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Abstract – This paper examines through numerical simulations the impact of a solutal Marangoni
effect on the deposit obtained from a polymer solution. A hydrodynamical model with lubrica-
tion approximation is used to describe the liquid phase in a dip-coating-like configuration. The
studied case considers evaporation in stagnant air (diffusion-limited evaporation), which results
in a coupling between the liquid and gas phases. Viscosity, surface tension, and saturated vapor
pressure depend on the solute concentration. In the evaporative regime, when the surface ten-
sion increases with the polymer concentration, the Marangoni effect induces a periodic regime.
This results in a self-organized periodic patterning of the dried film in certain control parameter
ranges. A morphological phase diagram as well as meniscus and dry deposit shapes are provided
as a function of the substrate velocity and bulk solute concentration.

Introduction. – Recent years have seen important
developments in studies dedicated to patterning induced
by convective self-assembly during the drying of solutions
or dispersions. For geometries such as sessile droplets or
dip-coating-like configurations, the system may develop
regular patterns induced by a periodic movement of the
contact line. The contact line is pinned, or slows down
compared to the mean velocity, and then speeds up (slip
event) until the next pinning event [1, 2]. A remarkable
aspect of this phenomenon is its universality: it can be
observed for different geometries (sessile droplet [3], liq-
uid bridge [4], capillary tube [5], dip-coating [6] or similar
geometry [7,8]) and different solutes (colloids [9], polymers
[10], small molecules [11], etc.).

Despite the large number of experimental and theoreti-
cal studies published in the last ten years, we are still lack-
ing a complete understanding of the mechanisms responsi-
ble for the appearance of a periodic regime (see Frastia et
al. [12] for a recent and complete review). A very promis-
ing approach, which motivated the present work, consists
in capturing a stick-slip phenomenon through a hydrody-
namical model. Such models were developed to describe
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the evaporation of dewetting liquid layers (Warner et al.
[13], Frastia et al. [12,14]), of droplets (Craster et al [15]),
or the transfer of a surfactant monolayer over a moving
substrate (Köpf et al [16]). All of these models are based
on lubrication approximation and concern thin liquid lay-
ers in a situation of partial wetting (substrate wettability
is taken into account through a disjoining pressure term).
Evaporation is assumed to be phase transition-limited (a
situation that occurs when the liquid is in contact with its
pure vapor); the dynamic in the gas phase can therefore
be disregarded (one-sided models). With the exception of
[16], these models consider colloidal dispersions, which are
characterized by strong variations of viscosity as a function
of particle concentration (Krieger-Dougherty law, which
diverges at the maximum particle packing concentration).
Additionally, Warner et al. [13] and Köpf et al. [16] have
studied the solutal Marangoni effect’s influence on the pat-
tern formation (due to the presence of a surfactant, which
lowers the liquid surface tension). An advantageous fea-
ture shared by all of these models is their ability to predict
the periodic patterning of the deposit without an artificial
trigger. For instance, the periodic movement of the con-
tact line can be produced by alternate motions of dewet-
ting and drying fronts that are competing against each
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other [12,14].
In this study, we consider a polymer solution drying in

stagnant air in a dip-coating-like geometry (a meniscus
over a moving substrate). Because the substrate velocity
is a control parameter, this set-up corresponds to an active
geometry as defined in [12]. Our adopted approach is sim-
ilar to the above-discussed models, although it includes
specific features relevant to our studied problem. First,
we consider that evaporation takes place in stagnant air
(diffusion-limited evaporation), which requires us to take
account of the diffusion dynamic in the gas phase. Sec-
ondly, surface tension is assumed to depend on the poly-
mer concentration (solutal Marangoni effect). However, in
contrast to the above-mentioned works, the non-volatile
solute has a higher surface tension than the volatile sol-
vent. Finally, we consider the saturated vapor pressure’s
dependence on the solvent concentration. The evapora-
tion flux decreases with the solvent concentration, and the
film thickness therefore remains large enough to maintain
a negligible influence of substrate wettability, thus the dis-
joining pressure is disregarded in the model.
Previous results obtained for this same configuration

have disregarded the Marangoni effect [17]. Although
these previous simulations have confirmed the impact of
local evaporation on the shape of the meniscus and pre-
dicted the deposit thickness, only flat deposits were ob-
served. In this work, we demonstrate that the solutal
Marangoni effect may be one of the mechanisms respon-
sible for the onset of a periodic regime. Indeed, when
the non-volatile solute has a higher surface tension than
the solvent and for a certain range of substrate velocities
and bulk concentrations, a stable steady solution does not
exist, and the system spontaneously evolves toward a pe-
riodic solution.

The film/gas model. – This study examines a dry-
ing binary solution (one volatile solvent and one non-
volatile solute) in a meniscus. The free surface is in contact
with air at atmospheric pressure and evaporation is limited
by the diffusion of solvent vapor into stagnant air. Our
conditions assume a local thermodynamic equilibrium at
the interface at a constant temperature (isothermal prob-
lem). The solution is in contact with a moving, flat sub-
strate with a no-slip boundary condition. The model is
two-dimensional, and the hydrodynamics inside the solu-
tion are described in a lubrication approximation frame-
work. Gravity is neglected, and a uniform concentration
over the thickness is assumed in the liquid phase.
The direction parallel to the substrate (flow main di-

rection) is denoted by ~x; the axis normal to the substrate
is denoted by ~z. With the above-mentioned approxima-
tions and assuming a Newtonian fluid, Stokes equations
produce the following standard result [18]:

Q(x, t) = Vsubh+
h3

3η(φ)

∂

∂x
(γ

∂2h

∂x2
) +

h2

2η(φ)

dγ

dφ

∂φ

∂x
, (1)

where Vsub is the substrate velocity, h is the liquid height,

η is the dynamic viscosity, γ is the surface tension, and
φ is the polymer volume fraction. Q(x, t) is the liquid
volumic flux (by unit of width) at abscissa x and time t
over a cross-section normal to ~x,

Q(x, t) =

∫ h(x)

0

u(x, z) dz, (2)

where u(x, z) is the velocity component in the ~x direction.
The first term on the right-hand side of eq. (1) is the
flow produced by the substrate motion; the second term
is the flow induced by capillary pressure; the last term
describes the flow driven by the surface tension gradient
(Marangoni effect). In the following, these three terms
are denoted by Qsub, Qcap, and QMa, respectively. The
global mass conservation and the non-volatile solute mass
conservation respectively read as follows:

∂h

∂t
+

∂Q

∂x
= −vev(x, t) (3)

∂(φh)

∂t
+

∂(φQ)

∂x
=

∂

∂x
(Dh

∂φ

∂x
), (4)

where vev(x, t) is the local evaporation velocity (positive
for evaporation), and D is the mutual diffusion coefficient
of the binary system.
At x = 0 (inlet of the computational domain) we impose

the liquid height h0, the curvature C0, and the bulk solute
volume fraction φ0:

at x = 0, h = h0,
∂2h

∂x2
= C0, φ = φ0. (5)

Considering, for instance, a capillary rise between two
plates separated by a gap d, C0 is the curvature of a
static meniscus deduced from the gap d between the plates
(C0 = 2/d). The height h0 is an arbitrary cut-off; it must
be small enough to ensure the validity of a small slope
approximation. Imposing h0 and C0 at x = 0 creates a
meniscus section of static length Lst ∼

√

h0/C0. Varia-
tions of curvature and height at x = 0, produced by the
evaporation or the substrate motion, are neglected in this
approach.
For the outlet conditions at x = W , far away from the

bulk, we assume a zero concentration gradient:

at x = W,
∂φ

∂x
= 0. (6)

In the evaporative regime (cf. next section) the film is dry
at the outlet and we consider φ(W, t) ∼ 1, which results in
a very large viscosity close to the outlet. We can therefore
infer that eq. (1) reduces to Q(x, t) ≃ Vsubh in that region,
thus eq. (3) turns into an advection equation of order 1 in
space, which does not require any boundary conditions at
x = W . In the Landau-Levich regime we assume a zero
slope and curvature at the outlet.
The local evaporation velocity vev(x, t) in eq. (3) is de-

termined by solving a diffusion problem in the gas phase
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for a domain of length W and height H (H would roughly
correspond to the boundary layer thickness for a process
with a forced air-flow above the free surface). Because H
is considerably larger than h0, we assume a rectangular
domain for the gas phase. The liquid thickness variations
are therefore neglected in the computation of the mass
transfer in the gas phase. The bottom boundary of this
domain corresponding to the liquid-gas interface is thus:
z = 0 and 0 < x < W . The diffusion equation in the gas
phase reads as follows:

∂cg
∂t

= Dg(
∂2cg
∂x2

+
∂2cg
∂z2

), for 0 < x < W and 0 < z < H ,

(7)
where cg is the solvent vapor concentration in the air, and
Dg is the vapor diffusion coefficient. The vertical walls are
assumed to be impermeable. A Dirichlet condition with
a zero solvent vapor concentration is imposed at the top.
We thus obtain the following boundary conditions for the
gas domain (see fig. 1):

∂cg
∂x

= 0 for (x = 0 or x = W ) and 0 < z < H (8)

cg = 0 for 0 ≤ x ≤ W and z = H (9)

The next boundary condition corresponds to the coupling
between the liquid and the gas phases. The solvent activ-
ity in a polymer solution is given by the classical Flory-
Huggins theory [19]: a = (1 − φ)exp(φ + χφ2), where χ
is the polymer-solvent interaction parameter. Given the
assumption that the vapor behaves as an ideal gas, the
local thermodynamic equilibrium at the interface implies
a = Pvs/Pvs0, where Pvs and Pvs0 are the saturated vapor
pressure above the solution and the pure solvent, respec-
tively. The vapor solvent concentration at the interface
can be deduced from the solvent activity and the ideal gas
law:

cg = a(φ, T )Pvs0(T )
Ms

RT
for 0 ≤ x ≤ W and z = 0,

(10)
where Ms is the solvent molar mass, R is the ideal gas
constant, and T is the temperature. Equation (10) ne-
glects Kelvin effect. The validity of this assumptions has
been confirmed a posteriori by inspection of the numerical
results. Our final equation concerns the mass flux conser-
vation across the interface:

ρvev = −Dg
∂cg
∂z

, (11)

where ρ is the liquid solvent density. In agreement with
[17], the above set of equations (1 to 11) is solved through
finite differences (using a pure implicit scheme of order
1 in time and 2 in space and an adaptive spatial mesh
to increase the density of nodes in the high concentra-
tion gradient region). Results of a previous calculus for
a close configuration provided the initial conditions. In
the following, we focus on the long term behavior, and the
initial transient regimes are not shown.

H
Gas phase

(air + solvent vapor)

W

Liquid phase

Evaporation z
x

x=0 x=W

Dirichlet boundary condition, eq. (9)

Liquid free surface, eq. (10−11)

0
h

Impermeable surface, eq. (8) 

Fig. 1: Geometry and boundary conditions of the gas domain.

The solution provides the meniscus shape, the local
evaporation flux, the concentration field in the gas, and
the concentration and velocity fields in the solution (cf.
[17] for details of a configuration without the Marangoni
effect). The following values apply to all simulations:
H = 3mm, W = 1mm, C0 = 2mm−1, h0 = 0.1mm,
and T = 25oC for the physico-chemical properties of the
Polyisobutylene (PIB)/toluene system [17]. The toluene
saturated vapor pressure, the molar mass and the dif-
fusion coefficient in the gas phase are Pvs0 = 3792Pa,
Ms = 92.14 g.mol−1, and Dg = 8.6 × 10−6 m2.s−1, re-
spectively. The solution density and the diffusion coeffi-
cient are assumed to be constant: ρ = 900 kg.m−3 and
D = 10−10 m2.s−1. The surface tension γ is assumed to
increase linearly with the solute volume fraction from γ =
28 × 10−3 N.m−1 (pure toluene) to γ = 34 × 10−3 N.m−1

(pure PIB). The viscosity η exhibits a strong increase
with the solute volume fraction (12 orders of magnitude
from pure toluene to pure PIB for a PIB molar mass of
MW = 500 kg.mol−1). The following empirical law gives
η in Pa.s: Y = 8.22 + 13.2X + 5.2X2 + 0.70X3, where
Y = log10(η) and X = log10(φ). Gravimetric experi-
ments [20] have measured the PIB-toluene interaction pa-
rameter as follows: χ = 0.45 + 0.30φ at T = 25oC.

Results and discussion. – Fig.2 illustrates the so-
lutions obtained for different substrate velocities at φ0 =
0.01. A steady regime is always observed for the reference
configuration without the Marangoni effect (dγ/dφ = 0,
γ = γ(φ0), black dashed curves). Previous studies have
shown that evaporation at the meniscus significantly im-
pacts the flow [17] for this range of substrate velocities
(10µm.s−1 ≤ Vsub ≤ 100µm.s−1). The deposit thick-
ness hd can be obtained through simple mass balances
[11,17,21,22]:

hd = Fevφ0/Vsub, (12)

where Fev is the integral of the evaporation velocity vev
over the whole meniscus. The dry film thickness in this
evaporative regime, where most of the evaporation takes
place in the meniscus, corresponds to the left branch in
fig.3. At higher substrate velocity, the right branch corre-
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Fig. 2: Liquid height for different substrate velocities, φ0 =
0.01. Dashed lines: constant surface tension (no Marangoni
effect). Solid lines: variable surface tension (Marangoni ef-
fect). (a)Vsub = 10µm/s (steady sub-regime, monotonic pro-
file), (b)Vsub = 30µm/s (periodic sub-regime, moving bump),
(c)Vsub = 55µm/s (steady sub-regime, stationary bump),
(d)Vsub = 100µm/s (steady sub-regime, monotonic profile).

sponds to the Landau-Levich regime, where viscous forces
drag a film onto the substrate; this film subsequently dries

[11, 23]. The deposit thickness is proportional to V
2/3
sub in

this regime, as expected. When the Marangoni effect is
considered, complex behaviors are observable in the evap-
orative regime. First, because the surface tension of the
solute is higher than that of the solvent, the concentration
gradient causes the meniscus to be stretched compared
with the case without the Marangoni effect (solid lines
v. dashed lines in fig.2). The formation of a stationary
bump in the sub-regime (c), corresponding to the velocity
range 37µm.s−1 < Vsub ≤ 85µm.s−1, is a significant fact.
The bump size decreases when Vsub increases, and a mono-
tonic profile is recovered for Vsub > 85µm.s−1 (sub-regime
(d)). Poulard and Damman [25] have experimentally ob-
served such a bump, induced by a solutal Marangoni flow,
during the drying of a polymer solution droplet. For a
simpler case (pure liquid and a uniform surface tension
gradient imposed by heating the substrate), Carles and
Cazabat [24] have advanced an elegant discussion to ex-
plain the bump formation using simple hydrodynamical
arguments based on mass conservation in a steady state
(cf. [24] for details). Our study considers a more complex
configuration because the meniscus shape is the result of
a complex interplay between the three components of the
volumic flux and the variable viscosity. However similar
arguments can be put forward to qualitatively understand
the origin of the stationary bump. Indeed, to ensure mass
conservation in the steady state (eq. (3) with ∂h

∂t = 0), the
Marangoni flux QMa must be balanced by a modification
of the capillary flux Qcap. This is illustrated in fig.4, which
shows the three components (Qsub, Qcap, and QMa) of the
liquid volumic flux Q(x). QMa is always positive but non-
monotonic. The capillary term changes its sign to ensure
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Fig. 3: Dry film thickness divided by evaporation flux for φ0 =
0.01. Solid line: eq. (12) (evaporative regime). Dashed line:
slope 2/3 (Landau-Levich regime). For the sub-regime case (b)
(red circles), the thickness is averaged over one period.

mass conservation, and so does the third derivative of the
height h(x), which results in the bump formation. Below
a given substrate velocity (Vsub ≤ 37µm.s−1 in our exam-
ple), a stationary solution is no longer achievable and the
numerical simulation converges toward a periodic solution,
leading to a regularly patterned deposit (sub-regime (b)
in fig.2). The time evolution of the liquid height profile
is detailed over one period in fig.5, where the black arrow
indicates the bump top. The dotted vertical line is the dry-
ing front corresponding to the limit of the “frozen” region,
where the liquid viscosity is so large that the liquid film
is simply advected at the substrate velocity. In practice,
we consider the drying front to be located at the abscissa
xf defined by (Q(xf , t) − Qsub(xf , t))/Qsub(xf , t) < 1%.
In this periodic regime, the bump initially grows upward
while simultaneously moving to the right, preceded by the
drying front; both of them move away from the meniscus.
After a certain time, the drying front recedes, causing the
bump to dry with a dramatic increase in viscosity. The
bump is then advected at the substrate velocity, and a
new bump is formed closer to the meniscus, and so on.
Finally, for a lower substrate velocity (Vsub < 19.5µm.s−1

in our example), we again observe a steady regime with a
monotonic liquid height profile (sub-regime (a) in fig.2 ).

It is noteworthy that, while the meniscus shape is
strongly sensitive to the Marangoni effect, the dry de-
posit thicknesses (averaged over one period for the peri-
odic regime case) are recovered without significant changes
compared with the simulations without the Marangoni ef-
fect (cf. fig.3). It follows that the global mass balances
are not affected by the development of the flow induced
by the surface tension gradient.

Fig.6 depicts a morphological phase diagram of the dif-
ferent regimes as a function of Vsub and φ0, illustrating
that the periodic regime occurs in a relatively small range
of substrate velocities and disappears for bulk concentra-
tions larger than about 0.03.

Concerning the periodic sub-regime (b), fig.7 illustrates
wavelengths and amplitudes of the periodic patterns as a
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Fig. 4: Relation between meniscus profile and liquid fluxes
for Vsub = 40µm.s−1 and φ0 = 0.01 (steady state, zoom on
the bump region). Top: liquid height. Bottom: total liquid
volumic flux Q (thick black line), Qsub (thin green line), Qcap

(dashed-dot blue line) and QMa (dashed red line). Dotted
vertical line: position of the drying front corresponding to the
abscissa xf , so that (Q(xf , t)−Qsub(xf , t))/Qsub(xf , t) < 1%.

function of the substrate velocity and for two bulk concen-
trations. Note that these results correspond to the mor-
phology of the film outside of the meniscus, where the
system gels due to the very high viscosity of the solution.
Therefore, in that region, the periodic pattern is simply
translated at the substrate velocity Vsub. We use the pe-
riod τ to obtain the wavelength λ = τVsub; the pattern
amplitude refers to the dry deposit thickness hd = hφ.
Qualitatively, fig.7 shows two types of transitions from
flat to patterned deposit: (α) at low velocity, a divergence
of the wavelength for a finite value of Vsub occurs whereas
the amplitude retains a quasi-constant value; (β) at high
velocity, a decrease of the pattern amplitude is observed.
For both cases, small domains of hysteresis are observed
close to the transition regions. Indeed the substrate ve-
locity corresponding to the transition from a flat to a pat-
terned deposit can be slightly shifted (less than 1µm/s) by
changing the initial condition (flat deposit limits shown in
fig.7 correspond to a decreasing substrate velocity). Li et
al. [26] have also observed a divergence of the wavelength
when the substrate velocity was decreased (numerical sim-
ulations of Langmuir-Blodgett transfer), and it is worth
noting that behaviors (α) and (β) have already been re-
ported by Frastia et al [12], although their study was based
on a different situation (numerical simulations of a dewet-
ting thin film with a passive geometry). As suggested by
these authors, one may infer that, most likely, behavior (α)
corresponds to a homoclinic bifurcation and behavior (β)
corresponds to a subcritical Hopf bifurcation. A more pre-
cise description would require the definition of a reduced
model and a subsequent analysis within the framework of
bifurcation theory; this was performed, for instance, by
Köpf et al. [27] for Langmuir-Blodgett transfer.
Fig.8 illustrates the complex behavior of the system for
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Fig. 5: Periodic time evolution of the meniscus (the region
from x = 0 to x = 300µm is not shown). Vsub = 30µm.s−1,
φ0 = 0.01. From top to bottom: t = 0, t = 0.25τ , t = 0.5τ ,
t = 0.75τ , t = τ , where the period τ = 8.69s. The black arrow
indicates the bump top. The dotted vertical line is the position
of the drying front corresponding to the abscissa xf , so that
(Q(xf , t)−Qsub(xf , t))/Qsub(xf , t) < 1%.

a step-by-step decrease of Vsub at φ0 = 0.01. Starting
from a steady state (Vsub = 38µm/s, flat deposit), we
obtain periodic regimes at Vsub = 37, 36.5 and 36µm/s
(fig.8-(1-3)), with a doubling of the wavelength between
the last two velocities. After passing through an aperi-
odic regime (Vsub = 35.75µm/s, fig.8-4), a new periodic
regime is reached, characterized by a larger wavelength
and a significant change in the amplitude and deposit
shape (Vsub = 35.5µm/s, fig.8-5). Fig.8-(1-3) and fig.8-
5 correspond to the fourth righthandmost circles in fig.7.
The aperiodic regime observed in fig.8-4 is not represented
in fig.7 (undefined wavelength).

The decrease of the pattern amplitude with an increas-
ing substrate velocity has already been experimentally ob-
served [7]. However, in these experiments, which were per-
formed with colloidal suspensions, the wavelengths have
remained proportional to V −1

sub for over a decade, suggest-
ing that mechanisms other than the solutal Marangoni
effect may be involved and should therefore be investi-
gated. The study of two dimensional patterns offers an-
other interesting perspective. Indeed, it is well known that
the liquid bump observed in these simulations is subject
to the Rayleigh-Plateau instability [25, 28], which has the
potential to produce a rich variety of different patterns.
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Fig. 6: Morphological phase diagram of meniscus shape, in
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