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Abstract. The drying of colloidal films usually leads to mechanical instabilities that affect the uniformity
of the final deposit. The resulting patterns are the signature of the mechanical stress, and reveal the way
the system consolidates. We report experimental results on the crack patterns induced by the drying of
sessile drops of concentrated dispersions. Crack patterns exhibit a well-defined spatial order, and a regular
temporal periodicity. In addition, the onset of cracking occurs after a well-defined elapsed time that depends
on the mechanical properties of the gel, and on the drying kinetics. The estimation of the time elapsed
before cracks form is related to the elastic properties of the material. This is supported by quantitative
measurements using indentation testing and by a simple scaling law derived from poro-elastic theory.

1 Introduction

Most coatings are made by depositing a volatile liquid
that contains dispersed colloidal particles. The liquid is
then evaporated until a dry film is obtained. High me-
chanical stresses usually give rise to major defects such
as cracks or debonding [1–3]. In practice, the control of
these phenomena is crucial for all the coating technolo-
gies since they significantly alter the final film quality,
and consequently need to be avoided. However, such de-
fects are characteristic of the mechanical properties of the
material and the conditions of consolidation. In that way,
crack pattern can be useful in Art field where craquelures
provide informations on the materials (pigments) or the
painting techniques used by the artists [4]. In addition re-
cent interest has emerged in interpreting solute patterns of
evaporated biological fluid droplets for medical screening
and diagnostic purposes [5] or in forensic [6].

In this article, a series of experimental work supported
by poro-elasticity modeling report the occurrence of crack
formation induced by the drying process of concentrated
silica dispersions. The experiments are carried out in the
geometry of an isolated drop deposited onto a flat and
non-porous surface. Despite of the complexity of this ge-
ometry related to the existence of a three-phase line and
the thickness gradient, reproducible experiments in direc-
tional propagation of cracks are permitted. In particular,
crack patterns exhibit regular spatial, and temporal peri-
odicity. The cracking onset occurs after a clearly defined
elapsed time, that depends on both the silica material,
and the drying kinetics. As a result the elastic modulus of
the gel phase at onset of cracking can be determined, and
compared with measurements using indentation testing.
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2 Methods

Experiments are performed with concentrated aqueous
dispersions of charged silica particles Ludox SM-30,
HS-40, and TM-50 commercially available from Sigma-
Aldrich. The main properties of the dispersions are re-
ported in table 1. The polydispersity index is of the or-
der of 0.15. The pH is about 9, so the particle surface
bears a high negative charge density. In the absence of
evaporation, the stability of an aqueous colloidal disper-
sion is governed by the interparticle colloidal interaction,
i.e., by the competition between van der Waals attraction
and electrostatic repulsion [7,8]. During evaporation, col-
loidal particles aggregate until a irreversible solidification
of particles into a rigid connected network is formed. The
gelation process is well described in terms of percolation
theory [9].

In the following SM-30 is used without treatments,
while HS-40, and TM-50 are diluted using pure water
(milliQ quality, resistivity: 18MΩcm) at pH = 9.5 by ad-
dition of NaOH. A weight ratio of 90/10 (HS-40/water)
and 75/25 (TM-50/water) are chosen to obtain similar
initial volume fraction φ0 = 0.20.

The desiccation geometry used in the experiments is
that of a drop, with a radius R0, deposited on carefully
cleaned microscope glass slides. Before use the substrates
are carefully cleaned with ethanol, then kept dehydrating
in an oven at 100 ◦C. This thermal treatment, in particular
the duration spent at high temperature (ranging between
a few minutes and a few days), allows us to vary the con-
tact angle in a wide range, from θ0 = 10◦ to 50◦. Under
the condition 2R0 < κ−1 =

√

γw,a/ρg ∼ 3mm, that is the
water/air surface tension γw,a dominates the gravity, the
initial sessile drop is a spherical cap shape (side view in
fig. 1a).
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Table 1. Main properties of silica dispersions used in this pa-
per. The particle diameter is noted 2a (from ref. [10] (p. 324)).
Eind

p : elastic moduli of different silica gels (measurements us-
ing indentation testing at time tf ). Ep: elastic moduli deduced
from eq. (5). Drying conditions: RH ∼ 50% at room tempera-
ture.

Silica 2a φ0 ρ Eind
p Ep

dispersion (nm) (kg m−3) (±0.3 GPa) (±0.4 GPa)

SM-30 10 0.15 1180 3.2 3.75

HS-40 16 0.20 1250 2.5 2.85

TM-50 26 0.20 1260 2.0 2.25

Fig. 1. (a) Image in side view just after the colloidal drop
deposition on a glass microscope slide (initial volume fraction
is φ0 = 0.20; initial contact angle θ0 = 30◦, and drop base
diameter 2R0 = 3 mm). (b) Side and top view of the sessile
drop taken 15 min after deposition (HS-40 dispersion, drying
conditions are T = 20◦, RH = 50%). A solid gelled foot builds
up near the three-phase line, while the central part is fluid and
shrinks. (c) Radial σrr and ortho-radial σθθ components of the
stress field in a part of the solid foot at the drop periphery in
cylindrical coordinates.

The setup is placed inside a chamber with a relative
humidity RH controlled by a variable flow of nitrogen
bubbling in a water bath. The flow is stopped before the
beginning of the experiment to prevent any convection
inside the chamber. In particular, low relative humidity,
RH = 20±2%, is controlled using a saturated salt solution
(potassium acetate) at room temperature.

Drop profiles and crack patterns formation are inves-
tigated using video recordings and image analysis. Side
views are mainly used to measure the contact angle of
the drop deposited on the substrate: the contact angle is
found to be constant in a given experiment.

The elastic moduli Ep of gelled films are measured us-
ing indentation testing (CSM Instruments Micro Indenta-
tion Tester) with a spherical indenter [11]. The indenter,
initially in contact with the surface of the gel, is driven in
the material until a maximal load Fmax = 100mN with
a loading speed 100mN/min. The maximal force is hold
during 30 s. Then, the load is decreased until zero with

Fig. 2. Typical load-displacement curve resulting in the in-
dentation force F as a function of the penetration depth p.

the same speed. The standard way to estimate the elas-
tic modulus from the indentation load-displacement curve
uses the initial slope S of the unloading curve (fig. 2).
Measurements are performed on a thick films in the ab-
sence of de-adhesion film/substrate. The film thickness is
at least 10 times larger than the maximum value of the
penetration depth of the indenter: in this way the mea-
surements are not influenced by the substrate. The elastic
modulus measured using indentation testing will be noted
Eind

p in the following.

3 Results

3.1 Drying a sessile drop of a concentrated colloidal
dispersion

In our experimental situations, evaporation is limited by
diffusion of water into air. Contrasting with the case of
a pure water drop that recedes with a constant contact
angle, a drop of a concentrated colloidal dispersion recedes
with a constant contact base. Thus, as long as it is the
dominant mechanism, the evaporation rate VE of a sessile
drop expresses as [12]:

VE =
Dw

R0

nwsat

n1
A(θ0)(1 − RH), (1)

where nwsat is the water concentration in the vapor at
the air-water interface, and n1 is the number of moles per
unit volume in liquid water; A(θ0) is a numerical factor
related to the shape of the isoconcentration curves of water
in air [13] (typically A(θ0) varies from 1.3 to 1 when θ0

increases from 20◦ to 90◦); Dw is the diffusion coefficient
of water into air (typically Dw = 25 × 10−6 m2 s at room
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Fig. 3. (a) Time variations of the width ld of the gelled foot to
the initial radius R0 of the sessile drop. Measurements (dots)
are well fitted by eq. (2) (line). (b) Final width lfd of the gelled
foot to the radius R0 as a function of the initial volume fraction
φ0; line is a square root power.

temperature). Equation (1) is usually valid for colloidal
dispersions as long as the liquid/air menisci stay at the
surface of the drop. Moreover the lifetime of a sessile drop
is quantitatively described by the drying time tD defined
as tD = R0

VE
. Physically, this timescale corresponds to the

complete drying time of a pure water sessile droplet of
contact base radius R0.

As soon as evaporation begins, particles accumulate
near the three-phase line: this contact line is strongly
pinned on the substrate. As a result, a gelled foot forms
at the drop periphery. It progressively extends while the
fluid part regularly shrinks [1] (fig. 1b). Using mass con-
servation and assuming a wedge shape for the foot, the
width ld of the deposit, at time t, can be estimated as [2]

ld(t)

R0
=

√

φ0

4φg
[1 − (1 − t/tf )3/4]2/3, (2)

where φg is the packing fraction in the deposit and tf is the
elapsed time before the gelled foot ceases to grow. Initially
there is no ring, and at time tf the foot contains all the
non-volatile solutes. Measurements of the foot extent with
time are well fitted by eq. (2) as shown in fig. 3a. This foot

exhibits a final width lfd that approximately increases with
the square root of the initial particles volume fraction, φ0,
in accordance with eq. (2) (fig. 3b).

3.2 Channeling cracks formation

3.2.1 Elapsed time for crack formation

During the gelled foot extent, large drying stresses build
up as a result of pressure gradient in the pore liquid.
Since the film is free to contract vertically in response
to stress, the shrinkage at the free surface is frustrated
by the adhesion on the substrate. The threshold value is
correlated with the maximum pressure that can be sup-
ported by an array of particles, that is the capillary pres-
sure Pcap ∝ −

γw,a

rp
∼ −107 Pa, where rp is the pore radius,

close to the particle radius a.

At time tc, a first crack nucleates from the three-phase
line and propagates along a radial path in the gelled foot
(first image in fig. 4). A simple view of the gelled foot
points out why the crack propagates along a radial path.
In this way, let us compare the components of the me-
chanical stress field in an idealized thin ring of constant
thickness h (fig. 1c). The equilibrium of the correspond-
ing internal forces in a thin ring implies σθθ

σrr
∼ r

ld
≫ 1

with σrr and σθθ, respectively, the radial and ortho-radial
components of the stress field in cylindrical coordinates.
Thus the main component of the stress in the ring is the
ortho-radial one. As a result the crack path is radial, and is
aligned perpendicular to the retreating solidification front.

The time tc, that is elapsed before cracks propagate in
the gel, appears to be a well-defined quantity as shown by
the statistic in the inset of fig. 5(a); these measurements
are performed on drying drops under given drying condi-
tions (RH, T ) and for similar sessile drops (R0, θ0). In ad-
dition the mean elapsed time for crack formation appears
to be dependent on the mechanical properties of the gel.
In particular, experimental results show that this elapsed
time is longer for gels exhibiting lower elastic modulus
(fig. 5).

Once the first crack forms in the gelled foot, a pat-
tern of radial cracks build up all around the drop edge
during a duration ∆t. Figure 4 shows a typical sequence
of cracks formation during the drying process of a sessile
drop in room conditions. The resulting pattern exhibits
well-defined periodicity in space and in time.

3.2.2 Spatial periodicity

The well-defined crack spacing, λ, is reported as a function
of the foot height ec, defined in fig. 6 (inset). The quan-
tity ec depends on the contact angle of the drop on the
substrate, and consequently is controlled by modifying its
surface. Measurements highlight that the crack spacing,
λ, linearly increases with the foot height, ec, in the range
of thickness studied [14]. Then, the array of radial cracks
propagates during the gelled foot extent.

3.2.3 Temporal periodicity

The formation of cracks can be experimentally pointed out
by the space-time diagram presented in fig. 7. Such a di-
agram is constructed by recorded successive radial crack
formation with time. The horizontal axis stands for the
angular position of a crack whereas time runs toward the
bottom in the vertical axis. The constant slope in the dia-
gram (red dashed line) suggests that the period δt between
two consecutive cracks is approximately constant for given
drying conditions.

Overall, the crack distribution reveals a complex stress
field in the material. Since a single radial crack is not suf-
ficient to release all the stress in the material, the spatial
and temporal periodicity of the crack network strongly
suggest that the mechanical stress continues to build up
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Fig. 4. Sequence of cracks formation during the drying process of a sessile drop of a silica dispersion (HS-40 dispersion,
φ0 = 0.20; θ0 = 30◦; 2R0 = 4 mm; RH = 50%): a regular pattern of radial cracks forms all around the gelled periphery, while
the central part of the drop is still fluid; here tc = 15 min and ∆t ∼ 75 s. Then cracks propagate as and when the solidification
front limiting the gel phase from the liquid phase propagates toward the drop center. When the radial cracks reach the center
of the drop, ortho-radial cracks connect to the radial crack pattern; finally de-adhesion can take place.

Fig. 5. (a) Elasped time before the first crack forms for various
silica gels. Inset: statistics on elapsed time for crack formation,
tc, for sessile drops of HS-40 dispersion. (b) Elastic modulus for
various silica gels; Eind

p is obtained using indentation testing
at time tf , and Ep is deduced from eq. (5).

Fig. 6. Well-defined crack spacing. The crack spacing λ is
plotted as a function of the maximum foot height ec measured
when cracks form (HS-40 dispersion, base diameter 4 mm and
RH = 50%). The straight line is the mean value of λ

ec
.

during the radial cracks formation. Such a dependence was
approached by the coupling between stress relaxation and
evaporation through new surfaces created when cracks ap-
pear [15].

3.2.4 Effect of the drying kinetics on the crack patterns

The spatial periodicity of the crack patterns, and the
elapsed time for crack formation strongly depend on vari-
ous physical parameters such as the physicochemical sys-
tem [16], the substrate [17,18], and the drying condi-
tions [19]. In particular the relative humidity of the sur-
rounding air is one of the easiest parameters to be con-
trolled. In this way, sessile drops exhibiting same initial
liquid volume and contact angle were dried at different rel-
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Fig. 7. Well-defined temporal periodicity. Left: image of a drop
exhibiting radial crack pattern all around its periphery (HS-40
dispersion, base diameter 4 mm and RH = 50%). When a ra-
dial crack forms, its intersection with the dashed circular line
is recorded in time: it gives the period δt between two suc-
cessive cracks. Right: resulting spatio-temporal diagram: each
grey vertical line corresponds to the formation of a radial crack;
the period between two consecutive cracks is δt ∼ 3 s.

ative humidity RH; as a result different crack patterns are
displayed in fig. 8: the number of radial cracks distinctly
decreases when the drying rate is lower. In addition, an
increase of the relative humidity is accompanied by an
increase of the width of the gelled foot at time cracks
form: ld(tc) ≡ lcd. In particular, for high relative humidity
(RH > 90%), the whole drop is gelled before cracks form.
Moreover, measurements of the elapsed time for crack for-
mation are plotted as a function of the relative humidity
in fig. 9: the elapsed time tc appears to increase with the
relative humidity.

Finally the effect of the drying rate on the crack
pattern can be qualitatively investigated by drying two
droplets that are placed on a substrate at distance
from each other. Evaporation rate of droplets interferes
strongly, affecting locally the crack patterns and the final
shape of the deposits left (fig. 10) [20].

3.2.5 Discussion

The elapsed time for crack formation increases when the
gel elastic modulus is lower (fig. 5). A simple model, based
on the drying stress build-up, suggests this current.

In the gel phase, the spatial variation in pore pressure
can be estimated using the theory of poro-elasticity [21];
this theory is based on linear constitutive relations coupled
with Darcy law for fluid flow in the porous medium. At a
fixed distance r from the drop center, the local thickness
of the gelled foot is h(r) ≡ hr, and the local liquid pressure
p in the pores obeys a one-dimensional diffusion equation
along the z vertical direction

∂p

∂t
= Dp

∂2p

∂z2
, (3)

where Dp =
kEp

η0

is the diffusivity, or consolidation coeffi-

cient, with Ep the elastic modulus of the gel (assumed to
be constant), and η0 the viscosity of the solvent flowing

Table 2. Elastic moduli Eind
p of HS-40 gels dried for three

relative humidities RH. Measurements are performed by in-
dentation testing at time tf .

RH Eind
p

(±2%) (±0.4 GPa)

20 4.2

40 2.8

86 1.5

through the porous gel of permeability k. For randomly
packed monodispersed spheres k is given by the Carman-

Kozeny relation: k = 1
45

(1−φg)3

φ2
g

a2, where φg is the par-

ticle volume fraction of the gel phase (φg ∼ 0.6) and
k = 2.3 × 10−19 m2. For film thicknesses ranging between
100 and 500µm, a typical rigidity of the porous network is
measured just after cracks formation (Ep = 1 GPa [22]).
Moreover a steady rate of evaporation VE is assumed at
the upper surface of the gel z = hr: the Darcy law gives
the gradient of liquid pressure at the upper surface of the
gel

∂p

∂z
|z=hr

= −
VEη0

k
. (4)

Equation (3) together with the boundary condition (4)
give the pore pressure distribution p(z, t) [9]. Indeed, con-
sidering the gel initially uniform without pressure gradi-
ent (p(z, t = 0) = p0), the stress in the plane of the film
expresses as: σ(z, t) ∝ p0 − p(z, t). In particular, eqs. (3)
and (4) show that the pore pressure linearly increases with
time. At the upper surface of the film the drying stress
simply expresses as σ(hr, t) ≈ Ep

tVE

hr
. When the drying

stress exceeds a threshold value, says at time tc, it is re-
leased by the formation of cracks.

We assume that cracks form as soon as the liquid pres-
sure in the pore is close to Pcap, that is as soon as the
drying stress reaches a value close to −Pcap: σ(hr, tc) ≈
−Pcap. As a result eqs. (3) and (4) allow us to express tc
as

tc ≈
(−Pcap)

Ep

h

VE
, (5)

where h is a typical thickness of the gel, assumed to equal
the foot height ec in the following.

Thus, estimating tc, eq. (5) gives an order of magni-
tude of the elastic modulus of the gel phase at the cracking
onset. In this way values of the elastic modulus, Ep, de-
duced from eq. (5) are shown in table 1, for three silica
gels at RH ∼ 50%. These estimations are in good agree-
ment with measurements using indentation testing, Eind

p ,
despite of the inaccuracy (fig. 5b).

In addition, the elastic moduli Eind
p of dried gels dried

are reported in table 2 for different drying conditions, e.g.

RH. These measurements were obtained using indenta-
tion testing. Putting the value of Eind

p in eq. (5) allows
us to highlight that the elapsed time for crack formation
increases with the relative humidity of the surrounding air
(fig. 9).
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Fig. 8. Crack patterns in different colloidal sessile drops as a function of the drying conditions, e.g., RH. Images in top view
were taken just after cracks formation, and corresponding sketches in side view (HS-40 dispersion, initial contact angles are 40◦

and each drop base diameter is 3 mm). RH: (a) 20%; (b) 40%; (c) 60%; (d) > 90% (in the last case, cracks are formed when
the whole drop is gelled).

Fig. 9. Left axis: measurements of the elapsed time for crack
formation tc as a function of the relative humidity RH. Right
axis: the quantity (−Pcap)/Eind

p .ec/VE is plotted as a func-

tion of the relative humidity RH; Pcap ∼ −107 Pa, Eind
p is the

elastic modulus of the gel phase measured using indentation
testing at time tf (table 2).

Fig. 10. Interaction of two identical drying droplets that are
placed on a substrate at distance from each other; silica disper-
sion Ludox HS-40 dried at room temperature and RH ∼ 40%.

Finally, the influence of the drying rate on the crack
patterns suggests that the mechanical properties of the gel
are strongly affected by the drying kinetics (fig. 8). This
suggests that the internal structure is probably modified
by the consolidation kinetics, also the organization of the
particles in the gel that is formed [23].

4 Conclusion

In this paper, we have studied some mechanical instabili-
ties induced by the drying process of sessile drops of con-
centrated silica dispersions. In particular, the formation
of cracks exhibits a well-defined spatial pattern spatially
and temporally. These results appear to be generic in dry-
ing drop of silica sols, and can also be observed in drying
drops of colloidal dispersions of rigid latex particles. More-
over, it appears that the features of the crack morphologies
provide information on the mechanical properties of the
system and the way it is consolidated. Indeed, the onset
of cracking occurs after a well-defined elapsed time that
depends on the mechanical properties of the gel, and on
the drying kinetics. The estimation of the elapsed time
for crack formation is related to the elastic properties of
the material. This is supported by quantitative measure-
ments using indentation testing, and by a simple scaling
law derived from poro-elastic theory. However this simple
model does not allow us to explain the well-defined period-
icity in space, and in time of the crack pattern, but only
highlight the stress build-up all along the crack pattern
formation.

We are grateful to the late C. Allain.
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