PHYSICAL REVIEW E VOLUME 57, NUMBER 3 MARCH 1998

Phase diffusion in the vicinity of an oscillatory secondary bifurcation
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The phase dynamics of a one-dimensional cellular pattern is studied on a regular array of liquid columns
formed below an overflowing horizontal cylinder. When a uniform wavelength dilation is imposed by static
boundaries, an oscillatory secondary bifurcation is obsef\agtical mode”). The case of a moving boundary
(sinusoidal motioh allows us to observe three dynamical states: phase diffusion, phase diffusion coupled
with the oscillatory state, and propagation of dilation waves. The dependence of the phase diffusion coefficient
D upon the pattern wavelength is investigated for different flow rat€sis nearly constant until the appear-
ance of the oscillations and jumps to a larger value when the optical mode is excited. This unusual behavior is
recovered by an analytical treatment of Coullet-loss equat{@1063-651%98)12002-0

PACS numbes): 47.20.Ma, 47.20.Ky, 47.54.r

I. INTRODUCTION if we consider other secondary bifurcations encountered in

. . . one-dimensional systems? We discuss here the case of an
The dynamics of one-dimensional cellular patterns gener- Y

ated by instabilities have motivated various studigks We oscillatory bifurcation with wavelength doubling sometimes

can mention as examples the following systems: Ray|eighmeroperly ca!led an “optical m_ode.” _Th's kind of bifurca-
Benard convectior2], “printer's experiment” (directional  tion appears in different one-dimensional systems, such as
viscous fingering [3], and directional solidificatio4]. A the “printer’s instability” or dlre_ct|_0nal sol|d|f|ca_t|on. More
concept of central importance in the description of this dy-recently, we have reported a similar behavior in a new sys-
namics is the spatial phase of the pattEsh In its simplest ~ tem that we called the liquid-column array. This structure is
sense this quantitys(x,t) can be defined as the local dis- formed in the process of pouring a liquid from a horizontal

placement of the cell$u with respect to a base state nor- 0verhang, such as the lowest edge of an inclined plate or the
malized by a reference Wave|engﬂ’as bottom of a horizontal Cyllnder in which a ||qU|d film is

flowing. We have also pointed out other dynamical behaviors
1) including the phase-diffusion processes by forcing the mo-

tion of a boundary column anchored on a moving needle

(capillary contagt Here we investigate quantitatively this

It implies that wavelength variationsA/\ can be de-  dynamics and especially the coupling between phase diffu-
scribed as phase gradiertg/dx. Pomeau and Manneville sjon and the optical mode.

[5] established that usually the phase is governed by a diffu-
sion equation. Experimental confirmations of this equation
have been given by various groups and among others by Il EXPERIMENT
Wesfreid and Croquettg6] in a Rayleigh-Beard experi-
ment. Then, Cross and Brand on a theoretical point of view, Our experiment consisted of a horizontal, hollow cylinder
and Wu and Andereck on a Taylor-Couette sysi&instud-  (external radiuk=2.5 cm, length. =28 cm as in Ref[11])
ied the phase-diffusion mechanism of wavy vortex flow.supplied at both ends with liquigsilicon oil, 20 cB, at a
Then Roth and Lcke investigated the effect of boundaries constant ratg. Owing to a thin slot placed in the upper side
on the phase dynamics of pattefiid. All of these mecha- of the cylinder, the liquid overflows, runs over the external
nisms have been reviewed by Brai8]. sides, and accumulates below the cylinder where a Rayleigh-
Recently, on the printer’s instability, Fourtune, Rappel, Taylor instability occurs. Depending on the flow rate, differ-
and Rabaud9] have observed a divergence of the phaseent flowing regimes can be observed. Increasing the flow
diffusion coefficientD in the vicinity of a secondary bifur- rate, we have identified in successid®] an array of pen-
cation of the pattern called parity-breaking bifurcation. Theydant drops, an array of liquid columns, and a liquid sheet of
have interpreted this behavior by a generalization of thdriangular shape that is hanging below the cylinder. For a
phase-diffusion equation proposed by Coullet, Goldsteinlarge range of flow ratdtypically 5—25 g/$, the array of
and Gunaratngl0], in which the phase-diffusion equation is liquid columns is obtained with a well-defined periodicky
coupled with a Ginzburg-Landau equation governing theAn example of this pattern is reproduced in Fig. 1. It turns
parity-breaking amplitude. What does this behavior becomeut that\ is usually of order ten times the capillary length
with |.=(v/pg)*? (y denotes surface tensiop,mass den-
sity, andg gravity, andl.~1 mm for liquid-gas interfaces
*Present address: Service de Physique de I'Etat Condemse |ts mean value can be continuously modified by imposing the
Commissariat’ d’Energie Atomique, Centre d’Etudes de Saclay, position of two extreme columns by means of two horizontal
F-91191 Gif-sur-Yvette Cedex, France. needles in capillary contact with the column menisgLs|

b=2mul\.
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FIG. 1. Array of liquid columns observed below a horizontal
cylinder along which a liquid is flowing from top to bottom at a
constant rate. Inset: space-time diagram of the array of liquid col
umns for fixed boundary conditior{gptical mode.

(we recall that each extreme column follows the needle mo
tion).

Different dynamical behaviors of the liquid-column array
are obtained by varying the wavelengtfor the flow rateq,
both playing the role of control parameters. The phase dia
gram is reproduced in Fig. 2. A wavelength compressior
leads to coalescence phenomena between columns while
strong dilation leads to nucleation of cells. For moderate
wavelength dilations, an oscillatory state is observed ir
which each column oscillates as a whole, its motion out of
phase with that of its nearest neighbors. To follow the col-
umns’ motions, we have recorded a line of the digitized pic-
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ture taken by a video camera and stored at constant time

intervals. The line is horizontal and close to the bottom of

the cylinder. Thus, we obtain spatiotemporal diagrams suc
as the one presented in Fig. 1, which gives tke {) trajec-
tories of the columns. This regime, called the optical mode

appears for an imposed value of the wavelength higher than

a critical value(Fig. 1.

We have plotted in Figs.(d) and 3b) the amplitude and
frequency of the oscillations versus the distance to threshol
e=(N—A¢)/\. for different values of the flow ratg. The
obtained variations reveal a supercritical Hopf bifurcation
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FIG. 3. (a) Amplitude of the oscillations of the columns vs the
Histance to threshold=(\—\;)/\, for q=6.44 g/s. (b) Fre-
guency of the oscillations of the columns vs the distance to thresh-
pld e=(N—N\)/\ for different values of the flow ratq.
that confirms previous investigations on lower numbers of
oscillating columng11]. We note that in the range of flow
fpte[7—10 g/g the frequency does not depend enwhich
suggests that the motion of the columns is isochrdhe,
harmonic oscillations

Time-dependant perturbations can also be achieved by
imposing moving boundary conditions on an extreme col-
umn, where the needle in contact with this column is slaved
to a frequency generator. More precisely, the position of one
of the boundary columns is fixed, while the other one oscil-
lates following a law of the kinck=Xxq cos(2rft), wherex is
the horizontal direction. A phase-diffusion behavior is ob-
served for low forcing amplitude and at low frequeri&jg.
4(a)]. Indeed, the perturbation diffuses in the structure and is
progressively damped. When the forcing amplitude in-
creases, the diffusive regime is repla¢éd,12 by a propa-
gative regime with dilation wave emissiorf&ig. 4(c)].
These waves are characterized by a motion of a group of
cells in a direction opposite to the propagation of its bound-
aries. We have plotted in Fig. 5, the domain of existence of
each regime in the planef,(Ve), Ve=2xfx, being the

FIG. 2. Phase diagrang(\) that shows the stability range of
the different dynamic state of the arréyis the global flow rate for ~maximal excitation velocity. In this figure we see that Ve
the array of 24 liquid columns obtained for the overflowing of a should be higher than a critical velocity to launch the dilation
28-cm horizontal cylinder waves. Finally, for velocities larger than a second threshold,
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FIG. 5. Different behaviors observed with a moving boundary
X condition (sinusoidal at a given flow rate =7 g/s).

The solution for Eq(2) is

e(x,1) =g exp(— ax)exfi(wt—Bx)], ()

a=B=55 @

The experimental results faxr and 8 are presented in Fig.
6(c). These are in agreement with E@®), which confirms

with

; "/ the phase-diffusion analysis. These expressions allowed us to
T © perform measurements of the diffusion consfantL2]. Usu-
FIG. 4. Space-time diagram of the array of liquid columns with 5“ () temporal shift (s)

a moving boundary condition following a sinusoidal law
=Xg cos(2rft)  with 0.1 cmkxy<0.5cm; f=0,1Hz at

g=7.3g/s. Xisthe position and is the time that runs toward the 1 1

bottom. (a) Before the appearance of the optical modé&) In 2 3 §
the presence of the optical mode(c) Propagative regime with 2 4 21 '
dilation waves emissionsxg>0.5 cm). N
-3 T T T T T 0 T T T T
we observe only nucleations and coalescences of cells with * * * 2f ° ° Y vem "
no propagation anymore. (a) (b)
We now focus the study on the phase dynamics. If we
come back to the space-time diagram presented in Fay. 4 070
(low values ofxy andf), we can see a damping of the oscil- 050 ? ';%

lations, with a progressive temporal phase shift wikein-

creases. The local amplitude of the forced oscillathdix) ] wendpinemt
and the local value of the temporal phase shiftx) are 100

plotted as a function of the distangeto the moving bound- -L10

ary [Figs. 6a and €b)]. In both cases, the linear behavior o

attests to a phase-diffusion mechanism governed by the fol- 160 L35 1o

In (frequency)

lowing diffusion equation(2) in which D is the phase- ©
[

diffusion coefficient:

2 FIG. 6. (a) Spatial dependence of the force amplitudé) Spa-
‘?_‘P: D a_‘P (2) tial dependence of the temporal shiftic) « and 8 evolution for
ot X% 0=6.88g/s; X,=0.5cm.
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FIG. 7. Phase-diffusion coefficiem evolution at different flow ratesq) with e=X—A;/\.. A, is the critical wavelength at the
optical-mode appearance.

ally, the obtained values are of the order 10— 26/sgrwhich  !!l. MODELIZATION OF THE PHASE-DIFFUSION

compared to the viscosity of the oil (0.2 és) are one hun- COEFFICIENT JUMP

dred times higher. We have improved these first measure-

ments by focusing our attention on the dependencé® of To explain the previous behavior obtained for the phase-
upon the mean wavelength Indeed, the position of one diffusion coefficient, we consider two coupled phase and am-
boundary column is fixed while the other follows a sinu- plitude equations of the Coullet-loss typk4]. This analyti-
soidal law. In that way, we are able to impose the meartal treatment confirms this jump @ when the coupling
uniform wavelength between the two boundary columns petween the phase-diffusion mechanism and the optical
For wavelength values higher than a critical value, the optimode appears.

cal mode (high frequency is coupled with the phase-  The one-dimensional periodic pattern is described by the
diffusion mechanism(low frequency [Fig. 4b)]. In this  even functionUy(x+ ¢) that should describe the shape of
case, we determineD by using the central positiothalf  the interface. In our case, this pattern bifurcates to an oscil-

sum of the two extreme positionef each column to extract |atory state through a Hopf bifurcation characterized by a
the local amplitude of the forced oscillations. The resultstemporal pulsationn=27f. In the vicinity of this bifurca-

obtained in four experiments at different flow rates are pre-

sented in Fig. 7. It turns out that for a given flow rale,is

constant before the optical-mode appearance and jumpstoa <D> (cmzls)
new value when the coupling between the optical mode and
the phase-diffusion mechanism appears. On the other hand, 247
as is shown in Fig. 8, the constant value @fbefore the Pl
optical-mode appearance increases with the flow rate and
reaches a saturation value. After the appearance of the opti- 27 } {
cal mode,D is a constant whatever the flow rate. This be- 18 4 A
havior differs from that observed with other cellular systems. { I }>
We can mention, for example, the case of the printer’s insta- e I
bility, where D(\) exhibits an Eckhaus scenario when one 144 i

increases for low capillary numbers. On the other hand, for before the "optical mode"
capillary numbers higher than a critical value, a divergence 27
of the coefficientD is observed for increasing wavelength 104
[9]. The same behavior was observed by MishhaB] in ¥

numerical simulations of directional solidification in liquid 8 6 4 8 9
crystals. Indeed, concerning our system, the array of liquid q = flow rate (g/s)
columns exhibits neither Eckhaus scenario at low flow rates

nor divergence at high flow rates, in the range of parameters FIG. 8. Phase-diffusion coefficient averagp) evolution vs
that we can explore. flow rate (@) (below) and after the optical threshold.

after the appearance of the "opti}:al mode'}
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tion, the pattern can be described UGyas Xt —-2u—Q?D,  aQ’D,  —iQy X
Y —02p. —
U(x,t,0,A)=Ug(x+ @) +expli ot A(x, 1) E(x+ ) +¢.C., | = aQ D QDp=c 0 4
) Pt 0 —2iupQ -Q%D/ \¢
whereé(x+ ¢) is periodic inx and corresponds to the most X
unstable mode at the threshold afvds the complex ampli- =M| ¢]. 9
tude of the bifurcated solutiofoptical mode [14]. So, U 1)

depends on the two quantitidsand ¢, which are supposed _
to vary slowly in space and time. The dynamicdbfs then  The characteristic polynomial to obtail(Q) is given by
governed by these quantitied, and ¢, which obey two

coupled equations obtained by symmetry argume¢ats. P (0D + —2u+Q°Dato —aQ’Da
These two coupled equations that describe the dynamics of (Q.o)==(Q o) Q%D Q°Dpt+ o
the phasep and of A are
+2unaQ*Day=0. (10)
9°A
OA=uA+DA(l+ia) W—(lﬂt iB)|AI2A We simplify the problem again by asuming that for low cou-

pling, D is only slightly modified and> =D + 6§D with 6D

e <D. Neglecting thesDQ? terms comparing to th€@’D
—(y+id) X A, (6a) ones, we finally obtaiD
5 — ) ~ anyDa
; 5%, aAA— aA . A 6 D=D+4éD=D+ =5~ (13)
W= 5 T x ax ¢ ox A

with 6D containing some corrective terms proportional to
All the parametersy, B, v, 6, 7, §, and u are real.u is @  the coupling coefficients. As announced aboBeis modi-
control parameter that has the same destabilization effect agd just above the threshold, in agreement with our experi-
the phase gradienb is the phase-diffusion coefficient, and mental data. Its “jump” is proportional to the produatyy
D4 is another diffusion coefficient associated with the am-of the coupling coefficients, that coupla|, ¢, and y.
plitude A. In view of the frequency measurements presented
in Fig. 3(b), we have allowed thaB=0, and for simplicity IV. CONCLUSION
we have assumed thg@t= 6= ¢=0.

Now we compare two states. The first one is the base state To conclude, we have identified a specific behavior for
just before the optical-mode appearange<{(0) character- the phase-diffusion coefficie® in a cellular system. This
ized byA=0. The temporal decrease of a phase modulatiodpehavior is unusual here becaudeloes not follow classical
defined as exQx)exp(ot) will lead to o= —DQ?, whereD  scenarios when increasing the pattern wavelength. We find
is the diffusion coefficient with no optical mode. The secondneither Eckhaus behavior nor divergence with the wave-
state is the one obtained just above the optical-mode thresktength.D keeps a constant value and jumps to a new differ-
old (u>0), whereA differs from zero. More precisely, the ent constant value when the wavelength becomes larger than
stationary state that represents a uniform optical mode is de critical value where the optical mode appears. This behav-

fined by the system ior has been recovered by an analytical treatment of Coullet-
loss equations, the jump & being proportional to a com-
0=puA—|AJ?A, (79 bination of three coupling coefficients. A direct numerical
investigation of this effect is under progress.
A=pee'?, po= i, This unusual behavior db is intriguing. The fact thaD

is nearly constant below threshold is reminiscent of the be-
havior of the oscillatory pulsatiomw that is also independent
of the mean wavelength. Both observations are consistent
with the idea that the interaction between columns could be
governed by a harmonic potentighnharmonicity effects

¢=0, =const=0. (7b)

We consider the following perturbation:

_ should therefore be removed in the model of Ré&g]). In
A \/;[1+X]’ comparison to other systems, the absence of Eckhaus sce-
0+0, 0. ®) nario and of parity-breaking induced divergence could be

explained by the occurrence of nucleation and coalescence of
cells that occur very easily in this system and may hide these

Therefore, we have to deal with three coupling variables: th?wo behaviors

amplitude variationy, the temporal phase of the oscillations
¢, and the spatial phase of the cellular structgreThe
damping of a phase modulation ekpX)exp(ot) will give us
the effective diffusion coefficienb irlthe presence of the This work has benefited from a grant from Centre Na-
optical mode by the relationship= —DQ?. The linear form  tional d’Etudes Spatiale$CNES. We thank J. Lega for
of our system becomes valuable discussions.
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