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Abstract

Free convection occuring during the drying of plane layers of polymer solutions

may be due to various mechanisms, based on buoyancy or Marangoni effect, of

thermal or solutal origin. This theoretical and numerical work provides all the

required tools to analyze thoroughly the problem. In this transient flow, dif-

ferent methods (frozen time, non-normal, nonlinear methods) are proposed to

predict critical times for convection onset and threshold values for convection.

Nonlinear and non-normal methods give similar results, within the uncertainty

inherent to any transient problem. It is shown that, when linear stability anal-

ysis indicates the presence of several instability mechanisms, it is necessary to

invoke nonlinear arguments to establish the leading mechanism. The proposed

methodology is then applied to experimental results from the literature for two

polymer solutions (Polyisobutylene/toluene and Polystyrene/toluene).

1. Introduction

Thermal free convection in a horizontal layer of liquid is still an active field of

research since the first experimental studies by H. Bénard a century ago. Driv-
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ing forces can originate from density or surface tension dependency on temper-

ature, respectively responsible of buoyancy forces or surface tension gradients.

Theoretically, the mechanisms leading to hydrodynamic instabilities have been

elucidated first by Rayleigh [33] for the buoyancy-driven flow (Rayleigh-Bénard

convection), and by Pearson [31] for the surface-tension-driven flow (Bénard-

Marangoni convection). Pearson showed that, for the most common pure liq-

uids, the thermal instability threshold was driven by Marangoni effect for layer

thicknesses approximately lower than 1 cm, and by buoyancy for higher thick-

nesses. Another instability mechanism due to surface deformation can also be

present: it is known as the long-wave instability (Scriven and Sternling [41], Re-

ichenbach and Linde [34], Goussis and Kelly [18]). In liquid mixtures, density

and surface tension can also depend on concentration. In that case, the above

thermal instability mechanisms have also solutal counterparts. For a review of

recent developments of Rayleigh-Bénard-Marangoni free convection see Boden-

schatz et al. [5], Schatz and Neitzel [39], Colinet et al. [9], Nepomnyashchy et al.

[30], Manneville [24].

Free convection induced by evaporation has been studied for a long time,

both experimentally and theoretically. In pure liquids or solutions, evaporation

at the upper free surface generates a temperature gradient induced by cool-

ing through vaporization latent heat. In the case of solutions, this evaporation

also produces a concentration gradient due to difference of components volatil-

ity. Both gradients might cause four instability mechanisms at the origin of

convective patterns: buoyancy via thermal effects (thermal Rayleigh-Bénard),

buoyancy via solutal effects (solutal Rayleigh-Bénard), Marangoni via thermal

effects (thermal Bénard-Marangoni) and Marangoni via solutal effects (solutal

Bénard-Marangoni). Spangenberg and Rowland [44] used a schlieren technique

to characterize the flow pattern driven by thermal buoyancy at the surface of

an evaporating thick layer of pure water (10 cm). Berg et al. [4] found a great

variety of patterns applying the same technique to several pure substances and

solutions of different thicknesses. Certain patterns were induced by buoyancy-

driven-instability, and others by surface-tension-driven instability. In the latter
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case, these authors demonstrated the importance of surface contamination, very

effective for aqueous systems. Indeed, thermal Marangoni convection can hardly

be observed in water, because of the high sensitivity of water surface to con-

tamination (Cammenga et al. [7]). More recently, Toussaint et al. [46] and Bas-

sou and Rharbi [2] performed experimental studies of free convection occuring

during the drying of polymer solutions. Zhang and co-authors used shadow-

graphs techniques to characterize the patterns observed during the drying of

NaCl/water solutions (Zhang et al. [57]) and ethanol/water solutions (Zhang

et al. [58]).

In these evaporative convection phenomena, which are generally of transient

nature, the determination of conditions corresponding to the onset of free con-

vection motivated a lot of works. Some authors performed a linear stability

analysis of a one-dimensional steady basic state in a liquid/gas bilayer, when

constant temperatures and/or concentrations were prescribed at the bottom

and top boundaries (see for instance Merkt and Bestehorn [26], Moussy et al.

[29], Machrafi et al. [23]). When the basic state is unsteady as for most of the

evaporation processes, various approaches were implemented. The frozen-time

approach has been used by Vidal and Acrivos [53] to determine the time of

thermal Bénard-Marangoni convection onset in a shallow layer of propyl alco-

hol. In this approach, one applies a classical normal mode stability analysis

to the unsteady basic temperature profile frozen at each given time t. The

amplification method, which fully takes into account the transient nature of

the basic state, was used by Foster [16, 15] to determine the onset time of

thermal Rayleigh-Bénard convection in a deep layer of water (10 cm). Good

agreement was obtained with experiments for an amplification factor around

10-100. More recently, Doumenc et al. [12] used a non-normal method, which

is also based on amplification ideas, to determine the stability conditions of the

thermal Rayleigh-Bénard-Marangoni problem in drying polymer solutions. In

the thermal problem, Touazi et al. [45] determined the stability threshold us-

ing direct nonlinear simulations, and found a good agreement with non-normal

results. For the transient solutal problem, nonlinear simulations were also used
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by Trouette et al. [48] to pinpoint these thresholds in a configuration with a

flat interface and variable viscosity. Serpetsi and Yiantsios [42] also studied

the stability of the solutal problem, for a constant viscosity but a deformable

interface, using the frozen state approach and nonlinear simulations.

For a given problem, such analysis helps to exhibit the mechanism producing

the convection onset. This is particularly interesting for binary mixtures, where

many such mechanisms can be potentially active. Pearson [31] extended his

famous stability analysis of a pure liquid, to show that a 0.5 mm thick layer of

5 % of ether in liquid paraffin was unstable for the thermal and solutal surface-

tension-driven problems, but stable for buoyancy. For the water/ethanol system,

Machrafi et al. [23] took into account buoyancy and surface tension effects, of

thermal and solutal origin, as well as Soret effect in their linear stability analysis.

They concluded that the stability threshold was driven by the solutal Bénard-

Marangoni mechanism. In drying polymer solutions, de Gennes [10] used scaling

arguments to estimate the critical thickness of the Bénard-Marangoni instability.

He concluded that the solutal critical thickness was much smaller than the

thermal one, so the concentration effects should dominate the thermal effects.

However, drying experiments on polymer solutions performed by Toussaint et al.

[46] exhibit experimental results in agreement with thermal Rayleigh-Bénard-

Marangoni convection. The reasons of this apparent contradiction are derived

in this paper.

The present article focuses on the leading mechanisms and critical conditions

for a specific type of evaporative convection: the one occuring in a plane layer

geometry and induced by evaporation of a volatile solvent in which a non-volatile

solute is diluted. Such a case is of particular interest for coating applications.

Indeed, drying of such mixtures (polymer solutions, colloidal suspensions,. . . )

leads to solid-like deposit on the substrate at the end of the process. In some

cases, this deposit presents undesirable undulations (self-patterning). Although

ruptures of a superficial glassy crust (de Gennes [11]) or buckling of a glassy elas-

tic skin (Huraux et al. [20]) are proposed explanations for these undulations, free

convection cells observed during drying are often invoked to understand the non
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uniform thickness of the final deposit (Sakurai et al. [38], Weh [54], Sakurai et al.

[37], Gorand et al. [17], Bassou and Rharbi [2], Minar̆́ık et al. [27], Uchiyama

et al. [50, 49], Jun and Lee [21]). For instance, Bassou and Rharbi [2] pro-

vides strong experimental evidences connecting solutal Bénard-Marangoni cells

and deposit patterning. Apart from this latter work, the convection mecha-

nism (thermal or solutal, surface-tension- or buoyancy-driven) is generally not

specified, or it is not supported by clear-cut arguments.

In our previous studies, the thermal problem (Doumenc et al. [12], Touazi

et al. [45]) and the solutal problem (Trouette et al. [48]) have been studied in-

dependantly. The present work aims at discriminating which is the dominant

mechanism for a given set of experimental parameters corresponding to config-

urations above the thermal and solutal thresholds. When the solutal and the

thermal problems are both unstable, it is shown that a stability analysis cannot

provide a complete answer. It is then necessary to study the nonlinear regime to

decide which mechanism produces the highest velocity in the liquid layer. This

article is organized as follows. In section 2, we briefly present the experimen-

tal configuration which have been considered to study this transient problem.

In section 3, models and dimensionless numbers characterizing the thermal or

solutal problems are detailed. Section 4 describes the different methodologies

used to derive the conditions leading to convection onset or stability thresholds.

In particular, the time and wavelength corresponding to the onset of convection

are determined for given non-dimensional numbers. In section 5, comparisons

of these results with experiments are presented. First the stability threshold is

obtained for both the thermal and the solutal problems. Thereafter, we focus

on cases where both thermal and solutal problems are unstable. Critical times,

and wavelengths predicted by the thermal and the solutal models are compared

with experimental data. In section 6, we focus on the quasi-steady regime in

Bénard-Marangoni convection for which we propose a scaling analysis. This

provides simple relations for the orders of magnitude of the thermal and solutal

velocities in the nonlinear regime. Finally experimental results for the solutal

case are compared with the above scaling.
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2. Experimental Configuration

The typical behavior observed during the drying of a polymer solution is

illustrated in figure C.1 for a 8 mm thick plane layer. First, a decrease of the

evaporative solvent mass flux per unit area, Qm, is observed (0 ≤ t . t1 = 1500

s). The second stage (t1 . t . t2 = 4000 s) is characterized by a nearly constant

evaporative flux (see Trouette et al. [48] for details). In the final regime (t2 . t),

the evaporative flux decreases. First it slowly decreases then it rapidly falls down

(t3 = 26 000 s . t).

This behavior can be accounted for by using a relationship between Qm and

the saturated vapor pressure PV S of the volatile solvent above the interface.

Indeed let us restrict ourselves to the common situation in which evaporation

is limited by vapor diffusion in an inert gas, usually air at atmospheric pressure

(liquids in contact with their pure vapor can lead to very different behaviors, see

for example Uguz and Narayanan [51, 52]). In that case, the phenomenological

law (see Guerrier et al. [19])

Qm = hm [(cgS)interface − (cgS)∞] with (cgS)interface =
PV S(T, ϕs)MS

RT
(1)

applies where (cgS)interface (resp. (cgS)∞) denotes the solvent vapor concentra-

tion in air at the interface (resp. far from the interface). (cgS)∞ is zero in our

experiments and (cgS)interface is given assuming local thermodynamic equilib-

rium. MS stands for the solvent molar mass, R the ideal gas constant. The mass

transfer coefficient hm depends on the air velocity above the solution which is

kept constant during all experiments. It is evaluated from measurements ob-

tained from the evaporation kinetics of a pure toluene layer (Toussaint et al.

[46], Doumenc et al. [12]).

The dependency of PV S on both temperature T and solvent concentration

at the interface ϕs explains the succession of several regimes for evaporation

flux Qm. The decrease of Qm for 0 ≤ t . t1 is associated to a thermal transient

regime in which the cooling induced by evaporation reduces the saturated vapor

pressure. The second stage (t1 . t . t2) arises when the temperature of the
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solution remains nearly constant and solvent volume fraction ϕs remains larger

than about 0.4. Indeed the saturated vapor pressure in polymer solution is close

to the pure solvent vapor pressure for solvent volume fraction larger than 0.4.

This regime is thus characterized by a nearly constant saturated vapor pressure

and consequently a nearly constant evaporative flux (see Trouette et al. [48] for

details). In the final regime (t2 . t), the evaporative flux decreases because

the saturated vapor pressure of the solution becomes strongly dependent on the

solvent concentration.

In this paper, we analyze two sets of experiments: 1) Polyisobutylene (PIB)

/toluene solutions performed by Toussaint et al. [46] and 2) Polystyrene (PS)

/toluene solutions performed by Bassou and Rharbi [2]. The first set of ex-

periments concerns PIB/toluene films for a fixed evaporation velocity (vev ≃

0.3 µm.s−1) and a large range of initial thickness di and viscosity µi (0.3 mm

≤ di ≤ 24 mm and 0.55 mPa.s ≤ µi ≤ 2100 mPa.s). Cases 1 and 2 in table

1 correspond to two such instances. Two visualization techniques were used to

characterize the onset of convection and the wavelengths of convective patterns

and gave identical results. Top views were performed with a Marlin digital

camera, the solution being seeded with iriodin particles, or with an IR camera

(CEDIP camera, resolution 20 mK). An example of images obtained with the

IR camera is given in figure C.2 for the test case 2. Cases 3 to 5 of table 1

correspond to the second sets using thin PS/toluene films (1.4 mm). An impor-

tant difference between the two sets of experiments concerns the measurement

techniques: in thin PS/toluene films, solution velocities were measured by par-

ticle tracking, using a microscope. This technique allows the measurement of

low velocities, of order of 10 µm.s−1. Theoretically, we will see that these two

sets correspond to two different mechanisms of cells formation.

3. Thermal/solutal models

The present paper focuses on the very beginning of drying. Convective cells

can be of thermal or solutal origin (see Toussaint et al. [46] or Bassou and Rharbi

[2]). To analyze the respective part of these driving mechanisms for convection
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Case 1 Case 2 Case 3 Case 4 Case 4bis Case 5
System PIB/toluene PIB/toluene PS/toluene PS/toluene PS/toluene PS/toluene
di(mm) 1 8 1.4 1.4 1.4 1.4

ϕpi 0.006 0.047 0.1 0.15 0.15 0.2
µi (mPa.s) 0.98 20 53 185 185 520

Hth (WK−1m−2) 28 28 ≃ 30 ≃ 30 < 30 ≃ 30
∆Tst (K) 4.8 4.8 ≃ 5 ≃ 5 < 5 ≃ 5
vev (ms−1) 3× 10−7 3× 10−7 3.5× 10−7 3.5× 10−7 0.75× 10−7 3.5× 10−7

Thermal model
Math 6000 2400 160 46 < 46 16
Rath 460 12000 25 7 < 7 3
Pr 12 240 620 2100 2100 5900
Bi 0.20 1.6 0.30 0.30 < 0.30 0.30

Solutal model
Masol 1.0× 106 2.4× 107 6.6× 105 1.7× 105 3.7× 104 6.2× 104

Rasol 9.2× 104 1.4× 108 2.9× 105 7.6× 104 1.6× 104 2.7× 104

Sc 1.1× 104 2.3× 105 4.8× 105 1.3× 106 1.3× 106 3.1× 106

Peint 3.0 24 3.9 3.1 0.66 2.6

Table 1: Experimental configurations with di the initial layer thickness, ϕpi the initial polymer
volume fraction, µi the initial solution viscosity, Hth the heat transfer coefficient, ∆Tst the
characteristic temperature variation, vev the evaporation velocity. The corresponding dimen-
sionless parameters for both theoretical models are also given (see definitions in sections 3.1
and 3.2). Physical properties of PIB/toluene and PS/toluene solutions are listed in Appendix
A. Experiments are performed at room temperature.

onset, we use two separate models: a thermal model and a solutal one. We

therefore ignore thermal and solutal coupling effects. This assumption is con-

sistent with our objective, which is the determination of the leading mechanism

at short time, just after convection onset. A complete thermo-solutal model

would be desirable for a more detailed analysis (like for instance prediction of

3D patterns), or to investigate longer times, when the thermal problem depends

on concentration through the viscosity. In addition, Soret effect is supposed

to be negligible (this assumption will be justified a posteriori by scaling argu-

ments) and we disregard the long-wave instability. This latter mechanism may

be pertinent in some experiments (see the numerical simulations by Yiantsios

and Higgins [55, 56] for the thermal and solutal problems) but it has not been

observed in the experiments presented in section 2.

Both thermal and solutal models share common assumptions: (a) The liquid

layer is located between the bottom at z = 0 and the upper free surface which

remains flat at z = d(t). The layer width W is assumed large with respect
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to its height d(t). (b) Bottom and side walls are adiabatic/impermeable, with

a no slip condition for velocity. (c) The solution is Newtonian of viscosity µ.

Actually non-Newtonian effects are expected in polymer solutions, but only for

high enough shear rates, larger than the inverse of the viscoelastic relaxation

time of the solution. For test case 2, the shear rate was estimated to be of

order of 1 s−1. For PIB/toluene at the initial concentration of test case 2 and

the same PIB molar mass, no viscoelastic effect were detected in rheometer

measurements up to 50 s−1 shear rate (Gorand et al. [17]). So viscoelastic

effects are unlikely to occur in the beginning of the drying, even if they cannot be

excluded at later stage. (d) Liquid density ρ is assumed constant, except in the

buoyancy term. (e) Local thermodynamic equilibrium is assumed at the upper

evaporative surface. (f) Both models are based on a one-layer approximation

in which the heat (mass) transfer in the vapor phase is given by heat (mass)

transfer coefficients. (g) For the sake of simplicity, only two-dimensional flows

are studied: for the linear problem, the two-dimensional assumption is not a

constraint. In addition, 2D and 3D computations gave identical answers on the

thermal nonlinear problem (Trouette et al. [47]), when evaluating the orders of

magnitude attached to the different processes as performed here.

Since we focus on the beginning of the drying (a few minutes), the liquid

height and viscosity variations can be neglected. This assumption has been

used in the thermal model. In the solutal model, which has been developped

in a previous work to simulate solutal convection over longer times (Trouette

et al. [48]), liquid height and viscosity variations are taken into account. For a

detailed description of the validity domain of the thermal model, see Doumenc

et al. [12], Touazi et al. [45]. The assumptions and the validity domain of the

solutal model can be found in Trouette et al. [48].

3.1. Thermal model

The velocity field, v = vxex + vzez, is governed by the Navier-Stokes equa-

tions in the context of Boussinesq approximation: density ρ is taken to be the
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density at T = T∞ except for the buoyancy term where one sets

ρ(T ) = ρ(T∞) [1− αth (T − T∞)] (2)

with αth the thermal expansion coefficient. Surface tension σ(T ) is a linearly

decreasing function of temperature T .

σ(T ) = σ(T∞)− γth (T − T∞) (3)

where γth > 0. Finally, the fluid is characterized by a thermal diffusivity κ. At

the upper surface z = d, the balance of tangential forces reads

µ
∂vx
∂z

= −γth
∂T

∂x
at z = d, (4)

and the conservation of energy flux is ensured through the phenomenological

equation (for a derivation see Doumenc et al. [12])

−λ
∂T

∂z
+Hth(T∞ − T (z = d)) = LQm(T∞), Hth = hth + L

∂Qm

∂T
(T∞) (5)

where λ denotes the thermal conductivity of the liquid, hth the heat transfer

coefficient between the gas and the liquid.

The governing equations are put in a dimensionless form using the constant layer

thickness d, the thermal velocity V = κ/d and thermal diffusion time d/V =

d2/κ for length, velocity and time scales. Pressure p is scaled by κµ/d2. Finally

one introduces the dimensionless quantity θ(x, z, t) = (T (x, z, t)− T∞)/∆Tst

where

∆Tst ≡
LQm

Hth
. (6)

denotes the steady temperature difference in the final steady state regime (t1 .

t). The superscript ∗ is used for dimensionless variables of the thermal model.

In Cartesian coordinate system, the equations for dimensionless velocity v∗, di-

mensionless deviation from the hydrostatic pressure p∗ and dimensionless tem-

perature θ read

∇ · v∗ = 0, (7)
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1

Pr

[

∂v∗

∂t∗
+ (v∗ · ∇)v∗

]

= −∇p∗ +∇2v∗ +Rath θ ez, (8)

∂θ

∂t∗
+ (v∗ · ∇)θ = ∇2θ, (9)

∂v∗x
∂z∗

+Math
∂θ

∂x∗
= 0 at z∗ = 1. (10)

∂θ

∂z∗
+Bi θ +Bi = 0 at z∗ = 1, (11)

∂θ

∂z∗
= 0 at z∗ = 0,

∂θ

∂x∗
= 0 at x∗ = 0, A, (12)

v∗z = 0 at z∗ = 1, v∗x = v∗z = 0 at z∗ = 0 or x∗ = 0, A. (13)

This system depends on five dimensionless parameters: Rayleigh, Marangoni,

Biot, Prandtl numbers and an aspect ratio

Rath ≡
αthgρd

3∆Tst

µκ
, Math ≡

γthd∆Tst

µκ
, Bi ≡

Hthd

λ
, Pr ≡

µ

ρκ
, A ≡

W

d
. (14)

The analysis is restricted to Prandtl number Pr ≥ 1. This assumption is clearly

valid for most of the liquids, if one excepts liquid metals. It means that the

thermal diffusion time scale is always larger than the viscous diffusion time

scale. In all the simulations, the aspect ratio is large (A = 20 for the thermal

problem). It was checked that, when large enough, A does not affect our results.

3.2. Solutal model

In the solutal model, the temperature is assumed constant (T ≃ T∞) and the

fluid is a binary solution with a constant diffusion coefficient D. The system is

characterized by the solvent volume fraction ϕs(x, z, t) or the polymer volume

fraction ϕp(x, z, t) = 1 − ϕs(x, z, t). During drying, these concentrations are

inhomogeneous and unsteady up to the very end when the film is totally dry

(ϕs = 0).

The velocity field is governed by the Navier-Stokes equations. The differ-

ence between pure polymer and pure solvent densities being around 6% for

PIB/toluene and 20% for PS/toluene, density ρ is assumed constant and equal

to ρi the density at the initial solvent volume fraction ϕsi, except for the buoy-

ancy term where one sets

ρ = ρ0 (1 + αsol (1− ϕs)) (15)
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where ρ0 denotes the density of the pure solvent and αsol > 0 the solutal ex-

pansion coefficient. The interface possesses a surface tension σ which is a linear

function of ϕs

σ = σ0 + γsol (1− ϕs), (16)

with σ0 the surface tension of the pure solvent and γsol > 0. By contrast to the

thermal model, this model was used previously to study solutal convection over

time horizon t = t2, so it takes into account the variation of viscosity µ with

respect to the the polymer volume fraction ϕp. For the two polymer solutions

(PIB/toluene and PS/toluene) used to compare models to experiments, viscosity

varies over several orders of magnitude (see figure C.3). This dependency is

represented by an empirical law

log10(µ) = a0 + a1 Y + a2 Y 2 + a3 Y 3 + a4 Y 4 (17)

with Y = log10(ϕp) and ai are fixed coefficients (for details see Appendix A).

We assume that the evaporative flux remains constant. As mentioned in

section 2, this is only approximately valid during the period t . t1 (typically

30 percent variation due to evaporation induced cooling) and experimentally

verified during the period t1 . t . t2. It is thus possible to simulate the

drying process up to time t2 when the solvent volume fraction reaches about 0.4

(Trouette et al. [48]) after which the flux is no more steady. The evaporative

flux being constant and the surface remaining flat, the layer thickness d(t) =

d(0)−vevt decreases at a constant velocity vev. At the upper surface, the balance

of the tangential stresses imposes

µ
∂vx
∂z

= −γsol
∂ϕs

∂x
at z = d(t) (18)

The solvent and polymer mass conservation leads to two additional boundary

conditions (see Trouette et al. [48] for a derivation)

vz = 0 at z = d(t), (19)

−D
∂ϕs

∂z
= vev(1− ϕs) at z = d(t), (20)

12



Dimensionless equations are obtained by scaling coordinates x and z, velocity

v, dynamic pressure p and time t respectively by di, D/di, µiD/d2i and d2i /D

where di is the initial thickness and µi the initial viscosity. Superscripts + are

used for dimensionless variables of the solutal model. In addition to v+, p+,

one introduces, based on the solvent volume fraction ϕ, the quantity

φs =
ϕs − ϕsi

∆ϕ

where ϕsi is the initial solvent volume fraction and ∆ϕ is based on the concen-

tration gradient near the interface and the layer thickness

∆ϕ ≡ −di
∂ϕs(z = di, t = 0)

∂z

∣

∣

∣

∣

int

= Peint (1− ϕsi) (21)

where ϕsi is the initial solvent volume fraction and Peint ≡ vevdi/D is a Péclet

number based on the interface velocity (Trouette et al. [48]).

This scaling is customary when the evaporation flux is imposed at the bound-

ary. The dimensionless equations for v+, p+ and φs then read

∇ · v+ = 0, (22)

1

Sc

[

∂v+

∂t+
+ (v+ · ∇)v+

]

= −∇p+ + ∇ ·

(

µ

µi

(

∇v+ +∇Tv+
)

)

+Rasol φsez,(23)

∂φs

∂t+
+ (v+ · ∇)φs = ∇2φs, (24)

∂v+x
∂z+

+
µi

µ
Masol

∂φs

∂x+
= 0 at z+ = 1− Peintt

+. (25)

∂φs

∂z+
+ 1− Peint φs = 0 at z+ = 1− Peintt

+, (26)

∂φs

∂z+
= 0 at z+ = 0,

∂φs

∂x+
= 0 at x+ = 0, A, (27)

v+z = 0, at z+ = 1− Peintt
+ v+x = v+z = 0 at z+ = 0 or x+ = 0, A. (28)

This problem depends on the initial solvent volume fraction ϕsi through the

concentration-dependent viscosity µ/µi (see Eq. (17)), on the Péclet number

Peint, as well as on the Rayleigh, Marangoni, Schmidt dimensionless parameters

and on the initial aspect ratio A

Rasol ≡
α′
solgρd

3
i∆ϕ

µiD
, Masol ≡

γsoldi∆ϕ

µiD
, Peint ≡

vevdi
D

, Sc ≡
µi

ρiD
, A ≡

W

di
(29)
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with α′
sol = αsol/[1+αsol (1−ϕsi)]. In all simulations, the aspect ratio is large

(5 ≤ A ≤ 30 for the solutal problem). It was checked that, when large enough,

A does not affect our results.

4. Convection Onset and Marginal Stability Determination Methods

The configurations studied are known to display a transition from a purely

diffusive state to convective patterns. Since the undisturbed pure diffusive state

is unsteady, determination of convection onset amounts at defining a time for

convection onset and a corresponding wavenumber. In the subsection below, we

present linear and nonlinear methods to determine when does the convection

start for a given set of control parameters (14) or (29), and at which wavelength.

This leads also to the determination of the marginal stability curve for this

unsteady problem.

4.1. Time and wavenumber corresponding to Convection Onset: Nonlinear Ap-
proach

This first method necessitates nonlinear two-dimensional simulations to be per-

formed. For both thermal and solutal problems, they are based on finite volume

schemes (see Touazi et al. [45] and Trouette et al. [48] for details). In order to

take into consideration the moving upper surface in the solutal problem, this nu-

merical method is based on moving grids (Trouette et al. [48]). In both models,

the initial velocity field is set to zero. For the thermal problem, the initial di-

mensionless temperature field θ(x∗, z∗, t∗ = 0) is a random perturbation added

at each discretized spatial location. This random perturbation is of zero mean

and uniformly distributed between −r∗/2 and r∗/2 [47, 8]. For the solutal prob-

lem, the initial dimensionless solvent volume fraction φs(x
+, z+, t+ = 0) is also

a similar random field of zero mean and uniformly distributed between −r+/2

and r+/2.

Let us denote by < q(z0, t) > the mean of quantity q(x, z0, t) spatially averaged

over the horizontal plane z = z0. For the thermal problem, these simulations

provide the difference < T (z = 0, t) > − < T (z = d, t) > between mean temper-

atures at free surface and bottom as a function of time. The typical evolution
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is displayed in figure C.4. A deviation from the pure diffusive state (thick line

which is obtained by setting Rath = Math = 0) is taken as a signature of free

convection onset. Quantitatively a time t
∗(nl)
on (where superscript “nl” stands for

“nonlinear”) can be exhibited that corresponds to the moment where the norm

of the dimensionless velocity becomes greater than a threshold. This threshold

which characterizes the deviation from pure diffusive state is here defined such

that the dimensional velocity becomes greater than the heat diffusion velocity

κ/d. In dimensionless units, it corresponds to ‖ v∗ ‖2> 1 (Touazi et al. [45]).

Since it depends on the initial perturbation amplitude and on the threshold,

there is some blurredness in the evaluation of time t
∗(nl)
on . On the contrary, the

saturated nonlinear regime reached after t
∗(nl)
on is independent on the initial state

(see figure C.4). This subsequent regime is called quasi-steady in the following

since the temperature difference varies much less during this period than during

the period close to time of convection onset. Note that, at time t
∗(nl)
on , one may

obtain the average cell-to-cell distance providing a wavenumber k
∗(nl)
on .

The same qualitative behavior is observed in the solutal problem for < ϕs(z =

0, t) > − < ϕs(z = d(t), t) > (see figure C.5 for the equivalent experimental

configuration). The method is then similar, the threshold corresponding to

‖ v+ ‖2> 1.

4.2. Time and wavenumber corresponding to Convection Onset: Linear Ap-
proaches

Other methods which are used to determine convection onset are quite different

being based on linear arguments. They are here presented only for the ther-

mal problem with infinite aspect ratio. The linear theory accounts for the dy-

namics of infinitesimal perturbations v∗
p(x

∗, z∗, t∗), θp(x
∗, z∗, t∗), p∗p(x

∗, z∗, t∗)

superposed near the purely diffusive basic state θBS(z
∗, t∗) (which is simulated

setting Rath = Math = 0). They are assumed of the form

(v∗
p, θp, p

∗
p) = (v̂x(z

∗, t∗), v̂z(z
∗, t∗), θ̂(z∗, t∗), p̂(z∗, t∗)) exp(ik∗x∗) (30)
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where k∗ denotes the nondimensional wavenumber along the x∗ direction. The

complex amplitude of the perturbations are governed by the linear system

ik∗v̂x +
∂v̂z
∂z∗

= 0, (31)

1

Pr

∂

∂t∗
v̂x + ik∗p̂−

[

∂2

∂z∗2
− k∗2

]

v̂x = 0, (32)

1

Pr

∂

∂t∗
v̂z +

∂p̂

∂z∗
−

[

∂2

∂z∗2
− k∗2

]

v̂z −Rath θ̂ = 0, (33)

∂

∂t∗
θ̂ + v̂z

∂θBS

∂z∗
−

[

∂2

∂z∗2
− k∗2

]

θ̂ = 0, (34)

v̂z = 0, ∂z∗ v̂x +Math ik
∗θ̂ = 0, ∂z∗ θ̂ +Bi θ̂ = 0, at z∗ = 1, (35)

v̂x = v̂z = 0,
∂θ̂

∂z∗
= 0 at z∗ = 0. (36)

In this linear framework, various alternatives are possible to evaluate the time

of convection onset. First, one may use a frozen-time approximation which

considers at each time t∗ the unsteady temperature basic profile θBS(z
∗, t∗)

and applies the classical normal mode stability method to this frozen state

θBS(z
∗, t∗). The first time for which the stability spectrum of all wavenumbers

contains an eigenvalue with a zero real part, is defined as the onset time t
∗(fr)
on .

This naturally leads to a critical wavenumber k
∗(fr)
on as well.

Another linear approach explicitly takes into account the unsteady character of

basic profile θBS(z
∗, t∗). It is based on the non-normal method (for details see

Doumenc et al. [12]). For the non-autonomous system (31)-(36), the standard

notion of growth rate based on eigenvalues is no more valid. One should resort to

amplification gains as a function of time to characterize the flow stability. Given

an initial disturbance profile, a time t∗, and a wavenumber k∗, one defines two

different norms EV and ET for the perturbation amplitudes. The first norm is

based on the kinetic energy of perturbations

EV (t
∗, k∗) ≡

∫

(v̂x(z
∗, t∗, k∗)v̂#x (z∗, t∗, k∗) + v̂z(z

∗, t∗, k∗)v̂#z (z∗, t∗, k∗))dz∗

(37)

where superscript # denotes complex conjugation. The integration is performed

over the entire layer height and perturbations are obtained after integrating the
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above linear non-autonomous system (31)-(36) over the time period [0, t∗]. The

second norm is based not on the velocity field but on the temperature field:

ET (t
∗, k∗) ≡

∫

θ̂(z∗, t∗, k∗)θ̂#(z∗, t∗, k∗)dz∗ (38)

The amplification gain at time t∗ and for each wavenumber k∗ is then evalu-

ated by computing factor EV (t
∗, k∗)/EV (0, k

∗) or ET (t
∗, k∗)/ET (0, k

∗). Given

a norm, the non-modal analysis solves an optimization problem based on an iter-

ation procedure and the introduction of an adjoint problem (Farrell and Ioannou

[14], Andersson et al. [1], Luchini [22], Schmid and Henningson [40]) which al-

lows: (a) to determine, for given wavenumber k∗ and time t∗, the maximum en-

ergy amplification Ĝ(t∗, k∗) ≡ Max[E(t∗, k∗)/E(0, k∗)] over all possible initial

perturbations profiles; and (b) to exhibit the optimal perturbation mode defined

by its initial z∗−profile, which actually reaches this upper bound (Schmid and

Henningson [40]).

Using the value Ĝ(t∗; k∗), it is feasible to extend to unsteady flows the usual

concepts of classical stability analysis. For instance, Ĝ(t∗; k∗) can be maximized

over wavenumber k∗ providing a maximum amplification Gmax(t
∗). This value

is effectively reached for a specific wavenumber k∗max(t
∗) and for a specific initial

perturbation structure in z∗. These latter two quantities play the role of the

most amplified wavenumber and of the most amplified mode for the standard

analysis but at a given time t∗. Let us now consider a threshold Gthres. When

the system is capable to reach such a value Gthres, the basic flow is considered

as unstable. The first time when Gmax(t
∗) = Gthres defines a new time t

∗(nn)
on

of convection onset (where superscript “nn” stands for non-normal) and an

associated wavenumber k
∗(nn)
on = k∗max(t

∗(nn)
on ).

4.3. Comparisons between approaches

By varying the threshold value Gthres, the non-normal analysis provides an in-

terval of times t
∗(nn)
on shown in figure C.6 in the pure Marangoni case. Between

Gthres = 1 and 100, t
∗(nn)
on varies by one decade, and there is only a slight varia-

tion between Gthres = 100 and 104. It is a nice feature of this method to define
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a bandwidth of uncertainty, which is inherent here to the transient character

of the problem. Results obtained from the nonlinear approach, in which the

uncertainty arises because of the unknown amplitudes of initial perturbations

are similar to those obtained by the non-normal approach for Gthres & 100.

Finally the frozen-time approach provides a value t
∗(fr)
on which is always a lower

bound for t
∗(nn)
on or t

∗(nl)
on .

Figure C.7 indicates that the same comments apply for the critical wavenumber

k
∗(nl)
on , k

∗(fr)
on , k

∗(nn)
on , thus demonstrating that nonlinear and non-normal ap-

proaches for Gthres & 100, though of a different nature, give equivalent results.

Based on this remark, in most of the cases considered in this work, we will

mainly use the nonlinear approach to determine the conditions of convection

onset. Moreover direct numerical simulations also give a more complete de-

scription by providing velocity fields in the nonlinear regime and time evolution

of the wavelengths.

4.4. Critical Control Parameters

For some sets of control parameters (Math, Rath, Bi, Pr), the critical times

t
∗(nn)
on , t

∗(fr)
on or t

∗(nl)
on cannot be defined. For instance, this happens in the non-

normal mode approach when Gmax(t
∗) always remains below Gthres. In that

case, convection is predicted not to occur and the system to be stable through

the instability mechanism considered. Critical Rayleigh or Marangoni numbers

can be then defined as the smallest Rayleigh or Marangoni numbers for which

times of convection onset appear. In the control parameters space, a marginal

stability curve such as Racth(Bi,Math, P r) can also be computed, each point of

the curve being associated to critical optimal time t∗c = t∗on(Racth,Math, Bi, Pr)

and a critical wavenumber k∗c = k∗on(Racth,Math, Bi, Pr). The results of marginal

stability curve has been extensively analyzed in previous studies. See Doumenc

et al. [12], Touazi et al. [45] for the critical conditions of the thermal problem,

and Trouette et al. [48] for the solutal problem. Here it is introduced because

of the comparison with experiments performed in section 5.1.
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5. Comparisons of numerical predictions with results of PIB/toluene
experiments.

5.1. Comparisons of critical control parameters

Experimental data and previous numerical results for thermal and solutal mod-

els which provided stability thresholds are gathered in figure C.8. The diagram

is drawn in the initial thickness/viscosity plane for the PIB/toluene solution

(the initial viscosity is related to the initial polymer volume fraction through

equation 17).

The theoretical thresholds separate the diagram in three regions (a) a stable

region for both solutal and thermal mechanisms; (b) a region where solutal

Bénard-Marangoni mechanism generates an instability; (c) a region where both

solutal and thermal mechanisms generate an instability.

The frontier delimiting the observation of convection in PIB/toluene experi-

ments is in agreement with the region of transition from stable to unstable con-

figurations for the thermal Rayleigh-Bénard-Marangoni problem (two continu-

ous lines in figure C.8). Indeed no convection was observed for configurations in

which solutal convection is expected (empty squares in figure C.8). This seems

paradoxical since, based only on marginal curves, the solutal Bénard-Marangoni

mechanism appears to be the most unstable (an exception would be the lowest

viscosities corresponding to solutions very close to pure solvent, where solu-

tal convection is not defined). In addition, the predominance of solutal with

respect to thermal instability given by theoretical model agrees with previous

works (de Gennes [10], Machrafi et al. [23]). This paradox is explained in section

5.3.

In the subsections below, we focus on configurations above the thermal and

solutal stability thresholds.

5.2. Comparisons of t∗on when thermal and solutal problems are both unstable

From figure C.8, one can deduce that test cases 1 and 2 in table 1 (indicated

by green circles in figure C.8) are clearly unstable for both thermal and solutal

problems. The times of convection onset obtained by numerical simulations or
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Case 1 Case 2
Thermal model [0.6 - 3] [14 - 60]
Solutal model [0.8 - 2] [2 - 7]
Experiments . 1 . 10

Table 2: Time (in seconds) corresponding to the onset of convection: comparison of 2D
numerical simulations and experiments for cases 1 and 2

experimental visualizations are compared in table 2. The time intervals given for

models correspond to different initial perturbation amplitudes. In experiments,

the time visualization at which the pattern becomes clearly visible is estimated

similar by iriodin particles or infrared camera. It corresponds to an upper bound

of the time of onset.

Despite the large Lewis number (Le ≡ κ/D ∼ 103), models show that solutal

convection appears at least concomitantly and generally before the thermal one.

This is related to the fact that the two cases are far from the solutal Marangoni

stability frontier but close to the thermal one (figure C.8). Time of onset for

the solutal model is consistent with the experimental estimation for both test

cases. The thermal model is also consistent with test case 1 experiment, and the

discrepancy with test case 2 is very weak. This analysis is hence not sufficient

to determine in a clear cut manner the nature of the observed flow.

5.3. Comparisons of wavelengths and velocities when thermal and solutal prob-
lems are both unstable

The wavelengths obtained by numerical simulation or experimental visualiza-

tion are compared in figure C.9. For both test cases, the observed wavelengths

are in very good agreement with the thermal model results while the solutal

wavelengths are significantly lower. This is true near the onset but remains so

in the later saturated regime.

The preponderance of the thermal mechanism for the two configurations is

confirmed by the quantification of velocities (see figure C.10). Velocities induced

by thermal effects predominate over the one of solutal origin: thermal velocities

are an order of magnitude larger than solutal ones for test case 1, half a decade

for test case 2. When the thermal convection is not active, velocities induced by
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solutal gradients exist but are too small to be detected by visualization used in

the mentioned experiments (see section 6.2 for a more general argument). This

explains the paradox mentioned in subsection 5.1. As a conclusion, the analysis

of these two test cases clearly highlights the need for a complete characterization

of convective regimes to determine the dominant mechanism. Beyond thresh-

old estimation, the saturating amplitude of the instability is also an important

parameter.

6. Quasi-steady regime in the Bénard Marangoni convection.

Previously, we have seen that estimating the velocity field in the quasi-

steady regime may be a way to determine which is the instability mechanism

that predominates when both mechanisms are simultaneously unstable. Here

we focus on the quasi-steady regime where it is possible to establish scaling laws

for velocity field and thus to compare thermal to solutal contributions.

This generalization is performed for the Bénard-Marangoni problem taking

into account both thermal and solutal effects but neglecting buoyancy (Rath =

Rasol = 0). This is a relevant assumption for thin films encountered in coating

applications.

6.1. Scaling laws and comparison with numerical simulations

Based on some simplifying assumptions, scaling laws are obtained by “solv-

ing” equations of thermal and solutal models in terms of order of magnitude.

All the equations below and in Appendix B must be hence understood as orders

of magnitude only since these scalings do not give prefactors. Note that this ap-

proach is similar to the analysis of a transient free convection problem described

in Bejan [3], and has already been applied to the thermal Bénard-Marangoni

problem in an evaporative liquid (Touazi et al. [45]). In the following, the no-

tation “x . y” (resp. “x & y”) stands for “x ∼ y or x ≪ y” (resp. “x ∼ y or

x ≫ y”). The main assumptions are as follows:

H1 Below the free surface, we assume the existence of a hydrodynamic, a ther-

mal as well as a solutal boundary layer of respective thicknesses δH , δT and δS .
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H2 Time derivative terms are neglected (quasi-steady regime).

H3 Temperature (resp. solvent concentration) variations across a convective cell

in the vertical and horizontal directions are of same order of magnitude. They

are denoted by ∆θ (resp. ∆φs).

H4 The wavelength of convective structures scales with the layer thickness.

Hence the order of magnitude of the dimensionless characteristic length in the

horizontal direction is one.

H5 The analysis is restricted to fluids characterized by a Prandtl number Pr & 1

(resp. Schmid number Sc & 1).

H6 Even for solutal model, viscosity and layer thickness are assumed constant

and equal to their initial values. This is valid since we focus on the beginning

of drying.

Scaling analysis of the thermal problem and its validation by comparison

with numerical simulations have been presented in a previous paper (see Touazi

et al. [45]). Scaling laws of the solutal configuration are derived in Appendix B.

Table 3 summarizes the overall results obtained for velocity and temperature

or concentration variations as a function of the relevant dimensionless numbers.

Different domains are delineated: domain A (no convection) and domains B,

C, D, E which correspond to different cases for δH , δT and δS . The frontiers

delimiting such domains are given in table 4. An illustration of the different

domains is given in figure C.11 for the solutal problem and Sc = 2.3×105 (value

of Sc corresponding to test case 2).

Solutal scaling laws have been tested via numerical simulations by getting, at

the beginning of the quasi-steady state, the L2 norm of the free surface velocity.

Several configurations have been considered, all in the B domain. They are

based on PIB/toluene or PS/toluene systems, assuming variable or constant

viscosity and different values of aspect ratio A. Figure C.12 shows that in all

cases, results of numerical simulations compare very well with the scaling law,

over three decades of Masol. The free surface velocity prefactor deduced by fit

is about 0.2.

As a final comment, this analysis assumes a priori the existence of convection
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patterns and of quasi-steady regime. Frontiers obtained by this analysis must

be compatible with this assumption. Region A (no convection) cannot be thus

determined using simply this approach and necessitates the use of a stability

analysis. This has been done for the thermal problem for 10−3 < Bi < 103

(Doumenc et al. [12]). For the solutal model, numerical simulations for Peint . 1

gives Masol ≃ 100 (see Trouette et al. [48]) which is consistent with the scaling

Masol ∼ 1 for the A-B frontier (see figure C.11).

Thermal problem Solutal problem
domain δH δT ∆θ scaling laws δH δS scaling laws

A no convection

B ∼ 1 ≪ 1 ≪ 1 δT ∼ (Math.Bi)−1/3 ∼ 1 ≪ 1/Peint δS ∼ Ma
−1/3
sol

∆θ ∼ Ma
−1/3
th .Bi2/3 ∆φs ∼ Ma

−1/3
sol

v∗x ∼ (Math.Bi)2/3 v+x ∼ Ma
2/3
sol

C ∼ 1 ≪ 1 ∼ 1 δT ∼ Ma
−1/2
th ∼ 1 ∼ 1/Peint ∆φs ∼ Ma−1

sol.P e2int

v∗x ∼ Math v+x ∼ Pe2int

D ≪ 1 ≪ 1 ∼ 1 δT ∼ Ma
−1/3
th .P r−1/6 ≪ 1 ∼ 1/Peint ∆φs ∼ Ma−1

sol.Sc
−1/2.P e3int

δH ∼ Ma
−1/3
th .P r1/3 δH ∼ Sc1/2.P e−1

int

v∗x ∼ Ma
2/3
th .P r1/3 v+x ∼ Pe2int

E ≪ 1 ≪ 1 ≪ 1 δT ∼ (Math.Bi)−1/4.P r−1/8 ≪ 1 ≪ 1/Peint δS ∼ Ma
−1/4
sol .Sc−1/8

δH ∼ (Math.Bi)−1/4.P r3/8 δH ∼ Ma
−1/4
sol .Sc3/8

∆θ ∼ Ma
−1/4
th .Bi3/4.P r−1/8 ∆φs ∼ Ma

−1/4
sol .Sc−1/8

v∗x ∼ (Math.Bi)1/2.P r1/4 v+x ∼ Ma
1/2
sol .Sc

1/4

Table 3: Quasi-steady regime in the BM configuration - Scaling laws.

6.2. Comparison of thermal and solutal velocities

From comparison of scaling analysis with numerical simulations, the domain

explored in typical drying experiments like test case 1 is shown to correspond

domain domain boundary equation boundary equation
thermal problem solutal problem

A B Bi×Math ∼ 1 Masol ∼ 1
A C Bi ∼ Math unknown

B C Bi2 ×Ma−1
th ∼ 1 Masol ∼ Pe3int

B E Bi2/3 ×Ma
2/3
th ∼ Pr Masol ∼ Sc3/2

C D Math ∼ Pr Peint ∼ Sc1/2

D E Bi6 ×Ma−2
th ∼ Pr Masol ∼ Pe4int.Sc

−1/2

Table 4: Quasi-steady regime in the BM configuration - boundaries between the different
domains.
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to B domains. This is true in thermal and solutal problems. Let us use the

scalings of table 3 to compare thermal and solutal velocities.

v∗x
v+x

∼

[

Math.Bi

Masol

]2/3

, (39)

or in dimensional quantities:

vth
vsol

∼ Le−1/3

[

γthLc
−1

γsol

]2/3

ϕ
−2/3
pi

[

Qm

ρvev

]2/3

(40)

with Le ≡ κ/D the Lewis number, c the heat capacity (c = λ/(ρκ)) and Qm

the evaporation flux at the beginning of the drying. The two first terms depend

on the system properties only, the two last ones on experimental conditions.

The Lewis number compares the solutal diffusion characteristic time to the

thermal one. It is of order of 103 for both PIB/toluene and PS/toluene solutions.

The second dimensionless number (between square brackets) compares the two

driving mechanisms (≃ 5.2 for PIB/toluene, 3.5 for PS/toluene). Notice that

the difference between the evaporation flux at the beginning of the drying Qm

and during the regime at constant evaporation flux (ρvev) is due to evaporation

cooling effect. Nevertheless, they are very close (the ratio is about 1.3 for the

test case 2, cf. figure C.1), so that the last term of Eq. 40 will be equal to one

as an order of magnitude.

Remarkably enough, the ratio of the thermal and solutal velocities does not

depend on the sample thickness (see Eq. 40). For a quantitative comparison,

note that the prefactors obtained through numerical simulations are close to 0.2

for thermal (see Touazi et al. [45]) and solutal problem (figure C.12). Hence,

for both solutions (PIB or PS in toluene), the ratio of the thermal and solutal

velocities thus reads
vth
vsol

≃ 0.3 ϕ
−2/3
pi (41)

The above result has been derived for pure Marangoni configurations, i.e. ne-

glecting buoyancy, and assuming that both thermal and solutal problems are

unstable. In such a configuration, it leads to the following conclusion: when

the thermal and solutal mechanisms are both involved, comparison of stability
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thresholds or critical times is not sufficient. It is also necessary to consider the

velocities induced by the two phenomena. For dilute solutions (e.g. ϕpi = 0.006

as in experimental test case 1), the thermal velocity is one order of magnitude

higher than the solutal one, which is consistent with the result presented in

figure C.10. The two velocities would reach the same order of magnitude for

ϕpi ≃ 0.2. Higher polymer volume fraction would induce very high viscosity

(see figure C.3), so we can conclude that, for the two polymer solutions under

investigation, if thermal convection is present, it could hardly be dominated by

solutal convection.

6.3. Comparison with PS/toluene experiments

The set of experiments performed by Bassou and Rharbi [2] concerns thin

PS/toluene films with initial thickness di = 1.4 mm. Experimental configura-

tions and corresponding dimensionless numbers are detailed in table 1 (cases 3

to 5). Velocity measurements have been performed using the particle tracking

method, with an optical microscope connected to a CCD camera. This method

allows the measurement of small velocities (a few µm.s−1, cf. Bassou and Rharbi

[2] for experimental details). Using the critical Rayleigh and Marangoni num-

bers from Doumenc et al. [12] for the thermal problem, and from Trouette et al.

[48] for the solutal problem, it is possible to show that these configurations

are all stable for the thermal and solutal Rayleigh-Bénard problem as well as

the thermal Bénard-Marangoni problem, and unstable for the solutal Bénard-

Marangoni problem. This confirms that the flow observed in experiments can

only be driven by solutal surface tension gradients, as stated by Bassou and

Rharbi in their article. The mechanism of cells formation in these experiments

being clearly known, the measured velocities can be used for comparison with

the numerical simulations of the solutal Bénard-Marangoni problem. Velocities

measured close to the free surface at the beginning of the drying in the nonlinear

quasi-steady regime are plotted in figure C.12 (the error bars give the minimum

and maximum values measured during the first 1000 s). There are not enough

experimental data to conclude on the validity of the scaling presented in section
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3, but comparison with numerical simulations reveals that the model overesti-

mates the experimental results by a factor 3. Even if this discrepancy does not

put into questions the conclusions of the paper based on comparison of order

of magnitudes, it is interesting to understand its origin. This difference seems

too high to be explained by experimental uncertainties (velocity measurement)

or by uncertainties over system properties (viscosity, diffusion coefficient,...) or

else by the choice of velocity L2 norm to express surface velocity from numerical

simulations. The reason of such a discrepancy should hence be attributed to

some model assumptions. Soret effect is neglected, but this assumption seems

correct: using the scaling laws from table 3 (see Appendix C), it is shown that

Soret effect generates a polymer flux which is about two orders of magnitude

lower than the flux driven by the concentration gradient due to evaporation.

Turning to the modelling of the free surface, solution surface tension is ex-

pressed as a function of bulk concentration near the interface (see Eq. 16).

Surface tension actually depends on the surface concentration. In order to get

a univoque relationship between the bulk concentration near interface and the

surface concentration itself, local thermodynamic equilibrium between the bulk

and the interface must be satisfied. Otherwise (out of equilibrium surface), one

should consider the dynamic of the solvent transport at the free surface, as it has

already been done with soluble surfactants (see for example Yiantsios and Hig-

gins [56], Shklyaev, S. and Nepomnyashchy, A.A. [43]). This would necessitate a

more elaborate model, but also experiments performed with well characterized

polymer solutions for its validation.

7. Conclusion

In this study, we present a detailed analysis of free convection occuring dur-

ing the drying of plane layers of polymer solutions. Four mechanisms, based

on buoyancy or Marangoni effect, of thermal or solutal origin, are taken into

account. We show that when a configuration is unstable for several mechanisms,

the comparison of stability thresholds may be insufficient to predict which mech-

anism dominates: a nonlinear approach is then needed. This theoretical and
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numerical work combined with previous studies (Doumenc et al. [12], Touazi

et al. [45], Trouette et al. [48]) provides all the required tools to analyze thor-

oughly the problem.

First, different methodologies are proposed in a transient problem to predict

the critical time for convection onset. Nonlinear and non-normal methods give

similar results, within the uncertainty inherent to any transient problem. We

then focus on two configurations unstable for both the thermal and the solutal

problem. The comparison of critical times, which is the information that a linear

approach could give, does not allow to discriminate. Nonlinear 2D simulations

show that temperature gradients produce higher velocities than concentration

gradients. We have thus exhibited configurations where thermal mechanism is

dominant, while a simple comparison of stability thresholds would have lead to

the reverse conclusion. When comparing to experimental results, a very good

agreement between simulated thermal wavelengths and experimental ones are

obtained.

Finally, using scaling arguments, we derive a general description of the non-

linear quasi-steady regime for the Bénard-Marangoni configuration. Correla-

tions have been obtained for the thermal and solutal problem and validated by

numerical simulations. One important result is the estimation of the ratio of

the thermal velocity to the solutal velocity (Eq.40), which gives a simple rela-

tion to easily estimate the relative importance of the two mechanisms. It would

be useful to derive the same type of relation for other systems than polymer

solutions, for instance water/ethanol, where both components are volatile. In

the present work thermal and solutal mechanisms have been decoupled, in or-

der to highlight their respective roles for experiments where both mechanisms

lead to unstable configuration. Next step should concern the development of

a complete thermal-solutal model to put forward coupled effects. This would

be necessary to analyse longer times, when the increase of viscosity due to the

decrease of solvent concentration induces a coupling between the thermal and

solutal problems (this can result in the formation of a crust, observed in ex-

periments by Toussaint et al. [46]). The coupling between the two problems
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should also be needed to perform a more detailed analysis, like for instance 3D

pattern evolution, especially when the thermal and solutal mechanisms lead to

comparable velocities. Another problem requiring coupled models concerns the

case of thermal and solutal mechanisms acting in opposite way, one stabilizing

the system.
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Appendix A. Physical properties of PIB/toluene and PS/toluene so-
lutions

Viscosity

To take into account the variation of the solution viscosity with solvent con-

centration, we use the empirical law interpolated from measurements (data

from Gorand et al. [17], Mark [25] for PIB/toluene, Bassou and Rharbi [2]

for PS/toluene):

log10(µ) = a0 + a1 Y + a2 Y 2 + a3 Y 3 + a4 Y 4 (A.1)

with Y = log10(ϕp), (a0, a1, a2, a3, a4) = (8.235, 14.02, 6.575, 1.392, 0.1114) for

PIB/toluene and (3.361, 6.7733, 2.4433, 0.30432, 0) for PS/toluene (see figure C.3).

Mutual diffusion coefficient

To the best of our knowledge, there is no available data in the literature for

the mutual diffusion coefficient of PIB/toluene solutions at room temperature,

for the concentration range covered by our experiments. Nevertheless, a rough

estimate D ≃ 10−10 m2s−1 can be obtained by extrapolating measurements

performed in the concentrated regime by Doumenc et al. [13].

On the contrary, the mutual diffusion in PS/toluene system has been widely

characterized. Values in table A.5 have been obtained by averaging data from

Roots and Nyström [36], Brown et al. [6], Zhang et al. [59] at temperature 25◦C

and Rauch and Kohler [32] at temperature 22◦C.
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ϕp 0.10 0.15 0.20
D × 1010/m2.s−1 1.25± 0.15 1.60± 0.15 1.85± 0.25

ST /K−1 0.074 0.057 0.047

Table A.5: Mutual diffusion coefficient D and polymer Soret coefficient ST of PS/toluene
solution at room temperature as a function of polymer volume fraction (from Roots and
Nyström [36], Brown et al. [6], Zhang et al. [59], Rauch and Kohler [32] for D, the two last
references also provide ST ). The uncertainty range of D represents the scattering over the
different sources. The differences between ST values from Zhang et al. [59] and Rauch and
Kohler [32] are lower than the experimental uncertainty, which is around 10−3.

Other physical properties

Some properties of PIB/toluene and PS/toluene solutions are assumed to be

equal to those of pure toluene (from Riddick et al. [35], Monteil and Postel [28])

κ = 0.97× 10−7 m2.s−1, λ = 0.142 W.m−1.K−1, L = 3.96× 105J.kg−1,

ρ0(T = 200C) = 870 kg.m−3, αth = 1.07× 10−3 K−1,

σ0(T = 200C) = 28.5× 10−3 N.m−1, γth = 1.19× 10−4 N.m−1.K−1,

Specific properties of the PIB/toluene solution are the following ones (cf. [46, 25]

for details):

PIB molar mass: Mw = 500 kg.mol−1, ρPIB ≃ 920 kg.m−3, αsol = 5.82 ×

10−2, γsol = 5.4× 10−3 N.m−1.

Specific properties of the PS/toluene solution are the following ones (cf. [2, 25]

for details):

PS molar mass: Mw = 150 kg mol−1, ρPS ≃ 1050 kg.m−3, αsol = 0.21, γsol =

8.0× 10−3 N.m−1. Soret coefficient is reported in table A.5.
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Appendix B. Quasi-steady regime in the Bénard-Marangoni solutal
convection: scaling laws

In this appendix, scaling laws for the Bénard-Marangoni solutal convection are

derived in the quasi-steady regime. Since we consider the beginning of the quasi-

steady regime, we assume d ∼ di, µ ∼ µi and ϕs ∼ ϕsi in the bulk (i.e. below

the solutal boundary layer). From these assumptions and after the removal of

time partial derivatives (quasi-steady regime), governing equations (22), (23)

and (24) read (for clarity sake, supercripts + are omitted on dimensionless

variables):

∂xvx + ∂zvz = 0, (B.1)

1

Sc
(vx∂xvx + vz∂zvx) = −∂xp+ ∂2

xvx + ∂2
zvx, (B.2)

1

Sc
(vx∂xvz + vz∂zvz) = −∂zp+ ∂2

xvz + ∂2
zvz, (B.3)

vx∂xφs + vz∂zφs = ∂2
xφs + ∂2

zφs. (B.4)

If one eliminates the pressure gradient term from equations (B.2) (B.3), an

equation for vorticity ω is derived

vx∂xω + vz∂zω = Sc(∂2
x + ∂2

z )ω with ω ≡ ∂zvx − ∂xvz (B.5)

which expresses a balance between inertia (left-hand side) and friction (right-

hand side) in the hydrodynamic boundary layer. Finally boundary conditions

become at the bottom

vx = vz = 0, ∂zφs = 0 at z = 0 (B.6)

and at the upper surface

∂zφs + 1− Peintφs = 0 (B.7)

∂zvx +Masol ∂xφs = 0. (B.8)

vz = 0. (B.9)

Scaling laws are obtained by solving equations B.1 to B.9 in terms of order

of magnitude. From now on, all quantities are thus intended to be orders of
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magnitude. The continuity equation (B.1) coupled to hypotheses H1 and H4

(see section 6) imposes

vz ∼ δHvx (B.10)

From hypoteses H1 and H4 and equation (B.5) and assuming δH ≪ 1 one easily

gets

vx ∼
Sc

δ2H
(B.11)

For consistency, this equation is only valid when
√

Sc/vx ≪ 1. When
√

Sc/vx &

1, the hydrodynamic boundary layer thickness saturates at δH ∼ 1, and inertia

is no more involved in the problem.

From equation (B.8), a relation between ∆φs ≡ φs(x, z = 0) − φs(x, z = 1)

the variation of solvent volume fraction and velocity can be found:

vx ∼ δH Masol ∆φs. (B.12)

The transport equation (B.4) expresses the balance between the solvent supplied

by convection along the x-axis, the solvent supplied by convection along the z-

axis, and the diffusion in the liquid. These three terms are respectively of order

vx∆φs ; v̂z
∆φs

δS
;
∆φs

δ2S
(B.13)

where v̂z denotes the magnitude of vertical velocity within the solutal boundary

layer. This quantity can be different from vz the magnitude of vertical velocity

within the hydrodynamic boundary layer. By definition δH . 1 and δS . 1.

Three cases can then be considered

Case 1 : δH ≪ 1 and δS . δH

Case 1′ : δH ≪ 1 and δH . δS

Case 2 : δH ∼ 1 and δS . δH

Case 1 implies δS . δH and thus v̂z ∼ δS
δH

vz. The balance between the

different terms of (B.13) plus equation (B.10) leads to

vx ∼ δ−2
S (B.14)
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Case 1’ implies v̂z ∼ vz. The balance between the different terms of (B.13)

plus equation (B.10) leads to the same equation (B.14).

Case 2 implies v̂z ∼ δSvz. The balance between the different terms of (B.13)

plus equation (B.10) leads again to equation (B.14).

When equation (B.14) is compared with equation (B.11) (valid only when

δH ≪ 1), this imposes

δS/δH ∼ S−1/2
c when δH ≪ 1 (B.15)

Since we assume that Sc & 1, this means that δS . δH (for δH ∼ 1, this is

obviously true). Note as well that this implies that case 1’ is not possible.

Due to the fact that φs ≤ 0 and ∂zφs ≤ 0, the boundary condition (B.7)

expresses the balance between only two terms:

∆φs

δS
∼ (1− Peintφs) (B.16)

Assuming φs ∼ 0 in the bulk (quasi-steady assumption), we get ∆φs ∼ −φs and

the boundary condition (B.7) reads

∆φs ∼ (δS + PeintδS∆φs). (B.17)

This equation cannot be verified if PeintδS ≫ 1, so only two cases are possible

Case α : δSPeint ≪ 1 then ∆φs ∼ δS (B.18)

Case β : δSPeint ∼ 1 (B.19)

We must now consider the four combinations of cases 1 or 2 and cases α or β

taking into account that δS . δH is always valid. In the following, we only

derive explicitly the single case (1 and α). Let us assume that cases 1 and α are

valid. This means

δH ≪ 1 and δSPeint ≪ 1 (B.20)

Using equations B.11, B.12, B.14 and B.18, it is possible to get expressions for

vx, δS , δH and ∆φs
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vx ∼ S1/4
c Ma

1/2
sol (B.21)

δH ∼ S3/8
c Ma

−1/4
sol (B.22)

δS ∼ S−1/8
c Ma

−1/4
sol (B.23)

∆φs ∼ S−1/8
c Ma

−1/4
sol . (B.24)

These relations should be compatible with the assumptions which imposes

δH ≪ 1 ⇒ S3/2
c ≪ Masol (B.25)

δSPeint ≪ 1 ⇒ Pe4intS
−1/2
c ≪ Masol (B.26)

For the other cases, the method is similar. The synthesis of all the cases are

presented in tables 3 and 4. The different domains are displayed in figure C.11.

Appendix C. Soret effect

Our objective is to show that Soret effect is negligible compared to the diffu-

sion flux driven by the concentration gradient. We consider the configuration of

section 6.3 (PS/toluene solution of initial thickness di = 1.4 mm, test cases 3 to

5), where the solutal Bénard-Marangoni problem is the only one to be unstable.

The polymer diffusive flux j is the sum of the flux jf = −Dρ∇ωp driven

by the concentration gradient (Fick’s law) and the flux js = −DρSTωpωs∇T

driven by the temperature gradient (Soret effect). ST is the Soret coefficient,

ωp and ωs are the mass fractions of polymer and solvent, respectively. With the

assumption of constant density we get:

j = jf + js = −Dρ∇ϕp −DρSTϕpϕs∇T (C.1)

Soret effect is negligible if the condition ‖js‖
‖jf‖

≪ 1 is satisfied. The order of

magnitude of ‖jf‖ is readily obtained using the scaling laws of B region in table

3:

‖jf‖ ∼ Dρ
∆ϕ

di

∆φs

δs
∼ Dρ

∆ϕ

di
(C.2)
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A higher bound of ‖js‖ can be derived from the temperature gradient of the

diffusive thermal state (indeed, solutal convection can only decrease the temper-

ature gradient by mixing). For the configurations under consideration, Bi . 1

and the dimensionless temperature gradient reads ∂θ
∂z∗

∼ Bi (see the study of

the thermal basic state by Doumenc et al. [12]). We get:

‖js‖ . DρSTϕpϕs
∆Tst

di
Bi (C.3)

The desired relation follows:

‖js‖

‖jf‖
. Le−1 (STLc

−1) (
Qm

ρvev
) ϕsi (C.4)

with Le ≡ κ/D the Lewis number, L the latent heat of vaporization and c the

heat capacity. From Appendix A we get Le ∼ 103 and (STLc
−1) ∼ 10. The

two last terms are of order of 1, so the final result is:

‖js‖

‖jf‖
. 10−2 ≪ 1. (C.5)

This result clearly supports the assumption of negligible Soret effect.

35



References

[1] Andersson, P., Berggren, M., Henningson, D. S., 1999. Optimal distur-

bances and bypass transition in boundary layers. Phys. Fluids 11, 134–150.

[2] Bassou, N., Rharbi, Y., 2009. Role of Bénard-Marangoni instabilities during

solvent evaporation in polymer surface corrugations. Langmuir 25, 624–632.

[3] Bejan, A., 1984. Convection heat transfer. John Wiley and sons.

[4] Berg, J., Boudart, M., A., A., 1966. Natural convection in pools of evapo-

rating liquids. J. Fluid Mech. 24, 721–535.

[5] Bodenschatz, E., Pesch, W., Ahlers, G., 2000. Recent developments in

Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709–778.

[6] Brown, W., Johnsen, R. M., Konak, C., Dvoranek, L., 1991. Dynamics in

concentrated polymer solutions by polarized Rayleigh-Brillouin scattering

and dynamic light scattering. J. Chem. Phys. 95 (11), 8568–8577.

[7] Cammenga, H., Schreiber, D., Barnes, G., Hunter, D., 1984. On Marangoni

convection during the evaporation of water. J. Colloid Interface Sci. 98 (2),

585 – 586.

[8] Chénier, E., Desceliers, C., Delcarte, C., Trouette, B., Doumenc, F., Guer-

rier, B., August 8-13 2010. Sensitivity of diffusive-convective transition to

the initial conditions in a transient Bénard-Marangoni problem. In: Proc.

EPM-Conference. No. CDROM nI846DV. Washington D.C., USA.

[9] Colinet, P., Legros, J. C., Velarde, M. G., 2001. Nonlinear Dynamics of

Surface-Tension-Driven Instabilities. Wiley-VCH.

[10] de Gennes, P., 2001. Instabilities during the evaporation of a film: Non-

glassy polymer + volatile solvent. Eur. Phys. J. E 6 (5), 421–424.

[11] de Gennes, P., 2002. Solvent evaporation of spin cast films: crust effects.

Eur. Phys. J. E 7, 31–34.

36



[12] Doumenc, F., Boeck, T., Guerrier, B., Rossi, M., 2010. Transient Rayleigh-

Bénard-Marangoni convection due to evaporation : a linear non-normal

stability analysis. J. Fluid Mech. 648, 521–539.

[13] Doumenc, F., Guerrier, B., Allain, C., 2005. Mutual diffusion coefficient

and vapor-liquid equilibrium data for the system pib/toluene. J. Chem.

Eng. Data 50, 983–988.

[14] Farrell, B. F., Ioannou, P. J., 1996. Generalized stability theory part I:

autonomous operators. J. Atmos. Sci. 53, 2025–2040.

[15] Foster, T., 1965. Onset of convection in a layer of fluid cooled from above.

Phys. Fluids 8 (10), 1770–1774.

[16] Foster, T., 1965. Stability of a homogeneous fluid cooled uniformly from

above. Phys. Fluids 8 (7), 1249–1257.

[17] Gorand, Y., Doumenc, F., Guerrier, B., Allain, C., 2003. Instabilités de
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Figure C.1: Experimental evaporation flux as a function of time (experimental conditions
corresponding to test case 2 in table 1). The right figure is a focus on the initial stages. Times
t1, t2, t3 (vertical dashed-dotted lines) separate the different regimes. The horizontal dashed
line represents the plateau for t1 . t . t2.
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Figure C.2: Formation of thermal convection cells observed by infrared camera (experimental
conditions of test case 2 in table 1). The dimensional time corresponding to each image is
indicated in the lower right corner.
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0), other lines represent convective cases for different initial amplitudes r∗ for temperature
perturbations.
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Figure C.5: Solutal model for test case 2 in table 1: difference < ϕs(z = 0, t) > − <
ϕs(z = d(t), t) > of horizontal mean solvent volume fractions as a function of time. The
thick line represents the pure diffusive case (obtained by setting αsol = 0 and γsol = 0 i.e.
Rasol = Masol = 0), other lines represent convective cases for different initial amplitudes r+

for solvent volume fraction perturbations.
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Figure C.6: Times t∗on of convection onset obtained as a function of Marangoni numbers

Math using different approaches: t
∗(fr)
on given by the frozen-time approach ; t

∗(nn)
on given

by the non-normal approach with ET norm and different thresholds Gthres ; t
∗(nl)
on given

by the nonlinear approach for different perturbation amplitudes (10−7 ≤ r∗ ≤ 10−2 for
Math = 2 × 104, 10−9 ≤ r∗ ≤ 10−4 for Math = 9× 104 and Math = 2.5 × 105). The other
dimensionless parameters are such that Rath = 0, Bi = 0.01. For non-normal and frozen-time
methods, Prandtl number is set to Pr = ∞, for the nonlinear approach, it is set to Pr = 100.

10
4

10
5

10
6

Ma
th

1

10

C
ri

tic
al

 w
av

en
um

be
r

Frozen-time
Non-normal approach - G

thres
=1

Non-normal approach - G
thres

=10
2

Non-normal approach - G
thres

=10
4

Nonlinear approach

Figure C.7: Wavenumber k∗on at onset obtained as a function of Marangoni number Math

using different approaches. Same conditions than figure C.6. k
∗(fr)
on is given by the frozen-time

approach, k
∗(nn)
on by the non-normal approach with different thresholds Gthres ; k
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Figure C.8: Stability diagram for PIB/toluene solution (room temperature, vev ≃ 0.3 µm.s−1,
∆Tst ≃ 5 K, Hth ≃ 28 W.m−2.K−1). The critical zone of the thermal Rayleigh-Bénard-
Marangoni problem corresponds to the extreme boundaries obtained by the non-normal
method formed by curves Gthres = 1 or Gthres = 100 using EV or ET norms (see Doumenc
et al. [12]). The critical conditions of the solutal Bénard-Marangoni problem and the solutal
Rayleigh-Bénard problem have been obtained by the nonlinear approach with r+ = 10−6/∆ϕ
(see Trouette et al. [48]). Changing r+ by ± 2 decades results in a maximum variation of the
critical thickness of the order of 30 % (not shown on the plot). Experimental test cases 1 and
2 are indicated by green circles and arrows.
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Figure C.9: Time evolution of the average cell-to-cell distance for thermal model, solutal
model, and experiments. Left: Test case 1, Right: Test case 2. Error bars in experimental
results reflect the size dispersion of the cells.
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Figure C.10: Time evolution of free surface velocity for thermal and solutal models (L2 norm).
Left: Test case 1, Right: Test case 2.
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Figure C.11: Solutal model: quasi-steady regime in the BM configuration. Domains derived
from the scaling analysis (the figure is drawn for Sc = 2.3× 105).

10
3

10
4

10
5

10
6

10
7

10
8

Ma
sol

10
1

10
2

10
3

10
4

Fr
ee

 s
ur

fa
ce

 v
el

oc
ity

v
x

+
 =  0.16 Ma

sol

2/3

Figure C.12: Solutal Bénard-Marangoni problem: average dimensionless velocity at the free
surface. Black open symbols: L2 norm from numerical simulations (◦: PIB/toluene, ϕpi =
0.047, A = 5, constant viscosity ; �: PIB/toluene, A = 10, variable viscosity ; ⋄: PS/toluene,
A = 30, variable viscosity ; Straight line: scaling law (B domain, prefactor fitted over numerical
simulations) ; Error bars: experimental data from Bassou and Rharbi [2].
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