated with the a
plitudeA. In view of the frequency measurements presen
in Fig. 3~b!, we have allowed thatb50, and for simplicity
we have assumed thatb5d5j50.

Now we compare two states. The first one is the base s
just before the optical-mode appearance (m,0) character-
ized byA50. The temporal decrease of a phase modula
defined as exp(iQx)exp(st) will lead to s52DQ2, whereD
is the diffusion coefficient with no optical mode. The seco
state is the one obtained just above the optical-mode thr
old (m.0), whereA differs from zero. More precisely, th
stationary state that represents a uniform optical mode is
fined by the system

05mA2uAu2A, ~7a!

A5r0eic, r05Am,

w50, c5const50. ~7b!

We consider the following perturbation:

A5Am@11x#,

wÞ0, cÞ0. ~8!

Therefore, we have to deal with three coupling variables:
amplitude variationx, the temporal phase of the oscillation
c, and the spatial phase of the cellular structurew. The
damping of a phase modulation exp(iQx)exp(st) will give us
the effective diffusion coefficientD̃ in the presence of the
optical mode by the relationships52D̃Q2. The linear form
of our system becomes
of

as
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S x t

c t

w t

D 5S 22m2Q2DA aQ2DA 2 iQg

2aQ2DA 2Q2DA2s 0

0 22imhQ 2Q2D
D S x

c
w
D

5MS x
c
w
D . ~9!

The characteristic polynomial to obtainD̃(Q) is given by

P~Q,s!52~Q2D1s!U22m1Q2DA1s 2aQ2DA

aQ2DA Q2DA1s
U

12mhaQ4DAg50. ~10!

We simplify the problem again by asuming that for low co
pling, D is only slightly modified andD̃5D1dD with dD
!D. Neglecting thedDQ2 terms comparing to theQ2D
ones, we finally obtainD̃

D̃5D1dD5D1
ahgDA

D2DA
, ~11!

with dD containing some corrective terms proportional
the coupling coefficients. As announced above,D is modi-
fied just above the threshold, in agreement with our exp
mental data. Its ‘‘jump’’ is proportional to the productahg
of the coupling coefficients, that coupleuAu, w, andc.

IV. CONCLUSION

To conclude, we have identified a specific behavior
the phase-diffusion coefficientD in a cellular system. This
behavior is unusual here becauseD does not follow classica
scenarios when increasing the pattern wavelength. We
neither Eckhaus behavior nor divergence with the wa
length.D keeps a constant value and jumps to a new diff
ent constant value when the wavelength becomes larger
a critical value where the optical mode appears. This beh
ior has been recovered by an analytical treatment of Cou
Ioss equations, the jump ofD being proportional to a com
bination of three coupling coefficients. A direct numeric
investigation of this effect is under progress.

This unusual behavior ofD is intriguing. The fact thatD
is nearly constant below threshold is reminiscent of the
havior of the oscillatory pulsationv that is also independen
of the mean wavelength. Both observations are consis
with the idea that the interaction between columns could
governed by a harmonic potential~anharmonicity effects
should therefore be removed in the model of Ref.@12#!. In
comparison to other systems, the absence of Eckhaus
nario and of parity-breaking induced divergence could
explained by the occurrence of nucleation and coalescenc
cells that occur very easily in this system and may hide th
two behaviors.
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