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The buckling and invagination process during
consolidation of colloidal droplets

F. Boulogne, F. Giorgiutti-Dauphiné and L. Pauchard*

Drying a droplet of colloidal dispersion can result in complex pattern formation due to both development

and deformation of a skin at the drop surface. The present study focuses on the drying process of droplets

of colloidal dispersions in a confined geometry where direct observations of the skin thickness are allowed.

During the drying process, a buckling process is followed by a single depression growth inside the drop. The

deformation of the droplet is found to be generic and is studied for various colloidal dispersions. The final

shape can be partly explained by simple energy analysis based on the competition between bending and

stretching deformations. Particularly, the final shape enables us to determine precisely the critical thickness

of the shell for buckling. This study allows us to validate theory in 2D droplets and apply it to the case of 3D

droplets where the thickness is not accessible by direct observation.
1 Introduction

Drying droplets of complex uids such as polymer solutions or
colloidal dispersions involves a large number of microscopic
phenomena: solvent diffusion, transfers at the vapor/medium
interface, skin formation and then skin deformation. Over the
last decade, there has been a great deal of scientic and tech-
nological interest in studying the ow and deposition of mate-
rials in drying droplets.1 As an example, the fabrication of dried
milk requires the transformation of liquid droplets into a
powder form using nozzles; also the liquid food concentrate is
atomized into droplets using spray-drying processes.2–4 Partic-
ularly functional properties have to be controlled such as dis-
persibility and solubility that are essential for the capability of
the powder to be re-hydrated. Therefore, the droplet
morphology or the droplet size changes have to be controlled
and the effects of various initial or environmental conditions on
a single droplet development have to be understood.

The concentration at the free surface induced by desiccation
can cause skin formation of the lm5 and is oen responsible
for strong distortions of the droplet.6,7 Deformation of nearly
spheroidal droplets was considered in the case of polymer
solutions6 or colloidal dispersions;8,9 the various shapes have
been related to the buckling process of a skin formed at the
drop surface. Such deformations are not specically related to
drying droplets and can be observed at different scales: capsules
formation10,11 or lock particles formation when shell buckling
that forms spherical cavities is controlled.12 However in the
spheroidal structure the thickness of the skin is not directly
accessible generally. Thus, we focus here on a single drop of a
mpus Univ, F-91405, Orsay, France, EU.
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colloidal dispersion conned between two circular glass plates,
which is le to evaporate (see Fig. 1). In this conguration,
diffusion processes and drying kinetics have been carefully
studied.7,13–17 Moreover this geometry allows a direct observa-
tion and quantication of the skin growth near the drop–air
interface by imaging analysis. When its structural strength is
sufficient, the skin can withstand internal stress and can be
regarded as an elastic shell. By appropriate selection of physical
quantities, constrained shrinkage can result in buckling insta-
bility, causing the inversion of curvature of the circular shell as
shown in the sequence in Fig. 2a; the resulting single depres-
sion grows and is continued by an invagination tube pene-
trating inside the drop. The complex pattern formation is
studied for various colloidal dispersions and drop sizes. The
generic shape is explained by simple energy analysis. Particu-
larly, the critical thickness of the shell for buckling is precisely
determined by the nal shape of the drop. In addition, this
study allows us to validate theory in 2D droplets and apply it to
Fig. 1 (a) Set-up: a droplet of solution is sandwiched between two circular glass
slides in the side view (left); the cell is illuminated by transmitted light. (b) Sketch
in the top view of a quarter of cell showing the formation of densely packed
particles at the liquid–vapour interface during solvent removal.
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Fig. 2 (a) Digitized images taken during a typical deformation of a drop of
colloidal dispersion (Ludox HS-40 (diluted), R0 ¼ 2.9 mm, Rs ¼ 8 mm). (b) Time
variation of the relative volume of the drop (measurements); at the buckling
onset, an indentation depth can be defined and can characterize the growth of a
depression. (c) Superposition of drop profiles during the drying process: duration
elapsed between two images is 1 minute. (d) Time variations of periphery length
(crosses) and surface area (circles) of the drop; the inversion of curvature takes
place at time tB, says the buckling time. The dashed line corresponds to the linear
decrease of the drop periphery length with time. (e) Time variations of the
dimensionless periphery length for various drops.

Table 1 Main characteristics of the samples considered in the experiments:
particle diameter 2a (and polydispersity is known), particle volume fraction f,
permeability of the gel k, and critical pressure drop across the shell at the onset of
buckling DPB, deduced from the measurements

2a (nm) f k (�10�18 m2) DPB (kPa)

Ludox HS-40 15 � 2 0.22 1.2 9
Ludox HS-40 (diluted) 15 � 2 0.10 1.2 9
Ludox TM-50 (diluted) 22 � 2 0.12 2.4 5
Nanolatex 25 0.25 4.4 3
Green uo silica 50 � 3 0.10 12 0.8

Paper Soft Matter
the case of 3D droplets where the thickness is not directly
accessible. The case of three-dimensional droplets and large
Péclet numbers corresponds to common industrial processes
(spray-drying consisting of rapidly drying aerosols to manufac-
ture dry powders).
Fig. 3 Mechanical stress field in cylindrical coordinates (left part of the sketch)
and definition of physical quantities in the drying droplet (right part of the
sketch).
2 Experimental

Our experiments were performed with various stable aqueous
dispersions (see Table 1). (i) silica particles Ludox HS-40 (solid
This journal is ª The Royal Society of Chemistry 2013
volume fraction f ¼ 0.22, particle diameter 2a ¼ 15 � 2 nm,
polydispersity index�0.16) and diluted dispersion of Ludox TM-
50 (solid volume fraction f¼ 0.12, particle diameter 2a¼ 22� 2
nm, polydispersity index �0.2 (ref. 18)) from Sigma-Aldrich; (ii)
nanolatex particles, polystyrene (solid volume fraction f¼ 0.25,
particle diameter 2a ¼ 25 nm, glass transition temperature ¼
100 �C) provided by Rhodia Recherche (Aubervilliers, France);
(iii) Green uorescent silica particles sicastar-greenF (solid
volume fraction f ¼ 0.10, particle diameter 2a ¼ 50 � 3 nm,
polydispersity index �0.2, absorbance: lexcitation ¼ 475 nm and
emission: lemission ¼ 510 nm) commercially available from
Micromod.Most of the experimentswereperformedwith the last
system. The colloidal particles are adequately polydispersed to
avoid crystallization. In addition, during the drying process, the
particles density increases resulting in the formation of a gel
phase, dened as a porous matrix saturated with water. Dilution
of dispersion was possibly done by adding deionized water
(quality Milli-r). The conned geometry consists of a thin cell
made of two circular, parallel and horizontal glass slides of
radius Rs (Fig. 3). It has been shown that the drying kinetics can
be controlled by the slide size and is not strongly affected by the
relative humidity of the surrounding;13 experiments were con-
ducted at room temperature and relative humidity (�40%). The
slides are lubricatedwith a thinlmof silicon oilV1000 (viscosity
1 Pa s). This treatment prevents the slides from the pinning
process of the contact line.7 A drop of the dispersion is placed on
the bottom substrate using amicropipette. Then the upper glass
slide is carefully placed to squeeze the drop (see Fig. 1a). The gap
Soft Matter, 2013, 9, 750–757 | 751



Fig. 4 (a) Fluorescence images in the top view (dispersion of green fluorescent
silica particles). (b) Corresponding intensity profiles across the air–drop interface,
along the dashed line in (a); in the referential bound to the drop–air interface, the
increase of the envelope thickness h(t) can be measured with time. (c) Menisci at
the drop edge in the side view z ¼ 0 and z ¼ d denote positions with the
substrates (d ¼ 100 � 5 mm); the contact angle of the aqueous dispersion on the
surface is close to 60� . (d) Ratio of the envelope thickness h to the drop radius R, as
a function of time: crosses are measurements deduced from the intensity profiles
in (b) (R0¼ 2.9 mm, Rs¼ 8mm), the dashed line is theoretically in accordance with
expression 1 in the isotropic regime.
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d between the slides is controlled using three thin spacers of
controlled thickness. In all experiments the radius of the glass
slides is kept to Rs ¼ 8 mm and the gap is constant, d ¼ 100 � 5
mm. During the drying process, images of the drop evolution are
recorded at different times and show a dark ring corresponding
to the meniscus at its periphery as shown in Fig. 2a. The high
contrast of the images allows an accurate detection of the drop
edge and provides variations with time of both the periphery
length and surface area of the drop. Fluorescent microscopy was
performed using a DM2500 Leica microscope with objective 5�
and 50�magnications for global view (drops deformation) and
close-up view (envelope thickness measurements) respectively.
Themeasurement of the size of the densely packed region at the
drop periphery, envelope thickness, has been investigated by
uorescence microscopy (see Fig. 4). Focusing on the air–drop

interface, in themiddle of the cell (z ¼ d

2
in Fig. 4a), the size of the

envelope thickness, h, can be estimated from the uorescence
intensity prole with an accuracy of 5 mm (Fig. 4b).
3 Results

The deformation of the drop during the drying process exhibits
different congurations as shown in the sequence in Fig. 2a and
in the superposition of the drop proles in Fig. 2b. The
successive congurations adopted by the drop are driven by the
volume decrease that is induced by solvent removal. In the rst
stage the drop progressively shrinks with solvent evaporation
(Fig. 2a(1) and (2)). Then, contrasting with the case of a pure
solvent, the droplet stops shrinking isotropically: a sudden
inversion of curvature occurs (Fig. 2a(3)). Consequently, the
752 | Soft Matter, 2013, 9, 750–757
depression is continued by an invagination tip that deepens
with time (Fig. 2a(4) and (5)) until the formation of a bean-
shaped material that cracks as shown in Fig. 2a(6)). These
congurations are detailed in the following. Most of the quan-
tities used are shown in Fig. 3.
3.1 Isotropic shrinkage and shell formation

During the drying process, the gas that escapes from the liquid–
air interface is driven outward from the cell by diffusion.13

Direct observation of the drop evolution with time shows a
progressive and isotropic shrinkage in the rst stage (Fig. 2a
(from (1) to (2)), Fig. 2b): this rst stage is named as congu-
ration I. As a result both the periphery length and surface area
decrease steadily with time7 (Fig. 2d). In the following we
suppose that the radius decreases linearly with time as: R(t)¼ R0

� Jt where R0 is the initial drop radius and J is the evaporation
rate. In addition time variations of the dimensionless periphery
length are shown in Fig. 2e for different drops. In particular, the
duration of the shrinkage process increases when the initial
volume fraction of dispersions decreases (this is observed in the
case of pure and diluted Ludox HS-40).

Starting from suspended compounds uniformly distributed
within the droplet, particles are advected to the drop periphery
due to solvent removal (Fig. 1b). The radial ow, induced by the
evaporation rate, gives the typical velocity scale characterizing
the transport of particles. A Péclet number can be dened as the

diffusion time tD ¼ R0
2

D0
(characteristic time for the diffusion of a

particle along a distance R0) divided by the evaporation time

tE ¼ Rs

J
, as follows: Pe ¼ R0

2J
RsD0

with the diffusion coefficient

D0 ¼ kBT
6pha

¼ 8:5� 10�12m2 s�1 using the Stoke–Einstein rela-

tion (h is the viscosity of the suspending uid) and the evapo-
ration deduced from the time variation of the periphery length,
J � 10�7 m s�1. In our experimental conditions, 10 < Pe < 102,
diffusion is slow compared with the rate of evaporation. As a
result, the transport of particles to the drop–air interface
strongly suggests the formation of a porous envelope during the
evaporation process.19,20 This envelope thickens with time as
shown by the direct measurements in Fig. 4d.

Due to the drop shrinkage, the structure of the envelope is
possibly modied by a redistribution of particles. In this
hypothesis, the particle volume fraction in the envelope
increases to a maximum value close to the random close
packing fc. Applying mass conservation of particles, the relative
thickness h of the shell of radius R can be determined during
isotropic shrinkage.9

h

R
¼ 1�

fc � f

�
R0

R

�2

fc � f

0
BBB@

1
CCCA

1=2

(1)

Fig. 1 allows us to plot the time variation of the envelope
thickness from the time variation of the drop radius.
Measurements of the envelope thickness are well tted by this
This journal is ª The Royal Society of Chemistry 2013



Fig. 5 (a) Ratio of the radius of the shell at the onset of buckling to the initial

drop radius
RB

R0
, as a function of R0. (b) Ratio of the critical envelope thickness to

the drop radius at the point of buckling
hB
RB

, as a function of R0. Dots are

measurements and lines are fits to theoretical expressions 1 and 3.
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expression in the isotropic regime (Fig. 4d). Due to the
meniscus the thickness is possibly underestimated which could
explain the discrepancy with expression 1. The thickening of the
envelope does not impede solvent loss since the transport takes
place through the envelope in accordance with the Darcy law:

J ¼ k

h

DP

h
(2)

where DP is the pressure drop across the shell thickness, h,
required to produce a given uid ow and k is the permeability
of the porous shell estimated using the Carman–Kozeny
relation.21

When the structural strength of the envelope is sufficient,
the envelope can withstand internal stress. At this time, parti-
cles do not redistribute in the envelope that will be considered
as an elastic shell. The material is assumed to be homogeneous
and characterized by an elastic modulus E; E is supposed to be
constant during the deformation since the gel is continuously
drained by the solvent.

In addition the mechanical stress is assumed to be homo-
geneously distributed in the elastic shell. Observing that the
shell thickness is much smaller than the other two spatial
lengths (drop radius R and cell gap d), the following assump-
tions can be made. Let us consider the three components of the
mechanical stress eld in the elastic shell, in cylindrical coor-
dinates: the ortho-radial, radial and normal components of the
stress eld are denoted by sqq, srr and szz respectively (see
Fig. 3). The equilibrium of the corresponding internal forces in

the elastic shell results in the following relations:
sqq

srr
� R

h
[1

and
sqq

szz
� R

d
[1 since

h
R
� 1 during the elastic deformation of

the envelope. Therefore the main component of the stress in the
shell is the ortho-radial one. This quantity is responsible for the
buckling process of the shell. Indeed, above a critical thickness,
deformations occur mainly by bending, which is much less
energetic than stretching. Therefore a buckling process occurs
leading to an inversion of curvature of the shell (Fig. 5a and b).
In the following suffix B is related to quantities taken at time tB.
Expression 2 gives the relation between the shell thickness hB
and the pressure drop DPB across hB at the onset of buckling:

hB ¼ DPB

J

k

h
(3)

Firstly expression 1 at t ¼ tB gives RB as a function of R0 and

hB. By replacing hB with expression 3,
RB

R0
can be expressed as a

function of R0 and the pressure drop across the shell at the
onset of buckling, DPB. In this way DPB is a parameter and can

be estimated for each system studied.
RB

R0
slightly increases with

the initial drop radius as shown by the measurements for
different colloidal systems (Fig. 5a). These results are close to
the linear increase of RB with R0 obtained in spherical drops by
Tsapis et al.9 Secondly, combining expressions 1 and 3 the
critical thickness at the point of buckling is plotted in Fig. 5b;
measurements of the thickness using the method are described
in Fig. 4. The order of magnitude of DPB is found to be in
This journal is ª The Royal Society of Chemistry 2013
agreement with the values obtained by Tsapis et al.9 Values are
listed in Table 1 for different systems.
3.2 Depression growth

As shown previously, the shell stops shrinking (R ¼ RB) and a
buckling process results in the formation of a depression in a
region of the shell (Fig. 2b and 6a). In the following, the exis-
tence of the depression in the shell is referred to as congura-
tion II. A part of the elastic energy is released by the formation
of this depression (Fig. 6a). The depression growth is charac-
terized by the increase of the indentation length e, and happens
in a region of linear size l . Measurements of l as a function of e
are shown in Fig. 6b. These results are well tted by the
geometric relation: ‘ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RBe� e2

p
approximated by 2

ffiffiffiffiffiffiffiffiffiffi
2RBe

p
to

the rst order in e, as a consequence of the inversion of
curvature.

The elastic energy of conguration II is the sum of three
contributions:

UII ¼ U0 + Ufold + Uinversion (4)

1. The term U0 is the contribution of the elastic energy due to
the part of the shell not inverted: it is considered as a reference
energy.
Soft Matter, 2013, 9, 750–757 | 753



Fig. 6 (a) Top: superposition of digitized profiles showing the depression
growth in a part of the shell; the white dots locate the regions of highest
curvature. Down: sketch of the depression formed by inversion of the circular cap:
the indentation length e happens in a region of size l , between A and B. The
angle a between the asymptotes D and D0 limits the fold; the quantity d is the
lateral extension of the fold limiting the circular shell and the inverted cap. (b)
Ratio of the lateral size of the depression, l exp, to the radius of the drop at the
onset of buckling RB, as a function of the indentation length e, to the critical

thickness hB, at the onset of buckling; ‘0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RBe� e2

p
, ‘ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2RBe

p
. hB ¼ 12 � 5

mm. Above a critical indentation length, the quantity l becomes constant: l ¼ l c.
(c) Sketch of the shell forming at the drop periphery: the geometrical quantities of
the shell are defined taking into account the shell thickness h.

Fig. 7 Dimensionless elastic energy as a function of the relative volume variation����DVV0
���� (the lowest-energy state is plotted as a solid line and the higher-energy one

is plotted as a dashed line); the plot-range starts at the buckling process����DVB

V0

���� ¼ RB
2

R0
2 . At a threshold value,

����DVCV0

����, configuration II becomes energetically

more favourable than configuration III. The high stretching process occurring
during configuration III possibly causes weakening and breakage of the inverted
part of the shell; in a realistic point of view the vertical dashed line is not reached
during the deformation of the elastic shell.
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2. During the depression growth the elastic energy contains a
main contribution coming from the creation of the folds A and
B (see Fig. 6a): a fold is limited by asymptotes (asymptotes D

and D0 for A) and extends over a typical distance d. Assuming
h/R� 1, which is actually realized during the drop deformation,
the Föppl–von Kàrmàn theory for elastic shells22–24 allows us to
obtain the energy due to the fold Ufold.

Minimizing the total elastic energy (bending energy and
in-plane elastic energy) with respect to the distance d leads to
d ¼ (hRB)

1/2 (this is described in ref. 23 and 25). Consequently
the relevant curvature radius is d/tan a where a is the angle
between the asymptotes limiting the fold (Fig. 6a). Therefore

Ufold � E
h2s
RB

tan a=22, where s ¼ 2dd is the area of the fold.25,26

As the depression grows, the angle a increases, in accordance

with tan a=22 � e
RB

, so does the energy Ufold. Ufold is due to both

the increase of the indentation length and the increase of the
shell thickness. Consequently, at each time denoted by ti, an
indentation length, ei, and a shell thickness, hi, can be dened.

Ufoldðhi; eiÞ ¼ 2c0dEhi
5=2 1

RB
3=2

ei (5)

where c0 is a parameter that only depends on the Poisson’s ratio
of the shell.

3. The term Uinversion corresponds to the change in elastic
energy due to the inversion of the circular section AB in accor-
dance with Fig. 6c. In this way the arc of external radius RB + hB/2
754 | Soft Matter, 2013, 9, 750–757
becomes compressed aer inversion; also the arc of internal
radius RB � hB/2 becomes stretched aer inversion. The length
change makes this energy contribution linear in the
deformation.26

Uinversionðhi; eiÞ ¼ c1
ffiffiffi
2

p

4
Edhi

3 1

RB
3=2

ei
1=2 (6)

where c1 is a parameter that only depends on the Poisson’s ratio
of the shell. Note that Uinversion(hi,ei) becomes negligible
compared with Ufold(hi,ei) for ei [ h.

The energy (UII � U0)/(Eh
2d) is plotted as a function of the

relative volume variation,
����DVV0

���� � pRB
2 � ð2RBÞ1=2e3=2

pR0
2 , in Fig. 7.

This illustrates the tendency of the elastic energy to increase
during the shell deformation.

Since the energy concentrated in the folds becomes enor-
mous during the depression growth, another conguration,
denoted in the following by conguration III, is energetically
more favourable. This is realized by assuming the angle a

constant (a dened in Fig. 6a). Hence, the lateral size of the
depression l stops increasing and becomes constant as shown
by our measurements in Fig. 6b (region named III). Now, the
elastic energy due to the fold only increases with the growth of
the shell thickness.

However, the decrease of the inner volume of the shell needs
another mode of deformation of the shell. Assuming a constant
and keeping l constant, as shown by empirical observations,
require an increase of the indentation length e (Fig. 6a) and
result in a length change of the inverted part of the shell
between A and B. Let us consider the stretching energy due to
This journal is ª The Royal Society of Chemistry 2013



Fig. 8 Ideal scheme of the transition between different configurations of the
elastic shell. Configuration II corresponds to the inversion of a part of the elastic
shell characterized by an indentation length e and a lateral size l . Configuration II
can be followed by two possible configurations: (i) configuration II0 corresponds
to the increase of both the lateral size and the indentation length; (ii) configu-
ration III where the lateral size is the same as in configuration II and the inden-
tation length is the same as in configuration II0; consequently a stretching process
of the inverted part is needed.
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the length change of the inverted part of the shell. Usually,
when an elastic material is deformed the work is stored in the
body as a strain energy. If the elastic deformation 30 (strain)
occurs in an elementary volume dV � dhl (l being the length
scale of the stretched region), the elastic energy is expressed as:

Ustretch ¼ E
Ð
dV302

As a result, the energy of the inverted part due to the relative
change in length u is expressed as:

Ustretch(hi,ei) ¼ c2dEhil u(ei)
2 (7)

where c2 is a parameter that only depends on the Poisson’s ratio
of the shell. The relative length change u(ei) differs from zero
only for ei > ec. Then, the length change is related to the

indentation length by† uðeiÞ � 1
2

ei
2RB

.

The contribution Ustretch governs the elastic energy of the
conguration III as follows:

UIII ¼ U0 + Ufold (hi,ec) + Uinversion (hi,ei) + Ustretch (hi,ei) (8)

Here, Ufold (hi,ec) only varies with the thickness because l is
constant.

The energy (UIII � U0)/(Eh
2d) is plotted as a function of the

relative volume variation
����DVV0

���� in Fig. 7: for small deformations,

UII < UIII and conguration II is energetically more favourable
than conguration III. Note that this new conguration costs
rapidly a high energy.

Let us now predict the critical quantity e ¼ ec, and conse-
quently l ¼ l c, at which the transition between congurations II
and III arises. Starting with a deformed shell characterized by
an indentation depth e (conguration II in Fig. 8), an increase of
the indentation length can result in two possible
congurations:

�both the indentation depth e and the lateral size l increase
in accordance with conguration II0 in Fig. 8;

�only the indentation length increases at a xed lateral size
l ¼ l c in accordance with conguration III in Fig. 8: in this case
a length change of the inverted region is needed.

At the threshold, the energy of conguration II0 has to equal
the energy of conguration III. Assuming that the elastic energy
due to the inversion, Uinversion, is dominated both by the energy
due to the folds and the one due to the stretching process, we
† Starting from a circular arc AB, the simplest perturbation corresponding to an
elongational shape is a part of an ellipse. We use the approximation by
Ramanujan27 for the circumference of an ellipse which gives:
Cða;bÞ � p

�
3ðaþ bÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3aþ bÞðaþ 3bÞp �

where a and b are one-half of the
ellipse’s major and minor axes respectively. Taking a ¼ RB + ei and b ¼ RB, the
relative change in length between such an ellipse and a circle of radius RB is

expressed as:
CðRBþei ;RBÞ � CðRB ;RBÞ

CðRB ;RBÞ
� ei

2RB
to the rst order in ei. The relative

length change related to the transition from conguration II to conguration III

in 7 is then expressed as
ei
4RB

.

This journal is ª The Royal Society of Chemistry 2013
have: Ufold (h,e + ec) ¼ Ufold (h,e) + Ustretch (h,e + ec) using the
notations in Fig. 8. Starting from conguration II with e� ec, it
comes: Ufold (h,ec) � Ustretch (h,ec) (at the threshold). Using
relations 5 and 7, it comes directly that ec is proportional to the
thickness at the onset of buckling, hB, with a prefactor only

depending on the Poisson’s ratio: ec ¼ 8
c0
c2
hB. Taking into

account numerical values of the parameters c0 and c2 with a
Poisson’s ratio equal to 0.3 we obtain:28 ec � 4hB. In addition,
since the transition to lower-energy results in a constant lateral
size l c, this length can be expressed as a function of the char-
acteristics of the shell at the buckling onset as:

‘c � 2ð2RBecÞ1=2 ¼ 4
ffiffiffi
2

p ðRBhBÞ1=2.
As a consequence the thickness of the shell at the onset of

buckling hB can be precisely deduced from the measurement of
the distorted drop at a macroscopic scale since:
Fig. 9 Measurements of the quantity
‘c

2

32RB
� 1
hB

for a range of initial drop radii
R0, and for different systems.

Soft Matter, 2013, 9, 750–757 | 755



Soft Matter Paper
hB � lc
2

32RB

(9)

Fig. 9 shows the dimensionless quantity
lc
2

32RB
� 1
hB

for a

range of initial drop radii. Evaluation of hB using relation 9 is
related to the measurements of macroscopic quantities (lc, RB)
and is consequently more accurate than the direct measure-
ment of hB. Typically, the error due to direct measurement of hB

is 20% while it is equal to 5% in the measurement of
lc
2

32RB
. Note

that the discrepancy between the theory and experiment could
be due to the systematic discrepancy between measurements of
the envelope thickness and prediction as shown in Fig. 4d.
Finally the discrepancy between the theory and the experi-
mental data could indicate that either the inverted part is not
perfectly circular or there is some additional pinning of the
drop interface, possibly at the fold.

The continuation of the deformation is shown in Fig. 10a: the
depression deepens and forms an invaginating tube (congu-
ration IV in Fig. 10b). As shown in Fig. 7, the stretching process of
the shell is the main contribution to the elastic energy of
conguration III. However the energy required to proceed with
this deformation is rapidly enormous. Therefore a weakening or
a breakage of the stretched part of the shell is suspected.

Indeed, a relative length change larger than 20% as observed
experimentally is oen not feasible in such colloidal gels
(Fig. 10). Let us compare the tensile stress in the stretched part
of the shell with the cohesive stress in the shell. The critical
stress, sc, needed to separate two particles of radius a can be
estimated from the van der Waals interaction in terms of
equilibrium separation distance, Z0, and Hamaker constant, A,
whose value depends on the surface chemistry of the particles:29

sc � Aa
12Z0

2 � a�2.
Fig. 10 The indentation depth e at a fixed lateral size l ¼ l c turns into an
invagination tip (superposition of profiles in (a)). (b) In configuration II, the length
of the inverted cap, C, increases with the indentation depth e; the red line is the
theoretical arc length of the inverted cap of radius RB indented by e (arc length ¼
RB cos

�1(1 � 4e/RB)). In addition the lateral size l increases with the indentation
depth e. The vertical line delimits configuration II and configuration III. In
configuration III, the lateral size keeps a constant value, l ¼ l c, while the length of
the inverted part, C, still increases. When the length change of the inverted part
reaches a critical value, possible decohesion in the inverted part occurs leading to
a transition to configuration IV. This last configuration is characterized by the
progression of an invagination tube that deepens in the droplet.
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This critical stress is easily balanced by the tensile stress in
the inverted region of the shell during the relative length change
u: Eu � sc. Taking orders of magnitude for the Young modulus,
E� 107 Pa, obtained by indentation testing, and A¼ 0.83� 10�20

J,Z0� 0.2 nm for LudoxHS-40, the relative length change needed
to separate particles is found to be: u ¼ 0.18. This value corre-
sponds to a relative volume variation of |DV/V0|� 0.52 (note that
the same order of magnitude is obtained for the different
colloidal systems studied). Therefore the strong stretching of the
shell possibly causes rapid decohesion of the gel as the inden-
tation depth grows. Then, breakage or weakening of the inverted
region is possibly followedby ahealingprocess of the shell due to
particles accumulation during drying.
3.3 Case of spheroidal shells

The case of three-dimensional droplets and large Péclet
numbers corresponds to common industrial processes. As in
the conned geometry (2D case), drying a droplet of a colloidal
dispersion leads to strong distortions (Fig. 11a). However in the
3D case, measurement of the shell thickness is not possible by
direct observation. The previous study can easily be applied to
three-dimensional droplets to obtain shell thickness at the
buckling instability.

The experiments were carried out with droplets of Nanolatex
dispersion. The nearly spheroidal geometry is obtained by
depositing droplets on a hydrophobic substrate; the surface is
sprayed with Lycopodium spores which form a rough texture in
which air remains trapped when a drop is deposited. In the rst
stage the droplet shrinks as described in the superposition of
proles in Fig. 11b. Then an inverted region grows at the apex of
the droplet (Fig. 11a and b).8 As in the 2D case, the depression is
continued by an invagination process. Similar arguments can
be applied to the case of spheroidal drops as explained in ref. 25
and 26. In particular the energy due to the fold and the one due
to the stretching of the shell is expressed now as:

U3D
foldðhi; eiÞ ¼ c

0
0

4
E

hi
5=2

RB

ei
3=2 (10)

U3D
stretchðhi; eiÞ ¼ pc

0
2

16
E

hi

RB

ei
3 (11)
Fig. 11 Droplet of a Nanolatex dispersion deposited on a super-hydrophobic
surface. (a) Distorted droplet: a digital image showing a depression of lateral size
lc at the top of the droplet. (b) Superposition of dimensionless profiles (apex
height H, vs. radius R) measured at different times by lateral imaging: the duration
between two consecutive profiles is 300 s.
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where c
0
0 and c

0
2 only depend on the Poisson’s ratio. From 10 and

11 it comes that ec is proportional to the thickness at the onset

of buckling hB, such as: ec �
�
4c

0
0

c02

�2=3

hB.

Since the geometric relation ‘c � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2RBec

p
still holds, it

comes:

hB � 1

8� 42=3
c
0
2

c
0
0

2=3
lc
2

RB

� 1

12

lc
2

RB

(12)

Consequently, using relation 12, measurements of the
macroscopic quantities lc and RB allow us to evaluate with a
good accuracy the critical thickness for buckling of spheroidal
shells. In the case of a droplet of nanolatex dispersion (solid
volume fraction 0.25, particle diameter 25 nm, glass transition
temperature¼ 100 �C) dried at RH¼ 50% and T¼ 20 �C, we nd
hB ¼ 25 � 2 mm.

4 Conclusion

Desiccation of drops of complex uids can display large shape
distortions related to the development of an elastic skin at the
drop surface. We studied such mechanical instabilities in a
conned geometry where direct measurements of the skin
thickness are possible. The drop deformation appears to be
generic and does not depend on the initial drop size: a
depression due to an inversion of curvature in the elastic shell is
formed and deepens in the drop. This deformation can be
related to a mismatch between bending and stretching
processes. From the comparison between the corresponding
elastic energies, we obtain a relation between the critical
thickness for buckling and the characteristic lengths of the nal
drop shape that are easily measurable. The validation of this
method in the conned geometry (2D geometry) is then applied
to spheroidal drops exhibiting identical distortions.
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